Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Fully Printable Mesoscopic Perovskite Solar Cells with Organic Silane Self-Assembled Monolayer

View Author Information
Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
Cite this: J. Am. Chem. Soc. 2015, 137, 5, 1790–1793
Publication Date (Web):January 16, 2015
https://doi.org/10.1021/ja5125594
Copyright © 2015 American Chemical Society

    Article Views

    10686

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    By the introduction of an organic silane self-assembled monolayer, an interface-engineering approach is demonstrated for hole-conductor-free, fully printable mesoscopic perovskite solar cells based on a carbon counter electrode. The self-assembled silane monolayer is incorporated between the TiO2 and CH3NH3PbI3, resulting in optimized interface band alignments and enhanced charge lifetime. The average power conversion efficiency is improved from 9.6% to 11.7%, with a highest efficiency of 12.7%, for this low-cost perovskite solar cell.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details and Figures S1–S6. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 417 publications.

    1. Xinlei Gan, Jing Zhang, Yanjun Xing, Xuefeng Peng, Yinxia Han, Qiuxiang Wang, Jiaxing Xiong, Xiaohui Liu, Like Huang, Weiping Li, Qidong Tai, Yuejin Zhu. Efficient Air-Processed MA-Free Perovskite Solar Cells by SH-Based Silane Interface Modification. ACS Applied Materials & Interfaces 2024, Article ASAP.
    2. Drajad S. Utomo, Lauryna M. Svirskaite, Adi Prasetio, Vida Malinauskiene, Pia Dally, Erkan Aydin, Artem Musiienko, Vytautas Getautis, Tadas Malinauskas, Randi Azmi, Stefaan De Wolf. Nonfullerene Self-Assembled Monolayers As Electron-Selective Contacts for n-i-p Perovskite Solar Cells. ACS Energy Letters 2024, 9 (4) , 1682-1692. https://doi.org/10.1021/acsenergylett.4c00306
    3. Mingliang Li, Ming Liu, Feng Qi, Francis R. Lin, Alex K.-Y. Jen. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chemical Reviews 2024, 124 (5) , 2138-2204. https://doi.org/10.1021/acs.chemrev.3c00396
    4. Hang Yang, Jianhong Zhao, Tong Zhou, Hengbing Zhang, Weilong Zhang, Jin Zhang, Guangzhi Hu, Yumin Zhang, Qingju Liu. Mesoporous TiO2 Electron Transport Materials Derived from 2D Ti-MOFs for Enhanced Power Conversion Efficiency in Printed Mesoscopic Perovskite Solar Cells. ACS Applied Nano Materials 2023, 6 (18) , 16353-16361. https://doi.org/10.1021/acsanm.3c02474
    5. Lianlian Qi, Guozheng Du, Guojie Zhu, Yang Wang, Li Yang, Jinbao Zhang. Enhanced Interface Compatibility by Ionic Dendritic Molecules To Achieve Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2023, 15 (34) , 41109-41120. https://doi.org/10.1021/acsami.3c07539
    6. Hua Zhao, Biao Shi, Renjie Li, Yao Dai, Pengyang Wang, Qian Huang, ShengZhi Xu, Dekun Zhang, Xiaona Du, Xinliang Chen, Ying Zhao, Xiaodan Zhang. Synergistic Effect of Pyridine Salt Additives for Efficient and Stable Inverted Wide-Band Gap Perovskite Solar Cells. ACS Applied Energy Materials 2023, 6 (15) , 7818-7825. https://doi.org/10.1021/acsaem.3c00544
    7. Tianran Liu, Xiaoming Zhao, Xinjue Zhong, Quinn C. Burlingame, Antoine Kahn, Yueh-Lin Loo. Improved Absorber Phase Stability, Performance, and Lifetime in Inorganic Perovskite Solar Cells with Alkyltrimethoxysilane Strain-Release Layers at the Perovskite/TiO2 Interface. ACS Energy Letters 2022, 7 (10) , 3531-3538. https://doi.org/10.1021/acsenergylett.2c01610
    8. Fangfang Fan, Zhipeng Li, Haodong Tian, Mingzhe Zhu, Linbao Zhang, Lirong Wen, Zhongmin Zhou. Molecular Interaction Modulates Crystallization and Defects of Perovskite Films for High-Performance Solar Cells. ACS Applied Energy Materials 2022, 5 (9) , 10572-10580. https://doi.org/10.1021/acsaem.2c01289
