ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Methane to Acetic Acid over Cu-Exchanged Zeolites: Mechanistic Insights from a Site-Specific Carbonylation Reaction

View Author Information
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: J. Am. Chem. Soc. 2015, 137, 5, 1825–1832
Publication Date (Web):January 6, 2015
https://doi.org/10.1021/ja5106927
Copyright © 2015 American Chemical Society

    Article Views

    7165

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the CuII–O–CuII sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV–vis and EPR spectroscopic studies showed that a novel Cu2+ site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details, 13C[1H] CP-MAS NMR spectra of surface species on Cu-MOR, UV–visible–NIR spectroscopy of Cu-MOR at low Cu/Al, control experiments with 18O2, dimethyl ether carbonylation, full X-band EPR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 150 publications.

    1. Jingxian Cao, Guodong Qi, Bingqing Yao, Qian He, Richard J. Lewis, Xu Li, Feng Deng, Jun Xu, Graham J. Hutchings. Partially Bonded Aluminum Site on the External Surface of Post-treated Au/ZSM-5 Enhances Methane Oxidation to Oxygenates. ACS Catalysis 2024, 14 (3) , 1797-1807. https://doi.org/10.1021/acscatal.3c05030
    2. Yuting Sun, Pan Gao, Yi Ji, Kuizhi Chen, Guangjin Hou. Evolution of Methanol Molecules within Pyridine-Modified Mordenite Unveiled by Solid-State NMR Spectroscopy. ACS Catalysis 2024, 14 (3) , 1494-1504. https://doi.org/10.1021/acscatal.3c04494
    3. Jingxian Cao, Richard J. Lewis, Guodong Qi, Donald Bethell, Mark J. Howard, Brian Harrison, Bingqing Yao, Qian He, David J. Morgan, Fenglou Ni, Pankaj Sharma, Christopher J. Kiely, Xu Li, Feng Deng, Jun Xu, Graham J. Hutchings. Methane Conversion to Methanol Using Au/ZSM-5 is Promoted by Carbon. ACS Catalysis 2023, 13 (11) , 7199-7209. https://doi.org/10.1021/acscatal.3c01226
    4. Haoyi Li, Chuanye Xiong, Muchun Fei, Lu Ma, Hongna Zhang, Xingxu Yan, Peter Tieu, Yucheng Yuan, Yuhan Zhang, James Nyakuchena, Jier Huang, Xiaoqing Pan, Matthias M. Waegele, De-en Jiang, Dunwei Wang. Selective Formation of Acetic Acid and Methanol by Direct Methane Oxidation Using Rhodium Single-Atom Catalysts. Journal of the American Chemical Society 2023, 145 (20) , 11415-11419. https://doi.org/10.1021/jacs.3c03113
    5. Nicholas F. Dummer, David J. Willock, Qian He, Mark J. Howard, Richard J. Lewis, Guodong Qi, Stuart H. Taylor, Jun Xu, Don Bethell, Christopher J. Kiely, Graham J. Hutchings. Methane Oxidation to Methanol. Chemical Reviews 2023, 123 (9) , 6359-6411. https://doi.org/10.1021/acs.chemrev.2c00439
    6. Mikalai A. Artsiusheuski, René Verel, Jeroen A. van Bokhoven, Vitaly L. Sushkevich. Mechanism of Hydrocarbon Formation in Methane and Methanol Conversion over Copper-Containing Mordenite. ACS Catalysis 2023, 13 (9) , 5864-5875. https://doi.org/10.1021/acscatal.2c06312
    7. Neha Antil, Manav Chauhan, Naved Akhtar, Rahul Kalita, Kuntal Manna. Selective Methane Oxidation to Acetic Acid Using Molecular Oxygen over a Mono-Copper Hydroxyl Catalyst. Journal of the American Chemical Society 2023, 145 (11) , 6156-6165. https://doi.org/10.1021/jacs.2c12042
    8. Hong Li, Yuebo Shen, Xia Xiao, Hong Jiang, Qingqing Gu, Yafeng Zhang, Lu Lin, Wenhao Luo, Si Zhou, Jijun Zhao, Aiqin Wang, Tao Zhang, Bing Yang. Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion. ACS Catalysis 2023, 13 (2) , 1197-1206. https://doi.org/10.1021/acscatal.2c05463
    9. Pawan Kumar, Tareq A. Al-Attas, Jinguang Hu, Md. Golam Kibria. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS Nano 2022, 16 (6) , 8557-8618. https://doi.org/10.1021/acsnano.2c02464
    10. Ryota Osuga, Shuhei Yasuda, Masato Sawada, Ryo Manabe, Hisashi Shima, Susumu Tsutsuminai, Atsushi Fukuoka, Hirokazu Kobayashi, Atsushi Muramatsu, Toshiyuki Yokoi. Oxidative Reforming of Methane over Rh-Containing Zeolites: Active Species and Role of Zeolite Framework. Industrial & Engineering Chemistry Research 2021, 60 (24) , 8696-8704. https://doi.org/10.1021/acs.iecr.1c01353
    11. Gordon Brezicki, Jonathan Zheng, Christopher Paolucci, Robert Schlögl, Robert J. Davis. Effect of the Co-cation on Cu Speciation in Cu-Exchanged Mordenite and ZSM-5 Catalysts for the Oxidation of Methane to Methanol. ACS Catalysis 2021, 11 (9) , 4973-4987. https://doi.org/10.1021/acscatal.1c00543
    12. Olabisi Suleiman, Olajumoke Adeyiga, Dipak Panthi, Samuel O. Odoh. Copper-Oxo Active Sites in the 8MR of Zeolite Mordenite: DFT Investigation of the Impact of Acid Sites on Methanol Yield and Selectivity. The Journal of Physical Chemistry C 2021, 125 (12) , 6684-6693. https://doi.org/10.1021/acs.jpcc.1c00561
    13. Chunyan Tu, Xiaowa Nie, Jingguang G. Chen. Insight into Acetic Acid Synthesis from the Reaction of CH4 and CO2. ACS Catalysis 2021, 11 (6) , 3384-3401. https://doi.org/10.1021/acscatal.0c05492
    14. Anton A. Gabrienko, Alexander A. Kolganov, Sergei S. Arzumanov, Svetlana A. Yashnik, Vladimir V. Kriventsov, Dieter Freude, Alexander G. Stepanov. Effect of Copper State in Cu/H-ZSM-5 on Methane Activation by Brønsted Acid Sites, Studied by 1H MAS NMR In Situ Monitoring the H/D Hydrogen Exchange of the Alkane with Brønsted Acid Sites. The Journal of Physical Chemistry C 2021, 125 (3) , 2182-2193. https://doi.org/10.1021/acs.jpcc.0c10261
    15. Alexander A. Kolganov, Anton A. Gabrienko, Svetlana A. Yashnik, Evgeny A. Pidko, Alexander G. Stepanov. Nature of the Surface Intermediates Formed from Methane on Cu-ZSM-5 Zeolite: A Combined Solid-State Nuclear Magnetic Resonance and Density Functional Theory Study. The Journal of Physical Chemistry C 2020, 124 (11) , 6242-6252. https://doi.org/10.1021/acs.jpcc.0c00311
    16. Shuang Liu, Lea R. Winter, Jingguang G. Chen. Review of Plasma-Assisted Catalysis for Selective Generation of Oxygenates from CO2 and CH4. ACS Catalysis 2020, 10 (4) , 2855-2871. https://doi.org/10.1021/acscatal.9b04811
    17. Anton A. Gabrienko, Svetlana A. Yashnik, Alexander A. Kolganov, Alena M. Sheveleva, Sergei S. Arzumanov, Matvey V. Fedin, Floriana Tuna, Alexander G. Stepanov. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Inorganic Chemistry 2020, 59 (3) , 2037-2050. https://doi.org/10.1021/acs.inorgchem.9b03462
    18. Jian-Feng Wu, Xu-Dong Gao, Long-Min Wu, Wei David Wang, Si-Min Yu, Shi Bai. Mechanistic Insights on the Direct Conversion of Methane into Methanol over Cu/Na–ZSM-5 Zeolite: Evidence from EPR and Solid-State NMR. ACS Catalysis 2019, 9 (9) , 8677-8681. https://doi.org/10.1021/acscatal.9b02898
    19. Vitaly L. Sushkevich, Jeroen A. van Bokhoven. Methane-to-Methanol: Activity Descriptors in Copper-Exchanged Zeolites for the Rational Design of Materials. ACS Catalysis 2019, 9 (7) , 6293-6304. https://doi.org/10.1021/acscatal.9b01534
    20. Jean-Paul Lange, Vitaly L. Sushkevich, Amy J. Knorpp, Jeroen A. van Bokhoven. Methane-to-Methanol via Chemical Looping: Economic Potential and Guidance for Future Research. Industrial & Engineering Chemistry Research 2019, 58 (20) , 8674-8680. https://doi.org/10.1021/acs.iecr.9b01407
    21. Sergei Hanukovich, Alan Dang, Phillip Christopher. Influence of Metal Oxide Support Acid Sites on Cu-Catalyzed Nonoxidative Dehydrogenation of Ethanol to Acetaldehyde. ACS Catalysis 2019, 9 (4) , 3537-3550. https://doi.org/10.1021/acscatal.8b05075
    22. Akira Oda, Takahiro Ohkubo, Takashi Yumura, Hisayoshi Kobayashi, Yasushige Kuroda. Room-Temperature Activation of the C–H Bond in Methane over Terminal ZnII–Oxyl Species in an MFI Zeolite: A Combined Spectroscopic and Computational Study of the Reactive Frontier Molecular Orbitals and Their Origins. Inorganic Chemistry 2019, 58 (1) , 327-338. https://doi.org/10.1021/acs.inorgchem.8b02425