    9. Yun-Sim Kim, Chol-Hyok Ri, Yun-Hyok Kye, Un-Gi Jong, Xingxing Wang, Yanhui Zhang, Xiao Niu, Chol-Jun Yu. Ab Initio Thermodynamic Study of PbI2 and CH3NH3PbI3 Surfaces in Reaction with CH3NH2 Gas for Perovskite Solar Cells. The Journal of Physical Chemistry C 2022, 126 (7) , 3671-3680. https://doi.org/10.1021/acs.jpcc.1c09936
    10. Haoran Liu, Kangrong Yan, Jack Rao, Zeng Chen, Benfang Niu, Yanchun Huang, Huanxin Ju, Buyi Yan, Jizhong Yao, Haiming Zhu, Hongzheng Chen, Chang-Zhi Li. Self-Assembled Donor–Acceptor Dyad Molecules Stabilize the Heterojunction of Inverted Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces 2022, 14 (5) , 6794-6800. https://doi.org/10.1021/acsami.1c22396
    11. Xiayan Chen, Yongkang Xia, Ziwei Zheng, Xuan Xiao, Chenxi Ling, Minghao Xia, Yue Hu, Anyi Mei, Rongrong Cheacharoen, Yaoguang Rong, Hongwei Han. In Situ Formation of δ-FAPbI3 at the Perovskite/Carbon Interface for Enhanced Photovoltage of Printable Mesoscopic Perovskite Solar Cells. Chemistry of Materials 2022, 34 (2) , 728-735. https://doi.org/10.1021/acs.chemmater.1c03505
    12. Xingnan Qi, Jiantao Wang, Furui Tan, Chen Dong, Kong Liu, Xiaobao Li, Lisheng Zhang, Hongkai Wu, Hsing-Lin Wang, Shengchun Qu, Zhanguo Wang, Zhijie Wang. Quantum Dot Interface-Mediated CsPbIBr2 Film Growth and Passivation for Efficient Carbon-Based Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (46) , 55349-55357. https://doi.org/10.1021/acsami.1c16290
    13. Ran Yin, Ke-Xiang Wang, Shuang Cui, Bing-Bing Fan, Jing-Wen Liu, Yu-Kun Gao, Ting-Ting You, Peng-Gang Yin. Dual-Interface Modification with BMIMPF6 for High-Efficiency and Stable Carbon-Based CsPbI2Br Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (9) , 9294-9303. https://doi.org/10.1021/acsaem.1c01521
    14. Byol Kim, Kwon-Il Ryu, Song-Guk Ko, Kyong-Su Sonu, Jin-Hyok Ri, Hak-Son So, Chol-Il So, Yun-Sim Kim, Chol-Jun Yu. Performance Improvement of Hole-Transport Material-Free Mesoporous Perovskite Solar Cells with Carbon Electrodes Using a Solid–Gas Reaction. ACS Applied Energy Materials 2021, 4 (7) , 6606-6615. https://doi.org/10.1021/acsaem.1c00633
    15. Ali Buyruk, Dominic Blätte, Marcella Günther, Manuel A. Scheel, Nicolai F. Hartmann, Markus Döblinger, Andreas Weis, Achim Hartschuh, Peter Müller-Buschbaum, Thomas Bein, Tayebeh Ameri. 1,10-Phenanthroline as an Efficient Bifunctional Passivating Agent for MAPbI3 Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (28) , 32894-32905. https://doi.org/10.1021/acsami.1c05055
    16. Hao Zhang, Cailing Tu, Chen Xue, Jianhong Wu, Yu Cao, Wei Zou, Wenjie Xu, Kaichuan Wen, Ju Zhang, Yu Chen, Jingya Lai, Lin Zhu, Kang Pan, Lei Xu, Yingqiang Wei, Hongzhen Lin, Nana Wang, Wei Huang, Jianpu Wang. Low Roll-Off and High Stable Electroluminescence in Three-Dimensional FAPbI3 Perovskites with Bifunctional-Molecule Additives. Nano Letters 2021, 21 (9) , 3738-3744. https://doi.org/10.1021/acs.nanolett.0c04900
    17. Ruby A. Sims, Hidenori Noguchi, Sarah L. Harmer, Jamie S. Quinton, Kohei Uosaki. Probing Molecular Mechanisms during the Oscillatory Adsorption of Propyl Chain Functionalized Organosilane Films with Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry B 2021, 125 (17) , 4383-4392. https://doi.org/10.1021/acs.jpcb.0c09715
    18. Fangying Juan, Yangqing Wu, Beibei Shi, Mingxu Wang, Mei Wang, Fan Xu, Jinbiao Jia, Haoming Wei, Tengzhou Yang, Bingqiang Cao. Plasmonic Au Nanooctahedrons Enhance Light Harvesting and Photocarrier Extraction in Perovskite Solar Cell. ACS Applied Energy Materials 2021, 4 (4) , 3201-3209. https://doi.org/10.1021/acsaem.0c02973
    19. Kavya S. Keremane, Sateesh Prathapani, Lew Jia Haur, Annalisa Bruno, Anish Priyadarshi, Airody Vasudeva Adhikari, Subodh G. Mhaisalkar. Improving the Performance of Carbon-Based Perovskite Solar Modules (70 cm2) by Incorporating Cesium Halide in Mesoporous TiO2. ACS Applied Energy Materials 2021, 4 (1) , 249-258. https://doi.org/10.1021/acsaem.0c02213