    23. Michael Dyballa, Dimitrios K. Pappas, Karoline Kvande, Elisa Borfecchia, Bjørnar Arstad, Pablo Beato, Unni Olsbye, Stian Svelle. On How Copper Mordenite Properties Govern the Framework Stability and Activity in the Methane-to-Methanol Conversion. ACS Catalysis 2019, 9 (1) , 365-375. https://doi.org/10.1021/acscatal.8b04437
    24. Kimberly T. Dinh, Mark M. Sullivan, Pedro Serna, Randall J. Meyer, Mircea Dincă, Yuriy Román-Leshkov. Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites. ACS Catalysis 2018, 8 (9) , 8306-8313. https://doi.org/10.1021/acscatal.8b01180
    25. Selmi E. Bozbag, Petr Sot, Maarten Nachtegaal, Marco Ranocchiari, Jeroen A. van Bokhoven, Carl Mesters. Direct Stepwise Oxidation of Methane to Methanol over Cu–SiO2. ACS Catalysis 2018, 8 (7) , 5721-5731. https://doi.org/10.1021/acscatal.8b01021
    26. Benjamin E. R. Snyder, Max L. Bols, Robert A. Schoonheydt, Bert F. Sels, Edward I. Solomon. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chemical Reviews 2018, 118 (5) , 2718-2768. https://doi.org/10.1021/acs.chemrev.7b00344
    27. Xueting Wang, Adam A. Arvidsson, Magdalena O. Cichocka, Xiaodong Zou, Natalia M. Martin, Johan Nilsson, Stefan Carlson, Johan Gustafson, Magnus Skoglundh, Anders Hellman, and Per-Anders Carlsson . Methanol Desorption from Cu-ZSM-5 Studied by In Situ Infrared Spectroscopy and First-Principles Calculations. The Journal of Physical Chemistry C 2017, 121 (49) , 27389-27398. https://doi.org/10.1021/acs.jpcc.7b07067
    28. Brian D. Montejo-Valencia, Yomaira J. Pagán-Torres, María M. Martínez-Iñesta, and María C. Curet-Arana . Density Functional Theory (DFT) Study To Unravel the Catalytic Properties of M-Exchanged MFI, (M = Be, Co, Cu, Mg, Mn, Zn) for the Conversion of Methane and Carbon Dioxide to Acetic Acid. ACS Catalysis 2017, 7 (10) , 6719-6728. https://doi.org/10.1021/acscatal.7b00844
    29. Ha V. Le, Samira Parishan, Anton Sagaltchik, Caren Göbel, Christopher Schlesiger, Wolfgang Malzer, Annette Trunschke, Reinhard Schomäcker, and Arne Thomas . Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catalysis 2017, 7 (2) , 1403-1412. https://doi.org/10.1021/acscatal.6b02372
    30. Ambarish R. Kulkarni, Zhi-Jian Zhao, Samira Siahrostami, Jens K Nørskov, and Felix Studt . Monocopper Active Site for Partial Methane Oxidation in Cu-Exchanged 8MR Zeolites. ACS Catalysis 2016, 6 (10) , 6531-6536. https://doi.org/10.1021/acscatal.6b01895
    31. Allen A.C. Reule and Natalia Semagina . Zinc Hinders Deactivation of Copper-Mordenite: Dimethyl Ether Carbonylation. ACS Catalysis 2016, 6 (8) , 4972-4975. https://doi.org/10.1021/acscatal.6b01464
    32. Xiaoyun Gao, Xi Chen, Jiaguang Zhang, Weimin Guo, Fangming Jin, and Ning Yan . Transformation of Chitin and Waste Shrimp Shells into Acetic Acid and Pyrrole. ACS Sustainable Chemistry & Engineering 2016, 4 (7) , 3912-3920. https://doi.org/10.1021/acssuschemeng.6b00767
    33. Karthik Narsimhan, Kenta Iyoki, Kimberly Dinh, and Yuriy Román-Leshkov . Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature. ACS Central Science 2016, 2 (6) , 424-429. https://doi.org/10.1021/acscentsci.6b00139
    34. Hai-Fang Li, Zi-Yu Li, Qing-Yu Liu, Xiao-Na Li, Yan-Xia Zhao, and Sheng-Gui He . Methane Activation by Iron-Carbide Cluster Anions FeC6–. The Journal of Physical Chemistry Letters 2015, 6 (12) , 2287-2291. https://doi.org/10.1021/acs.jpclett.5b00937
    35. Pieter Vanelderen, Benjamin E. R. Snyder, Ming-Li Tsai, Ryan G. Hadt, Julie Vancauwenbergh, Olivier Coussens, Robert A. Schoonheydt, Bert F. Sels, and Edward I. Solomon . Spectroscopic Definition of the Copper Active Sites in Mordenite: Selective Methane Oxidation. Journal of the American Chemical Society 2015, 137 (19) , 6383-6392. https://doi.org/10.1021/jacs.5b02817
    36. Chunsong Li, Haochen Zhang, Wenxuan Liu, Lin Sheng, Mu-Jeng Cheng, Bingjun Xu, Guangsheng Luo, Qi Lu. Efficient conversion of propane in a microchannel reactor at ambient conditions. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45179-1
    37. Bjørn Gading Solemsli, Izar Capel Berdiell, Sebastian Prodinger, Karoline Kvande, Gabriele Deplano, Unni Olsbye, Pablo Beato, Silvia Bordiga, Stian Svelle. Reactivity of methoxy species towards methylation and oligomerization in Cu-zeolite systems. Catalysis Today 2024, 436 , 114729. https://doi.org/10.1016/j.cattod.2024.114729
    38. Ruoping Li, Jun Wu, Xinlei Zhao, Shangzhi Song, Chenyong Jiang, Chao Xiong, Jing Ding, Hui Wan, Guofeng Guan. Progress and challenges of direct conversion of methane and carbon dioxide into C2+ oxygenates under mild conditions. Chemical Engineering Journal 2024, 301 , 151528. https://doi.org/10.1016/j.cej.2024.151528
    39. Pengyu REN, Zhuo LIU, Yanhong QUAN, Junjun GUO, Hong MA, Jianbing WU, Yongzhao WANG. Theoretical calculation study on the reaction mechanism of methanol/dimethyl ether carbonylation catalyzed by the B/Al/Ga-MOR zeolites. Journal of Fuel Chemistry and Technology 2024, 52 (3) , 323-334. https://doi.org/10.1016/S1872-5813(23)60395-0
    40. Yutao Liu, Liyu Chen, Lifeng Yang, Tianhao Lan, Hui Wang, Chenghong Hu, Xue Han, Qixing Liu, Jianfa Chen, Zeming Feng, Xili Cui, Qianrong Fang, Hailong Wang, Libo Li, Yingwei Li, Huabin Xing, Sihai Yang, Dan Zhao, Jinping Li. Porous framework materials for energy & environment relevant applications: A systematic review. Green Energy & Environment 2024, 9 (2) , 217-310. https://doi.org/10.1016/j.gee.2022.12.010
    41. Honglin Wang, Wenyu Xin, Xiangdong Zheng, Quan Wang, Ruqin Pei, Xianjiang Dong. Mild Oxidation of Methane to Oxygenates with O2 and CO on Fluorine Modified TS-1 Supported Rh Single-Atom Catalyst in a Flow Reactor. Catalysis Letters 2024, 154 (1) , 259-269. https://doi.org/10.1007/s10562-023-04298-y
    42. Konstantin B. Golubev, Natalia V. Kolesnichenko, Anton L. Maximov. Carbon dioxide hydrogenation combined with an oxidative methane carbonylation over CeO2-HZSM-5 catalyst for acetic acid production. Inorganic Chemistry Communications 2024, 159 , 111697. https://doi.org/10.1016/j.inoche.2023.111697
    43. Wenqing Zhang, Dawei Xi, Yihong Chen, Aobo Chen, Yawen Jiang, Hengjie Liu, Zeyu Zhou, Hui Zhang, Zhi Liu, Ran Long, Yujie Xiong. Light-driven flow synthesis of acetic acid from methane with chemical looping. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38731-y
    44. Zoran R. Jovanovic, Manoj Ravi, Jeroen A. van Bokhoven. Syngas-free Methane-to-methanol via Catalysis and Oxygen Looping. 2023, 66-92. https://doi.org/10.1039/9781839160257-00066
    45. Haochen Zhang, Chunsong Li, Wenxuan Liu, Guangsheng Luo, William A. Goddard, Mu-Jeng Cheng, Bingjun Xu, Qi Lu. Activation of light alkanes at room temperature and ambient pressure. Nature Catalysis 2023, 6 (8) , 666-675. https://doi.org/10.1038/s41929-023-00990-9
    46. Mizuho Yabushita, Ryota Osuga, Toshiyuki Yokoi, Atsushi Muramatsu. Zeolite-based catalysts for oxidative upgrading of methane: design and control of active sites. Catalysis Science & Technology 2023, 13 (14) , 4020-4044. https://doi.org/10.1039/D3CY00482A
    47. Chen-Wei Wang, Yuan Sun, Li-Jun Wang, Wen-Hua Feng, Yu-Ting Miao, Ming-Ming Yu, Yu-Xuan Wang, Xu-Dong Gao, Qingqing Zhao, Zhiqin Ding, Zhaochi Feng, Si-Min Yu, Jinhui Yang, Yongfeng Hu, Jian-Feng Wu. Oxidative carbonylation of methane to acetic acid on an Fe-modified ZSM-5 zeolite. Applied Catalysis B: Environmental 2023, 329 , 122549. https://doi.org/10.1016/j.apcatb.2023.122549