    20. Dongping Zhu, Yanru Guo, Cheng Mu, Zezhu Jin, Shuai Yuan, Yujun Qin, Jian-Ping Zhang, Xi-Cheng Ai. Bifunctional Chlorosilane Modification for Defect Passivation and Stability Enhancement of High-Efficiency Perovskite Solar Cells. The Journal of Physical Chemistry C 2020, 124 (42) , 22903-22913. https://doi.org/10.1021/acs.jpcc.0c05649
    21. Wanxian Cai, Yanqi Lv, Koucheng Chen, Zhaobin Zhang, Yuanzeng Jin, Xingfu Zhou. Carbon-Based All-Inorganic CsPbI2Br Perovskite Solar Cells Using TiO2 Nanorod Arrays: Interface Modification and the Enhanced Photovoltaic Performance. Energy & Fuels 2020, 34 (9) , 11670-11678. https://doi.org/10.1021/acs.energyfuels.0c01821
    22. Jiangzhao Chen, Nam-Gyu Park. Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters 2020, 5 (8) , 2742-2786. https://doi.org/10.1021/acsenergylett.0c01240
    23. Jia Liang, Xiao Han, Yunxiu Qiu, Qiyi Fang, Boyu Zhang, Weipeng Wang, Jing Zhang, Pulickel M. Ajayan, Jun Lou. A Low-Cost and High-Efficiency Integrated Device toward Solar-Driven Water Splitting. ACS Nano 2020, 14 (5) , 5426-5434. https://doi.org/10.1021/acsnano.9b09053
    24. Shenghe Zhao, Minchao Qin, Yuren Xiang, Han Wang, Jiangsheng Xie, Li Gong, Jian Chen, Xinhui Lu, Jun Song, Junle Qu, Jianbin Xu, Keyou Yan. Bifunctional Effects of Trichloro(octyl)silane Modification on the Performance and Stability of a Perovskite Solar Cell via Microscopic Characterization Techniques. ACS Applied Energy Materials 2020, 3 (4) , 3302-3309. https://doi.org/10.1021/acsaem.9b02306
    25. Byeong Jo Kim, Seung Lee Kwon, Min-cheol Kim, Young Un Jin, Dong Geon Lee, Jae Bum Jeon, Yeonghun Yun, Mansoo Choi, Gerrit Boschloo, Sangwook Lee, Hyun Suk Jung. High-Efficiency Flexible Perovskite Solar Cells Enabled by an Ultrafast Room-Temperature Reactive Ion Etching Process. ACS Applied Materials & Interfaces 2020, 12 (6) , 7125-7134. https://doi.org/10.1021/acsami.9b19030
    26. Fei Deng, Xitao Li, Xinding Lv, Junshuai Zhou, Yingchu Chen, Xiangnan Sun, Yan-Zhen Zheng, Xia Tao, Jian-Feng Chen. Low-Temperature Processing All-Inorganic Carbon-Based Perovskite Solar Cells up to 11.78% Efficiency via Alkali Hydroxides Interfacial Engineering. ACS Applied Energy Materials 2020, 3 (1) , 401-410. https://doi.org/10.1021/acsaem.9b01652
    27. Chol-Jun Yu, Yun-Hyok Kye, Un-Gi Jong, Kum-Chol Ri, Song-Hyok Choe, Jin-Song Kim, Song-Guk Ko, Gwon-Il Ryu, Byol Kim. Interface Engineering in Hybrid Iodide CH3NH3PbI3 Perovskites Using Lewis Base and Graphene toward High-Performance Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (1) , 1858-1866. https://doi.org/10.1021/acsami.9b17552
    28. Kurt Waldo E. Sy Piecco, Juvinch R. Vicente, Joseph R. Pyle, David C. Ingram, Martin E. Kordesch, Jixin Chen. Reusable Chemically Micropatterned Substrates via Sequential Photoinitiated Thiol–Ene Reactions as a Template for Perovskite Thin-Film Microarrays. ACS Applied Electronic Materials 2019, 1 (11) , 2279-2286. https://doi.org/10.1021/acsaelm.9b00475
    29. Yi Yang, Cheng Liu, Yong Ding, Zulqarnain Arain, Shiqiang Wang, Xuepeng Liu, Tasawar Hayat, Ahmed Alsaedi, Songyuan Dai. Eliminating Charge Accumulation via Interfacial Dipole for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (38) , 34964-34972. https://doi.org/10.1021/acsami.9b11229
    30. Jiawen Wu, Zhihui Zhang, Changheng Tong, Daiyu Li, Anyi Mei, Yaoguang Rong, Yuanyuan Zhou, Hongwei Han, Yue Hu. Two-Stage Melt Processing of Phase-Pure Selenium for Printable Triple-Mesoscopic Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (37) , 33879-33885. https://doi.org/10.1021/acsami.9b09572
    31. Sisi He, Longbin Qiu, Dae-Yong Son, Zonghao Liu, Emilio J. Juarez-Perez, Luis K. Ono, Collin Stecker, Yabing Qi. Carbon-Based Electrode Engineering Boosts the Efficiency of All Low-Temperature-Processed Perovskite Solar Cells. ACS Energy Letters 2019, 4 (9) , 2032-2039. https://doi.org/10.1021/acsenergylett.9b01294