    48. N. V. Kolesnichenko, A. N. Stashenko, T. I. Batova, O. V. Yashina, E. E. Kolesnikova, K. B. Golubev. Oxidative Carbonylation of Methane to Acetic Acid over Commercial Rodium-Modified ZSM-5 Zeolites. Petroleum Chemistry 2023, 63 (6) , 648-654. https://doi.org/10.1134/S0965544123060075
    49. H. Zhang, Y.-G. Ji, Y. Xu, P. Deng, J. Li, Y. Lei, J. Yang, X. Tian. Recent advance of atomically dispersed catalysts for direct methane oxidation under mild aqueous conditions. Materials Today Sustainability 2023, 22 , 100351. https://doi.org/10.1016/j.mtsust.2023.100351
    50. Karoline Kvande, Sebastian Prodinger, Bjørn Gading Solemsli, Silvia Bordiga, Elisa Borfecchia, Unni Olsbye, Pablo Beato, Stian Svelle. Cu-loaded zeolites enable the selective activation of ethane to ethylene at low temperatures and pressure. Chemical Communications 2023, 59 (40) , 6052-6055. https://doi.org/10.1039/D3CC00948C
    51. Zhao Sun, Christopher K. Russell, Kevin J. Whitty, Eric G. Eddings, Jinze Dai, Yulong Zhang, Maohong Fan, Zhiqiang Sun. Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation. Progress in Energy and Combustion Science 2023, 96 , 101045. https://doi.org/10.1016/j.pecs.2022.101045
    52. N. V. Kolesnichenko, N. N. Ezhova, Yu. M. Snatenkova. Single-atom catalysts in methane chemistry. Russian Chemical Reviews 2023, 92 (5) , RCR5079. https://doi.org/10.57634/RCR5079
    53. Bo Wu, Min Huang, Xing Yu, Jin Liu, Tiejun Lin, Liangshu Zhong. Selective Oxidation of Methane to Oxygenates using Oxygen via Tandem Catalysis. Chemistry – A European Journal 2023, 29 (17) https://doi.org/10.1002/chem.202203057
    54. Linke Wu, Wei Fan, Xun Wang, Hongxia Lin, Jinxiong Tao, Yuxi Liu, Jiguang Deng, Lin Jing, Hongxing Dai. Methane Oxidation over the Zeolites-Based Catalysts. Catalysts 2023, 13 (3) , 604. https://doi.org/10.3390/catal13030604
    55. Zoya N. Lashchinskaya, Anton A. Gabrienko, Alexander G. Stepanov. Propene transformation on Cu-modified ZSM-5 zeolite: Aromatization and oxidation. Microporous and Mesoporous Materials 2023, 350 , 112448. https://doi.org/10.1016/j.micromeso.2023.112448
    56. Wenxin Ji, Shasha Zhang, FeiLong Dong, Ning Feng, Liping Lan, Yuanyuan Li, Yulong Ma, Yonggang Sun. Study on Rh(I)-o-aminophenol Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid. Arabian Journal for Science and Engineering 2023, 48 (1) , 263-272. https://doi.org/10.1007/s13369-022-06936-w
    57. Eleonora Ponticorvo, Mariagrazia Iuliano, Claudia Cirillo, Maria Sarno. Selective C2 electrochemical synthesis from methane on modified alumina supporting single atom catalysts. Chemical Engineering Journal 2023, 451 , 139074. https://doi.org/10.1016/j.cej.2022.139074
    58. Alexander A. Kolganov, Anton A Gabrienko, Alexander G. Stepanov. Reaction of methane with benzene and CO on Cu-modified ZSM-5 zeolite investigated by 13C MAS NMR spectroscopy. Chemical Physics Letters 2023, 810 , 140188. https://doi.org/10.1016/j.cplett.2022.140188
    59. Jarinya Sittiwong, Ornanong Opasmongkolchai, Pemikar Srifa, Bundet Boekfa, Piti Treesukol, Winyoo Sangthong, Thana Maihom, Jumras Limtrakul. Computational study of the conversion of methane and carbon dioxide to acetic acid over NU-1000 metal–organic framework-supported single-atom metal catalysts. Molecular Catalysis 2023, 535 , 112855. https://doi.org/10.1016/j.mcat.2022.112855
    60. Mengnan Sun, Xiaowa Nie, Xinwei Zhang, Sirui Liu, Chunshan Song, Xinwen Guo. Computational identification of bifunctional metal-modified ZSM-5 catalysts to boost methane–methanol coupling. Catalysis Science & Technology 2022, 12 (24) , 7328-7340. https://doi.org/10.1039/D2CY01758J
    61. Bing Liu, Mengyuan Huang, Zhihao Fang, Lian Kong, Yuebing Xu, Zaijun Li, Xiaohao Liu. Breaking the scaling relationship in selective oxidation of methane via dynamic Metal-Intermediate Coordination-Induced modulation of reactivity descriptors on an atomically dispersed Rh/ZrO2 catalyst. Journal of Catalysis 2022, 416 , 68-84. https://doi.org/10.1016/j.jcat.2022.10.012