    32. R. Clayton Shallcross, Selina Olthof, Klaus Meerholz, Neal R. Armstrong. Impact of Titanium Dioxide Surface Defects on the Interfacial Composition and Energetics of Evaporated Perovskite Active Layers. ACS Applied Materials & Interfaces 2019, 11 (35) , 32500-32508. https://doi.org/10.1021/acsami.9b09935
    33. Haoliang Cheng, Yaru Li, Guanyu Zhao, Ke Zhao, Zhong-Sheng Wang. Pyridine-Terminated Conjugated Organic Molecules as an Interfacial Hole Transfer Bridge for NiOx-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (32) , 28960-28967. https://doi.org/10.1021/acsami.9b09530
    34. Jaemin Lee, Marc Walker, Silvia Varagnolo, Steven Huband, Ross A. Hatton. Stabilizing Silver Window Electrodes for Organic Photovoltaics Using a Mercaptosilane Monolayer. ACS Applied Energy Materials 2019, 2 (7) , 5198-5205. https://doi.org/10.1021/acsaem.9b00878
    35. Wei Wei, Meijia Li, Yun Hang Hu. Applications of 3D Potassium-Ion Pre-Intercalated Graphene for Perovskite and Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research 2019, 58 (20) , 8743-8749. https://doi.org/10.1021/acs.iecr.9b00795
    36. Duo Xu, Xin Hua, Liang Xu, Wen-Jun Wu, Yi-Tao Long, He Tian. Understanding How Ambiance Affects the Performance of Hole-Conductor-Free Perovskite Solar Cells from a Chemical Perspective. ACS Applied Energy Materials 2019, 2 (4) , 2387-2391. https://doi.org/10.1021/acsaem.9b00058
    37. Congping Li, Jun Yin, Ruihao Chen, Xudong Lv, Xiaoxia Feng, Yiying Wu, Jing Cao. Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency. Journal of the American Chemical Society 2019, 141 (15) , 6345-6351. https://doi.org/10.1021/jacs.9b01305
    38. Hui Yu, Qi-Zhi Zhong, Tian-Geng Liu, Wen-Ze Qiu, Bai-Heng Wu, Zhi-Kang Xu, Ling-Shu Wan. Surface Deposition of Juglone/FeIII on Microporous Membranes for Oil/Water Separation and Dye Adsorption. Langmuir 2019, 35 (10) , 3643-3650. https://doi.org/10.1021/acs.langmuir.8b03914
    39. Chao Zhen, Tingting Wu, Runze Chen, Lianzhou Wang, Gang Liu, Hui-Ming Cheng. Strategies for Modifying TiO2 Based Electron Transport Layers to Boost Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2019, 7 (5) , 4586-4618. https://doi.org/10.1021/acssuschemeng.8b06580
    40. Gopalraman Anantharaj, Narayanan Lakshminarasimhan. Interfacial Modification of Photoanode|Electrolyte Interface Using Oleic Acid Enhancing the Efficiency of Dye-Sensitized Solar Cells. ACS Omega 2018, 3 (12) , 18285-18294. https://doi.org/10.1021/acsomega.8b02648
    41. Nikolaos Balis, Alaa A. Zaky, Dorothea Perganti, Andreas Kaltzoglou, Lamprini Sygellou, Fotios Katsaros, Thomas Stergiopoulos, Athanassios G. Kontos, Polycarpos Falaras. Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials 2018, 1 (11) , 6161-6171. https://doi.org/10.1021/acsaem.8b01221
    42. Sawanta S. Mali, Hyungjin Kim, Jyoti V. Patil, Chang Kook Hong. Bio-inspired Carbon Hole Transporting Layer Derived from Aloe Vera Plant for Cost-Effective Fully Printable Mesoscopic Carbon Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (37) , 31280-31290. https://doi.org/10.1021/acsami.8b08383
    43. Jing Cao, Congping Li, Xudong Lv, Xiaoxia Feng, Ruiqian Meng, Yiying Wu, Yu Tang. Efficient Grain Boundary Suture by Low-Cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photoresponse. Journal of the American Chemical Society 2018, 140 (37) , 11577-11580. https://doi.org/10.1021/jacs.8b07025
    44. Meihui Hou, Haijuan Zhang, Ze Wang, Yingdong Xia, Yonghua Chen, Wei Huang. Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer. ACS Applied Materials & Interfaces 2018, 10 (36) , 30607-30613. https://doi.org/10.1021/acsami.8b10332
    45. Huayang Li, Chuannan Li, Shanpeng Wen, Chen Wang, Ge Wang, Chang Li, Changhao Wang, Lingchu Huang, Wei Dong, Shengping Ruan. Suppressing TiO2/Perovskite Interfacial Electron Trapping in Perovskite Solar Cell for Efficient Charge Extraction and Improved Device Performance. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 11295-11302. https://doi.org/10.1021/acssuschemeng.8b00691
    46. Putao Zhang, Gaurav Kapil, Kengo Hamada, Shyam S. Pandey, Tingli Ma, Shuzi Hayase. Study To Observe the Effect of PbI2 Passivation on Carbon Electrode for Perovskite Solar Cells by Quartz Crystal Microbalance System. ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 10221-10228. https://doi.org/10.1021/acssuschemeng.8b01550
    47. Qizhong Zhang, Jiangtao Zhao, Zhenhong Xiao, Jingtian Zhou, Bin Hong, Zhenlin Luo, Jun Bao, Chen Gao. Improved Moisture Stability of 2D Hybrid Perovskite (HOOC–CH2–NH3)2PbI4 by Dehydration Condensation between Organic Components. ACS Applied Energy Materials 2018, 1 (6) , 2502-2511. https://doi.org/10.1021/acsaem.8b00199
    48. Minghua Li, Xiaoqin Yan, Zhuo Kang, Yahuan Huan, Yong Li, Ruxiao Zhang, Yue Zhang. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (22) , 18787-18795. https://doi.org/10.1021/acsami.8b04776
    49. Xin Li, Xingyue Zhao, Feng Hao, Xuewen Yin, Zhibo Yao, Yu Zhou, Heping Shen, Hong Lin. Bifacial Modified Charge Transport Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (21) , 17861-17870. https://doi.org/10.1021/acsami.8b02035
    50. Yumin Zhang, Jianhong Zhao, Jin Zhang, Xixi Jiang, Zhongqi Zhu, Qingju Liu. Interface Engineering Based on Liquid Metal for Compact-Layer-free, Fully Printable Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (18) , 15616-15623. https://doi.org/10.1021/acsami.8b00158
    51. Ming-Hsien Li, Yu-Syuan Yang, Kuo-Chin Wang, Yu-Hsien Chiang, Po-Shen Shen, Wei-Chih Lai, Tzung-Fang Guo, and Peter Chen . Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (48) , 41845-41854. https://doi.org/10.1021/acsami.7b12367
    52. Yan Xiang, Zhu Ma, Jia Zhuang, Honglin Lu, Chunyang Jia, Junsheng Luo, Haimin Li, and Xiaowei Cheng . Enhanced Performance for Planar Perovskite Solar Cells with Samarium-Doped TiO2 Compact Electron Transport Layers. The Journal of Physical Chemistry C 2017, 121 (37) , 20150-20157. https://doi.org/10.1021/acs.jpcc.7b05880
    53. Yu-han Zhao, Kai-cheng Zhang, Zhao-wei Wang, Peng Huang, Kai Zhu, Zhen-dong Li, Da-hua Li, Li-gang Yuan, Yi Zhou, and Bo Song . Comprehensive Study of Sol–Gel versus Hydrolysis–Condensation Methods To Prepare ZnO Films: Electron Transport Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (31) , 26234-26241. https://doi.org/10.1021/acsami.7b04833
    54. Qian Wang, Xisheng Zhang, Zhiwen Jin, Jingru Zhang, Zhenfei Gao, Yongfang Li, and Shengzhong Frank Liu . Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells. ACS Energy Letters 2017, 2 (7) , 1479-1486. https://doi.org/10.1021/acsenergylett.7b00375
    55. Ping Fu, Xin Guo, Shengyang Wang, Yun Ye, and Can Li . Aminosilane as a Molecular Linker between the Electron-Transport Layer and Active Layer for Efficient Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (15) , 13390-13395. https://doi.org/10.1021/acsami.7b00745
    56. Xiaoli Zheng, Haining Chen, Qiang Li, Yinglong Yang, Zhanhua Wei, Yang Bai, Yongcai Qiu, Dan Zhou, Kam Sing Wong, and Shihe Yang . Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. Nano Letters 2017, 17 (4) , 2496-2505. https://doi.org/10.1021/acs.nanolett.7b00200
    57. Atsuomi Shundo, Koichiro Hori, Yasuyuki Tezuka, Takuya Yamamoto, and Keiji Tanaka . Load-Induced Frictional Transition at a Well-Defined Alkane Loop Surface. Langmuir 2017, 33 (9) , 2396-2401. https://doi.org/10.1021/acs.langmuir.6b04042
    58. Minghua Li, Xiaoqin Yan, Zhuo Kang, Xinqin Liao, Yong Li, Xin Zheng, Pei Lin, Jingjing Meng, and Yue Zhang . Enhanced Efficiency and Stability of Perovskite Solar Cells via Anti-Solvent Treatment in Two-Step Deposition Method. ACS Applied Materials & Interfaces 2017, 9 (8) , 7224-7231. https://doi.org/10.1021/acsami.7b01136
    59. Daniela Meroni, Leonardo Lo Presti, Giovanni Di Liberto, Michele Ceotto, Robert G. Acres, Kevin C. Prince, Roberto Bellani, Guido Soliveri, and Silvia Ardizzone . A Close Look at the Structure of the TiO2-APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study. The Journal of Physical Chemistry C 2017, 121 (1) , 430-440. https://doi.org/10.1021/acs.jpcc.6b10720