    62. Yongjun Liu, Ruijia Wang, Christopher K. Russell, Penglong Jia, Yi Yao, Wei Huang, Maciej Radosz, Khaled A.M. Gasem, Hertanto Adidharma, Maohong Fan. Mechanisms for direct methane conversion to oxygenates at low temperature. Coordination Chemistry Reviews 2022, 470 , 214691. https://doi.org/10.1016/j.ccr.2022.214691
    63. Joseph Brindle, Michael M. Nigra. The role of water and copper oxide in methane oxidation using AuPd nanoparticle catalysts. Chemical Engineering Journal 2022, 446 , 136979. https://doi.org/10.1016/j.cej.2022.136979
    64. Natalia V. Kolesnichenko, Tatiana I. Batova, Anton N. Stashenko, Tatiana K. Obukhova, Evgeny V. Khramov, Alexey A. Sadovnikov, Denis E. Zavelev. The role of the spatial arrangement of single rhodium sites on ZSM-5 in the oxidative methane carbonylation to acetic acid. Microporous and Mesoporous Materials 2022, 344 , 112239. https://doi.org/10.1016/j.micromeso.2022.112239
    65. Xudong Fang, Fuli Wen, Xiangnong Ding, Hanbang Liu, Zhiyang Chen, Zhaopeng Liu, Hongchao Liu, Wenliang Zhu, Zhongmin Liu. Highly Selective Carbonylation of CH 3 Cl to Acetic Acid Catalyzed by Pyridine‐Treated MOR Zeolite. Angewandte Chemie 2022, 134 (31) https://doi.org/10.1002/ange.202203859
    66. Xudong Fang, Fuli Wen, Xiangnong Ding, Hanbang Liu, Zhiyang Chen, Zhaopeng Liu, Hongchao Liu, Wenliang Zhu, Zhongmin Liu. Highly Selective Carbonylation of CH 3 Cl to Acetic Acid Catalyzed by Pyridine‐Treated MOR Zeolite. Angewandte Chemie International Edition 2022, 61 (31) https://doi.org/10.1002/anie.202203859
    67. James H. Carter, Nicholas F. Dummer, Ying Kit Chow, Christopher Williams, Ali Nasrallah, David J. Willock, Graham J. Hutchings, Stuart H. Taylor. The Selective Oxidation of Methane to Oxygenates Using Heterogeneous Catalysts. 2022, 183-201. https://doi.org/10.1002/9783527815906.ch6
    68. Sen Wang, Zhangfeng Qin, Mei Dong, Jianguo Wang, Weibin Fan. Recent progress on MTO reaction mechanisms and regulation of acid site distribution in the zeolite framework. Chem Catalysis 2022, 2 (7) , 1657-1685. https://doi.org/10.1016/j.checat.2022.05.012
    69. Haihong Meng, Bing Han, Fengyu Li, Jingxiang Zhao, Zhongfang Chen. Understanding the CH4 Conversion over Metal Dimers from First Principles. Nanomaterials 2022, 12 (9) , 1518. https://doi.org/10.3390/nano12091518
    70. Fubo Gu, Xuetao Qin, Mengwei Li, Yao Xu, Song Hong, Mengyao Ouyang, Georgios Giannakakis, Sufeng Cao, Mi Peng, Jinling Xie, Meng Wang, Dongmei Han, Dequan Xiao, Xiayan Wang, Zhihua Wang, Ding Ma. Selective Catalytic Oxidation of Methane to Methanol in Aqueous Medium over Copper Cations Promoted by Atomically Dispersed Rhodium on TiO 2. Angewandte Chemie 2022, 134 (18) https://doi.org/10.1002/ange.202201540
    71. Fubo Gu, Xuetao Qin, Mengwei Li, Yao Xu, Song Hong, Mengyao Ouyang, Georgios Giannakakis, Sufeng Cao, Mi Peng, Jinling Xie, Meng Wang, Dongmei Han, Dequan Xiao, Xiayan Wang, Zhihua Wang, Ding Ma. Selective Catalytic Oxidation of Methane to Methanol in Aqueous Medium over Copper Cations Promoted by Atomically Dispersed Rhodium on TiO 2. Angewandte Chemie International Edition 2022, 61 (18) https://doi.org/10.1002/anie.202201540
    72. Alexander A. Kolganov, Anton A. Gabrienko, Ivan Yu. Chernyshov, Alexander G. Stepanov, Evgeny A. Pidko. Property–activity relations of multifunctional reactive ensembles in cation-exchanged zeolites: a case study of methane activation on Zn 2+ -modified zeolite BEA. Physical Chemistry Chemical Physics 2022, 24 (11) , 6492-6504. https://doi.org/10.1039/D1CP05854A
    73. Honglin Wang, Wenyu Xin, Quan Wang, Xiangdong Zheng, Zihan Lu, Ruqin Pei, Pan He, Xianjiang Dong. Direct methane conversion with oxygen and CO over hydrophobic dB-ZSM-5 supported Rh single-atom catalyst. Catalysis Communications 2022, 162 , 106374. https://doi.org/10.1016/j.catcom.2021.106374
    74. Akira Oda, Koshiro Aono, Naoya Murata, Kazumasa Murata, Masazumi Yasumoto, Nao Tsunoji, Kyoichi Sawabe, Atsushi Satsuma. Rational design of ZSM-5 zeolite containing a high concentration of single Fe sites capable of catalyzing the partial oxidation of methane with high turnover frequency. Catalysis Science & Technology 2022, 12 (2) , 542-550. https://doi.org/10.1039/D1CY01987B
    75. Yu Tang, Yuting Li, Franklin (Feng) Tao. Activation and catalytic transformation of methane under mild conditions. Chemical Society Reviews 2022, 51 (1) , 376-423. https://doi.org/10.1039/D1CS00783A
    76. Ryota Osuga, Toshiyuki Yokoi. Position Control of Catalytic Elements in Zeolites. 2022, 167-196. https://doi.org/10.1007/978-981-19-5013-1_6
    77. Takahiko Moteki, Naoto Tominaga, Masaru Ogura. Mechanism investigation and product selectivity control on CO-assisted direct conversion of methane into C1 and C2 oxygenates catalyzed by zeolite-supported Rh. Applied Catalysis B: Environmental 2022, 300 , 120742. https://doi.org/10.1016/j.apcatb.2021.120742
    78. Guodong Qi, Thomas E. Davies, Ali Nasrallah, Mala A. Sainna, Alexander G. R. Howe, Richard J. Lewis, Matthew Quesne, C. Richard A. Catlow, David J. Willock, Qian He, Donald Bethell, Mark J. Howard, Barry A. Murrer, Brian Harrison, Christopher J. Kiely, Xingling Zhao, Feng Deng, Jun Xu, Graham J. Hutchings. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis 2022, 5 (1) , 45-54. https://doi.org/10.1038/s41929-021-00725-8
    79. N. N. Ezhova, N. V. Kolesnichenko, A. L. Maximov. Modern Methods for Producing Acetic Acid from Methane: New Trends (A Review). Petroleum Chemistry 2022, 62 (1) , 40-61. https://doi.org/10.1134/S0965544122010078
    80. Feilong Dong, Shasha Zhang, Wenxin Ji, Lijuan Liu, Liping Lan, Xiong Gao, Jiajun Ye, Yuanyuan Li, Yulong Ma, Yonggang Sun, Keren Shi. Molecular Design on Asymmetric Bidentate Chelate Rh(I)-8-Hydroxyquinoline Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid. SSRN Electronic Journal 2022, 7 https://doi.org/10.2139/ssrn.4016419
    81. Natalia Kolesnichenko, Tatiana Batova, Anton Stashenko, Tatiana Obukhova, Evgeny Khramov, Alexey A. Sadovnikov, Denis Zavelev. The Role of the Spatial Arrangement of Single Rhodium Sites on ZSM-5 in the Oxidative Methane Carbonylation to Acetic Acid. SSRN Electronic Journal 2022, 595 https://doi.org/10.2139/ssrn.4159891
    82. Geqian Fang, Jian Lin, Xiaodong Wang. Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms. Chinese Journal of Chemical Engineering 2021, 38 , 18-29. https://doi.org/10.1016/j.cjche.2021.04.034
    83. Emad N. Al-Shafei, Mohammed Z. Albahar, Mohammad F. Aljishi, Ali N. Aljishi. CO2 coupling reaction with methane by using trimetallic catalysts. Journal of Environmental Chemical Engineering 2021, 9 (5) , 106152. https://doi.org/10.1016/j.jece.2021.106152
    84. Takahiko Moteki, Naoto Tominaga, Nao Tsunoji, Toshiyuki Yokoi, Masaru Ogura. Impact of the Zeolite Cage Structure on Product Selectivity in CO-assisted Direct Partial Oxidation of Methane over Rh Supported AEI-, CHA-, and AFX-type Zeolites. Chemistry Letters 2021, 50 (8) , 1597-1600. https://doi.org/10.1246/cl.210250
    85. Pablo del Campo, Cristina Martínez, Avelino Corma. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews 2021, 50 (15) , 8511-8595. https://doi.org/10.1039/D0CS01459A
    86. Ye Ma, Shichao Han, Qinming Wu, Longfeng Zhu, Huimin Luan, Xiangju Meng, Feng-Shou Xiao. One-pot fabrication of metal-zeolite catalysts from a combination of solvent-free and sodium-free routes. Catalysis Today 2021, 371 , 64-68. https://doi.org/10.1016/j.cattod.2020.06.037