    60. Lijian Zuo, Qi Chen, Nicholas De Marco, Yao-Tsung Hsieh, Huajun Chen, Pengyu Sun, Sheng-Yung Chang, Hongxiang Zhao, Shiqi Dong, and Yang Yang . Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Letters 2017, 17 (1) , 269-275. https://doi.org/10.1021/acs.nanolett.6b04015
    61. Qiliang Wu, Weiran Zhou, Qing Liu, Pengcheng Zhou, Tao Chen, Yalin Lu, Qiquan Qiao, and Shangfeng Yang . Solution-Processable Ionic Liquid as an Independent or Modifying Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (50) , 34464-34473. https://doi.org/10.1021/acsami.6b12683
    62. Luis K. Ono and Yabing Qi . Surface and Interface Aspects of Organometal Halide Perovskite Materials and Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (22) , 4764-4794. https://doi.org/10.1021/acs.jpclett.6b01951
    63. Lei Zhang, Xiaogang Liu, Jing Su, and Jingfa Li . First-Principles Study of Molecular Adsorption on Lead Iodide Perovskite Surface: A Case Study of Halogen Bond Passivation for Solar Cell Application. The Journal of Physical Chemistry C 2016, 120 (41) , 23536-23541. https://doi.org/10.1021/acs.jpcc.6b07011
    64. Jing Cao, Xiaojing Jing, Juanzhu Yan, Chengyi Hu, Ruihao Chen, Jun Yin, Jing Li, and Nanfeng Zheng . Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films. Journal of the American Chemical Society 2016, 138 (31) , 9919-9926. https://doi.org/10.1021/jacs.6b04924
    65. Seong Sik Shin, Woon Seok Yang, Eun Joo Yeom, Seon Joo Lee, Nam Joong Jeon, Young-Chang Joo, Ik Jae Park, Jun Hong Noh, and Sang Il Seok . Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (10) , 1845-1851. https://doi.org/10.1021/acs.jpclett.6b00295
    66. Zonghao Liu, Qi Chen, Ziruo Hong, Huanping Zhou, Xiaobao Xu, Nicholas De Marco, Pengyu Sun, Zhixin Zhao, Yi-Bing Cheng, and Yang Yang . Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (17) , 11076-11083. https://doi.org/10.1021/acsami.5b12123
    67. Abd. Rashid bin Mohd Yusoff and Mohammad Khaja Nazeeruddin . Organohalide Lead Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry Letters 2016, 7 (5) , 851-866. https://doi.org/10.1021/acs.jpclett.5b02893
    68. Jing Cao, Yu-Min Liu, Xiaojing Jing, Jun Yin, Jing Li, Bin Xu, Yuan-Zhi Tan, and Nanfeng Zheng . Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (34) , 10914-10917. https://doi.org/10.1021/jacs.5b06493
    69. Guido Soliveri, Valentina Pifferi, Rita Annunziata, Luca Rimoldi, Valentina Aina, Giuseppina Cerrato, Luigi Falciola, Giuseppe Cappelletti, and Daniela Meroni . Alkylsilane–SiO2 Hybrids. A Concerted Picture of Temperature Effects in Vapor Phase Functionalization. The Journal of Physical Chemistry C 2015, 119 (27) , 15390-15400. https://doi.org/10.1021/acs.jpcc.5b04048
    70. Chaoyang Kuang, Gang Tang, Tonggang Jiu, Hui Yang, Huibiao Liu, Bairu Li, Weining Luo, Xiaodong Li, Wenjun Zhang, Fushen Lu, Junfeng Fang, and Yuliang Li . Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells. Nano Letters 2015, 15 (4) , 2756-2762. https://doi.org/10.1021/acs.nanolett.5b00787
    71. Atanu Jana, Sangeun Cho, Abhishek Meena, Abu Talha Aqueel Ahmed, Vijaya Gopalan Sree, Youngsin Park, Hyungsang Kim, Hyunsik Im, Robert A. Taylor. Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications. InfoMat 2024, 13 https://doi.org/10.1002/inf2.12559
    72. Aili Wang, Mengde Zhai, Kaihuai Du, Jinman Yang, Luozheng Zhang, Bairu Li, Long Luo, Xu Dong, Lvzhou Li, Guixiang Li, Meng Li, Antonio Abate, Ming Cheng, Jianning Ding. Halogenated Hole Selective Contact Enhances Interfacial Weak Bonding of Perovskite Solar Cells. Advanced Energy Materials 2024, 135 https://doi.org/10.1002/aenm.202400640
    73. Jialing Liu, Jingwen He, Wenjun Wu. Molecular Symmetry of Small‐Molecule Passivating Agents Improves Crystal Quality of Perovskite Solar Cells. ChemSusChem 2024, 17 (10) https://doi.org/10.1002/cssc.202301458
    74. Yiwen Chen, Dongjie Wang, Zheling Zhang, Yu Huang, Rongrong Guo, Wending Zhu, Ying Tao, Yang Zhang, Jian Xiong, Jian Zhang. Crystallization Control Assists Annealing‐Free Fabrication of Printable Mesoscopic Perovskite Solar Cells with Power Conversion Efficiency over 17%. Solar RRL 2024, 34 https://doi.org/10.1002/solr.202400241
    75. Nan Yan, Zhimin Fang, Zhonghua Dai, Jiangshan Feng, Shengzhong (Frank) Liu. Buried Interface‐The Key Issues for High Performance Inverted Perovskite Solar Cells. Advanced Functional Materials 2024, 34 (22) https://doi.org/10.1002/adfm.202314039
    76. Li Tao, Yuanqiang Huang, Bin Ding, Haoran Wang, Jiahao Tang, Song Zhang, Jun Zhang, Mohammad Khaja Nazeeruddin, Hao Wang. Interfacial Toughening for High-efficiency Perovskite Solar Modules. Materials Today Energy 2024, 624 , 101611. https://doi.org/10.1016/j.mtener.2024.101611
    77. Chi Li, Peng Gao. Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry 2024, 8 , 100324. https://doi.org/10.1016/j.cjsc.2024.100324
    78. Jiajia Suo, Bowen Yang, Dmitry Bogachuk, Gerrit Boschloo, Anders Hagfeldt. The Dual Use of SAM Molecules for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials 2024, 22 https://doi.org/10.1002/aenm.202400205
    79. Padmini Pandey, SungWon Cho, Jitendra Bahadur, Saemon Yoon, Chang‐Mok Oh, In‐Wook Hwang, Hochan Song, Hyosung Choi, Shuzi Hayase, Jung Sang Cho, Dong‐Won Kang. 4‐Phenylthiosemicarbazide Molecular Additive Engineering for Wide‐Bandgap Sn Halide Perovskite Solar Cells with a Record Efficiency Over 12.2%. Advanced Energy Materials 2024, 8 https://doi.org/10.1002/aenm.202401188
    80. Lele Zang, Chunhu Zhao, Xiaobo Hu, Jiahua Tao, Shaoqiang Chen, Junhao Chu. Emerging Trends in Electron Transport Layer Development for Stable and Efficient Perovskite Solar Cells. Small 2024, 555 https://doi.org/10.1002/smll.202400807
    81. Fengzhu Li, Francis R. Lin, Alex K.‐Y. Jen. Current State and Future Perspectives of Printable Organic and Perovskite Solar Cells. Advanced Materials 2024, 36 (17) https://doi.org/10.1002/adma.202307161
    82. Emilie PLANES, Cynthia FARHA, Gilles DE MOOR, Stéphanie NARBEY, Lionel FLANDIN, Lara PERRIN. Interface Effects on the Stability of Carbon‐Electrode‐Based Perovskite Solar Cells During Damp Heating. Advanced Materials Interfaces 2024, 11 (7) https://doi.org/10.1002/admi.202300849
    83. Chenxu Zhao, Hong Zhang, Anurag Krishna, Jia Xu, Jianxi Yao. Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Optical Materials 2024, 12 (7) https://doi.org/10.1002/adom.202301949
    84. Hui Zhang, Nam-Gyu Park. Progress and issues in p-i-n type perovskite solar cells. DeCarbon 2024, 3 , 100025. https://doi.org/10.1016/j.decarb.2023.100025
    85. Bin Liu, Yuqi Wang, Shuhang Bian, Zhongqi Liu, Yanjie Wu, Long Shao, Yuhong Zhang, Jiekai Lyu, Lidong Zhang, Jiangwei Mao, Xue Bai, Lin Xu, Donglei Zhou, Biao Dong, Hongwei Song. Perovskite Solar Cells with Extremely High 24.63% Efficiency through Design of Double Electron Transport Layers and Double Luminescent Converter Layers. Advanced Functional Materials 2024, https://doi.org/10.1002/adfm.202401007
    86. Carlos E. Puerto Galvis, Dora A. González Ruiz, Eugenia Martínez-Ferrero, Emilio Palomares. Challenges in the design and synthesis of self-assembling molecules as selective contacts in perovskite solar cells. Chemical Science 2024, 15 (5) , 1534-1556. https://doi.org/10.1039/D3SC04668K
    87. Andrei Mitrofanov, Khrystyna Rymsha, Dmitrii Sychev, Karina Zakirova, Petr Formanek, Darius Pohl, Eva Bittrich, Ilka M. Hermes, Quinn A. Besford, Brigitte Voit. Surface-assisted synthesis of perovskite nanosheets with bivalent aromatic cations. Journal of Materials Chemistry C 2024, 5 https://doi.org/10.1039/D3TC04080A
    88. Zhao Luo, Xiaoyu Zhang, Chen Wang, Wei Zhang, Weitao Zheng. How do carbon dots with amine terminals help perovskite solar cells perform better?. Journal of Alloys and Compounds 2023, 969 , 172340. https://doi.org/10.1016/j.jallcom.2023.172340
    89. Zengqi Huang, Lin Li, Tingqing Wu, Tangyue Xue, Wei Sun, Qi Pan, Huadong Wang, Hongfei Xie, Jimei Chi, Teng Han, Xiaotian Hu, Meng Su, Yiwang Chen, Yanlin Song. Wearable perovskite solar cells by aligned liquid crystal elastomers. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36938-7
    90. Jin-Hyok Kang, Kwang-Hyok Chae, Rye-Hyang Kim, Yu-Hyon Jong, Gum-Ju Han, Pyol Kim. The characteristics of hole-transport material-free perovskite solar cells with carbon electrode made by using ion liquid methylammonium acetate solvent. Results in Optics 2023, 13 , 100510. https://doi.org/10.1016/j.rio.2023.100510
    91. Yanqi Ren, Bowen Li, Ying Zhu, Zhihao Zhang, Qi Luo, Hongxin Weng, Xin Tan, Peng Xiang, Xinyu Tan. Potassium Pentaminodifluorobenzoate‐Modified SnO 2 for Efficient and Stable Perovskite Solar Cells. Solar RRL 2023, 7 (23) https://doi.org/10.1002/solr.202300554
    92. Emilie Planes, Cynthia Farha, Gilles De Moor, Stéphanie Narbey, Lara Perrin, Lionel Flandin. Maturing Effects in Carbon‐Based Perovskite Solar Cells: Understanding and Consequences on Photovoltaic Performances. Solar RRL 2023, 7 (23) https://doi.org/10.1002/solr.202300492
    93. Chang Min Lee, Syed Hamad Ullah Shah, Keum-Jin Ko, Dong Hyun Kim, Tae Wook Kim, Hyun Woo Cho, Yeong Beom Kim, Jae Woo Lee, Kiseok Heo, Chul Hoon Kim, Hyun Jae Lee, Gyudo Lee, Seokbeom Roh, Sanghyuk Park, Sang Geul Lee, Tae-Sung Bae, Seung Min Yu, Jong Sung Jin, Heehun Moon, Amjad Islam, P. Justin Jesuraj, Myungkwan Song, Chang-Su Kim, Seung Yoon Ryu. Impact of Ternary Solvent on the Grain Size and Defects of Perovskite Layer to Realize a Stable Morphology for Efficient Inverted Solar Cells. Solar RRL 2023, 7 (23) https://doi.org/10.1002/solr.202300604
    94. Yinyi Ma, Jue Gong, Peng Zeng, Mingzhen Liu. Recent Progress in Interfacial Dipole Engineering for Perovskite Solar Cells. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01131-4
    95. Yaoqiang Gan, Jian Sun, Pingchun Guo, Hedong Jiang, Jiake Li, Hua Zhu, Xueyun Fan, Liqun Huang, Yanxiang Wang. Advances in the research of carbon electrodes for perovskite solar cells. Dalton Transactions 2023, 52 (45) , 16558-16577. https://doi.org/10.1039/D3DT03136E
    96. Zhiying Feng, Chaocang Weng, Yikun Hua, Xiaohong Chen, Sumei Huang. Efficient and stable perovskite solar cells: The effect of octadecyl ammonium compound side-chain. Chemical Engineering Journal 2023, 475 , 146498. https://doi.org/10.1016/j.cej.2023.146498
    97. SungWon Cho, Padmini Pandey, Saemon Yoon, Jun Ryu, Dong-Gun Lee, Qing Shen, Shuzi Hayase, Hochan Song, Hyosung Choi, Hyungju Ahn, Chang-Mok Oh, In-Wook Hwang, Jung Sang Cho, Dong-Won Kang. Anchoring self-assembled monolayer at perovskite/hole collector interface for wide bandgap Sn-based solar cells with a record efficiency over 12%. Surfaces and Interfaces 2023, 42 , 103478. https://doi.org/10.1016/j.surfin.2023.103478
    98. Shengli Zou, Shengqiang Ren, Yiting Jiang, Yuanfang Huang, Wenwu Wang, Changlei Wang, Cong Chen, Xia Hao, Lili Wu, Jingquan Zhang, Dewei Zhao. Efficient Environment‐friendly Lead‐free Tin Perovskite Solar Cells Enabled by Incorporating 4‐Fluorobenzylammonium Iodide Additives. ENERGY & ENVIRONMENTAL MATERIALS 2023, 6 (6) https://doi.org/10.1002/eem2.12465
    99. Changshun Chen, Chenxin Ran, Qing Yao, Jinpei Wang, Chunyu Guo, Lei Gu, Huchen Han, Xiaobo Wang, Lingfeng Chao, Yingdong Xia, Yonghua Chen. Screen‐Printing Technology for Scale Manufacturing of Perovskite Solar Cells. Advanced Science 2023, 10 (28) https://doi.org/10.1002/advs.202303992
    100. Guiqiang Wang, Dongsheng Wang, Jiarun Chang, Fanning Meng, Wanchun Xiang. Dipolar Interlayers in Perovskite Solar Cells. Solar RRL 2023, 7 (20) https://doi.org/10.1002/solr.202300481
    Load more citations