    87. Xinyu Li, Chunlei Pei, Jinlong Gong. Shale gas revolution: Catalytic conversion of C1–C3 light alkanes to value-added chemicals. Chem 2021, 7 (7) , 1755-1801. https://doi.org/10.1016/j.chempr.2021.02.002
    88. K. B. Golubev, O. V. Yashina, T. I. Batova, N. V. Kolesnichenko, N. N. Ezhova. Direct Low-Temperature Oxidative Conversion of Methane to Acetic Acid on Rhodium-Modified Zeolites. Petroleum Chemistry 2021, 61 (6) , 663-669. https://doi.org/10.1134/S0965544121040058
    89. Hebert Rodrigo Mojica Molina, Marlene González Montiel, Amado Enrique Navarro Frómeta. Batch Conversion of Methane to Methanol Using Copper Loaded Mordenite: Influence of the Main Variables of the Process. Ingeniería e Investigación 2021, 41 (3) , e87537. https://doi.org/10.15446/ing.investig.v41n3.87537
    90. Jinlin Mei, Aijun Duan, Xilong Wang. A Brief Review on Solvent-Free Synthesis of Zeolites. Materials 2021, 14 (4) , 788. https://doi.org/10.3390/ma14040788
    91. Wei Chen, Dinesh Acharya, Zhiqiang Liu, Xianfeng Yi, Yao Xiao, Xiaomin Tang, Wenli Peng, Anmin Zheng. Mechanistic insights of selective syngas conversion over Zn grafted on ZSM-5 zeolite. Catalysis Science & Technology 2020, 10 (24) , 8173-8181. https://doi.org/10.1039/D0CY01739F
    92. Qiang Zhang, Jihong Yu, Avelino Corma. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Advanced Materials 2020, 32 (44) https://doi.org/10.1002/adma.202002927
    93. Alexander A. Kolganov, Anton A. Gabrienko, Ivan Yu. Chernyshov, Alexander G. Stepanov, Evgeny A. Pidko. The accuracy challenge of the DFT-based molecular assignment of 13 C MAS NMR characterization of surface intermediates in zeolite catalysis. Physical Chemistry Chemical Physics 2020, 22 (41) , 24004-24013. https://doi.org/10.1039/D0CP04439C
    94. Haihong Meng, Bing Han, Fengyu Li, Jingxiang Zhao. Methane Conversion over C2N-Supported Fe2 Dimers. Catalysts 2020, 10 (9) , 973. https://doi.org/10.3390/catal10090973
    95. Shunsaku Yasumura, Mengwen Huang, Xiaopeng Wu, Chong Liu, Takashi Toyao, Zen Maeno, Ken-ichi Shimizu. A CHA zeolite supported Ga-oxo cluster for partial oxidation of CH4 at room temperature. Catalysis Today 2020, 352 , 118-126. https://doi.org/10.1016/j.cattod.2019.10.035
    96. Yayun Shi, Shizhong Liu, Yiming Liu, Wei Huang, Guoqing Guan, Zhijun Zuo. Quasicatalytic and catalytic selective oxidation of methane to methanol over solid materials: a review on the roles of water. Catalysis Reviews 2020, 62 (3) , 313-345. https://doi.org/10.1080/01614940.2019.1674475
    97. Takahiko Moteki, Naoto Tominaga, Masaru Ogura. CO‐Assisted Direct Methane Conversion into C 1 and C 2 Oxygenates over ZSM‐5 Supported Transition and Platinum Group Metal Catalysts Using Oxygen as an Oxidant. ChemCatChem 2020, 12 (11) , 2957-2961. https://doi.org/10.1002/cctc.202000168
    98. Ryota Osuga, Saikhantsetseg Bayarsaikhan, Shuhei Yasuda, Ryo Manabe, Hisashi Shima, Susumu Tsutsuminai, Atsushi Fukuoka, Hirokazu Kobayashi, Toshiyuki Yokoi. Metal cation-exchanged zeolites with the location, state, and size of metal species controlled. Chemical Communications 2020, 56 (44) , 5913-5916. https://doi.org/10.1039/D0CC02284E
    99. Xueting Wang, Adam A. Arvidsson, Magnus Skoglundh, Anders Hellman, Per-Anders Carlsson. Desorption products during linear heating of copper zeolites with pre-adsorbed methanol. Physical Chemistry Chemical Physics 2020, 22 (13) , 6809-6817. https://doi.org/10.1039/C9CP05479K
    100. Mark A. Newton, Amy J. Knorpp, Vitaly L. Sushkevich, Dennis Palagin, Jeroen A. van Bokhoven. Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chemical Society Reviews 2020, 49 (5) , 1449-1486. https://doi.org/10.1039/C7CS00709D
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect