ACS Publications. Most Trusted. Most Cited. Most Read
Understanding Atom Transfer Radical Polymerization: Effect of Ligand and Initiator Structures on the Equilibrium Constants
My Activity

Figure 1Loading Img
    Article

    Understanding Atom Transfer Radical Polymerization: Effect of Ligand and Initiator Structures on the Equilibrium Constants
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, and ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
    †Carnegie Mellon University.
    ‡Australian National University.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 32, 10702–10713
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja802290a
    Published July 19, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Equilibrium constants in Cu-based atom transfer radical polymerization (ATRP) were determined for a wide range of ligands and initiators in acetonitrile at 22 °C. The ATRP equilibrium constants obtained vary over 7 orders of magnitude and strongly depend on the ligand and initiator structures. The activities of the CuI/ligand complexes are highest for tetradentate ligands, lower for tridentate ligands, and lowest for bidentate ligands. Complexes with tripodal and bridged ligands (Me6TREN and bridged cyclam) tend to be more active than those with the corresponding linear ligands. The equilibrium constants are largest for tertiary alkyl halides and smallest for primary alkyl halides. The activities of alkyl bromides are several times larger than those of the analogous alkyl chlorides. The equilibrium constants are largest for the nitrile derivatives, followed by those for the benzyl derivatives and the corresponding esters. Other equilibrium constants that are not readily measurable were extrapolated from the values for the reference ligands and initiators. Excellent correlations of the equilibrium constants with the CuII/I redox potentials and the carbon–halogen bond dissociation energies were observed.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Complete ref 49. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 493 publications.

    1. Edina Rusen, Alexandra Mocanu, Oana Brincoveanu, Gabriela Toader, Raluca Gavrila, Aurel Diacon, Cristina Stavarache. One Reaction: Two Types of Mechanism─SARA-ATRP and SET-LRP─for MMA Polymerization in the Presence of PVC. ACS Omega 2024, 9 (41) , 42455-42469. https://doi.org/10.1021/acsomega.4c06179
    2. Hayden M. Deacon, Robin A. Hutchinson. Scalable Routes to Acrylate and Methacrylate Block Copolymers via Copper-Mediated Reversible Deactivation Radical Polymerization. Industrial & Engineering Chemistry Research 2024, 63 (26) , 11423-11435. https://doi.org/10.1021/acs.iecr.4c01811
    3. Shengfei Li, Yuxiang Zhao, Runhao Huang, Jianing Wang, Daheng Wu, Wuxin Zhang, Zhixiang Zeng, Tao Zhang. Roughness-Mediated SI-Fe0CRP for Polymer Brush Engineering toward Superior Drag Reduction. ACS Applied Materials & Interfaces 2024, 16 (21) , 27761-27766. https://doi.org/10.1021/acsami.4c03854
    4. Masnun Naher, Chuyi Su, Jeffrey R. Harmer, Craig M. Williams, Paul V. Bernhardt. Macrocyclic Copper(II) Complexes as Catalysts for Electrochemically Mediated Atom Transfer. Inorganic Chemistry 2024, 63 (14) , 6453-6464. https://doi.org/10.1021/acs.inorgchem.4c00311
    5. Rachel E. Mow, Glory A. Russell-Parks, Grace E. B. Redwine, Brittney E. Petel, Thomas Gennett, Wade A. Braunecker. Polymer-Coated Covalent Organic Frameworks as Porous Liquids for Gas Storage. Chemistry of Materials 2024, 36 (3) , 1579-1590. https://doi.org/10.1021/acs.chemmater.3c02828
    6. Ewelina Kowalska, Mateusz Dyguda, Angelika Artelska, Anna Albrecht. Visible Light Promoted [3+2]-Cycloaddition for the Synthesis of Cyclopenta[b]chromenocarbonitrile Derivatives. The Journal of Organic Chemistry 2023, 88 (23) , 16589-16597. https://doi.org/10.1021/acs.joc.3c02172
    7. Kate G. E. Bradford, Robert D. Gilbert, M. A. Sachini N. Weerasinghe, Simon Harrisson, Dominik Konkolewicz. Spontaneous Gradients by ATRP and RAFT: Interchangeable Polymerization Methods?. Macromolecules 2023, 56 (21) , 8784-8795. https://doi.org/10.1021/acs.macromol.3c01426
    8. Yue Fang, Hanyu Gao. Scaling Acceleration Algorithm for Hybrid Kinetic Monte Carlo Simulation of Linear Radical Polymerization. Macromolecules 2023, 56 (21) , 8484-8496. https://doi.org/10.1021/acs.macromol.3c01775
    9. Francesca Lorandi, Marco Fantin, Hossein Jafari, Adam Gorczynski, Grzegorz Szczepaniak, Sajjad Dadashi-Silab, Abdirisak A. Isse, Krzysztof Matyjaszewski. Reactivity Prediction of Cu-Catalyzed Halogen Atom Transfer Reactions Using Data-Driven Techniques. Journal of the American Chemical Society 2023, 145 (39) , 21587-21599. https://doi.org/10.1021/jacs.3c07711
    10. Julian Sobieski, Sajjad Dadashi Silab, Lucas Thevenin, Krzysztof Matyjaszewski, Christophe Fliedel, Rinaldo Poli. Termination of the Carbomethoxyisopropyl Radical, a Poly(methyl methacrylate) Model, in the Presence of Copper Complexes and Proton Donors. Macromolecules 2023, 56 (16) , 6339-6353. https://doi.org/10.1021/acs.macromol.3c00545
    11. Fuqiang Lan, Junle Zhang, Yuying Li, Yaxuan Shi, Yuancheng Zhang, Ge Shi, Xiaomeng Zhang, Zhe Cui, Peng Fu, Minying Liu, Xiaoguang Qiao, Yanjie He, Wenjie Zhang, Xinchang Pang. Hierarchically Structured Nanotube Arrays as Heterogenous Photocatalysts for Highly Efficient Broadband Photoinduced Controlled Radical Polymerization. The Journal of Physical Chemistry Letters 2023, 14 (21) , 5077-5084. https://doi.org/10.1021/acs.jpclett.3c01091
    12. Miguel A. Gonzálvez, Craig M. Williams, Manuel Martínez, Paul V. Bernhardt. Kinetico-Mechanistic Studies on a Reactive Organocopper(II) Complex: Cu–C Bond Homolysis versus Heterolysis. Inorganic Chemistry 2023, 62 (11) , 4662-4671. https://doi.org/10.1021/acs.inorgchem.3c00127
    13. Shuo Li, Ruchira Colaco, Anne Staubitz. ARGET ATRP of Methyl Acrylate and Methyl Methacrylate with Diazocine-Derived Initiators. ACS Applied Polymer Materials 2022, 4 (10) , 6825-6833. https://doi.org/10.1021/acsapm.2c00769
    14. Francesca Lorandi, Marco Fantin, Krzysztof Matyjaszewski. Atom Transfer Radical Polymerization: A Mechanistic Perspective. Journal of the American Chemical Society 2022, 144 (34) , 15413-15430. https://doi.org/10.1021/jacs.2c05364
    15. Yue Fu, Heyu Chen, Wenzhen Fu, Marc Garcia-Borràs, Yang Yang, Peng Liu. Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity. Journal of the American Chemical Society 2022, 144 (29) , 13344-13355. https://doi.org/10.1021/jacs.2c04937
    16. Takanori Shimizu, Nghia P. Truong, Richard Whitfield, Athina Anastasaki. Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity. ACS Polymers Au 2021, 1 (3) , 187-195. https://doi.org/10.1021/acspolymersau.1c00030
    17. Monika Galeziewska, Ana Hološ, Marketa Ilcikova, Miroslav Mrlik, Josef Osicka, Peter Srnec, Matej Mičušík, Robert Moučka, Martin Cvek, Jaroslav Mosnáček, Joanna Pietrasik. One-Pot Strategy for the Preparation of Electrically Conductive Composites Using Simultaneous Reduction and Grafting of Graphene Oxide via Atom Transfer Radical Polymerization. Macromolecules 2021, 54 (21) , 10177-10188. https://doi.org/10.1021/acs.macromol.1c01668
    18. Stanislaw Sosnowski, Ryszard Szymanski, Francesca Lorandi, Mateusz Olszewski, Julian Sobieski, Rongguan Yin, Michael R. Bockstaller, Krzysztof Matyjaszewski. Distribution of Alternating Sequences in Methyl Methacrylate/n-Butyl Acrylate Copolymers Prepared by Atom Transfer Radical Polymerization. Macromolecules 2021, 54 (21) , 9837-9849. https://doi.org/10.1021/acs.macromol.1c01930
    19. Miguel A. Gonzálvez, Jeffrey R. Harmer, Paul V. Bernhardt. Mapping the Pathway to Organocopper(II) Complexes Relevant to Atom Transfer Radical Polymerization. Inorganic Chemistry 2021, 60 (14) , 10648-10655. https://doi.org/10.1021/acs.inorgchem.1c01309
    20. Alfred. K. K. Fung, Li-Juan Yu, Michael S. Sherburn, Michelle L. Coote. Atom Transfer Radical Polymerization-Inspired Room Temperature (sp3)C–N Coupling. The Journal of Organic Chemistry 2021, 86 (14) , 9723-9732. https://doi.org/10.1021/acs.joc.1c01029
    21. Jamie N. Melville, Paul V. Bernhardt. Electrochemical Exploration of Active Cu-Based Atom Transfer Radical Polymerization Catalysis through Ligand Modification. Inorganic Chemistry 2021, 60 (13) , 9709-9719. https://doi.org/10.1021/acs.inorgchem.1c01001
    22. Richard Whitfield, Kostas Parkatzidis, Kate G.E. Bradford, Nghia P. Truong, Dominik Konkolewicz, Athina Anastasaki. Low ppm CuBr-Triggered Atom Transfer Radical Polymerization under Mild Conditions. Macromolecules 2021, 54 (7) , 3075-3083. https://doi.org/10.1021/acs.macromol.0c02519
    23. Qiangbing Wei, Mingkang Sun, Francesca Lorandi, Rongguan Yin, Jiajun Yan, Tong Liu, Tomasz Kowalewski, Krzysztof Matyjaszewski. Cu-Catalyzed Atom Transfer Radical Polymerization in the Presence of Liquid Metal Micro/Nanodroplets. Macromolecules 2021, 54 (4) , 1631-1638. https://doi.org/10.1021/acs.macromol.0c02702
    24. Fu-Sheng Wang, Ya-Wen Tsai, Meng-Qin Xie, Chi-How Peng. Computation-Assisted Investigation of Polymer Kinetics: Mechanism of the Hybridization of Cobalt-Mediated Radical Polymerization and Atom Transfer Radical Polymerization. Macromolecules 2020, 53 (24) , 10855-10865. https://doi.org/10.1021/acs.macromol.0c02255
    25. Yidan Cong, Mohammad Vatankhah-Varnosfaderani, Vahid Karimkhani, Andrew N. Keith, Frank A. Leibfarth, Michael R. Martinez, Krzysztof Matyjaszewski, Sergei S. Sheiko. Understanding the Synthesis of Linear–Bottlebrush–Linear Block Copolymers: Toward Plastomers with Well-Defined Mechanical Properties. Macromolecules 2020, 53 (19) , 8324-8332. https://doi.org/10.1021/acs.macromol.0c01083
    26. Yuan-Xing Liu, Chao Bian, Yin-Ning Zhou, Jin-Jin Li, Zheng-Hong Luo. Kinetic Study on Ultraviolet Light-Induced Solution Atom Transfer Radical Polymerization of Methyl Acrylate Using TiO2. Industrial & Engineering Chemistry Research 2020, 59 (31) , 13870-13878. https://doi.org/10.1021/acs.iecr.0c01534
    27. Francesca Lorandi, Marco Fantin, Yi Wang, Abdirisak A. Isse, Armando Gennaro, Krzysztof Matyjaszewski. Atom Transfer Radical Polymerization of Acrylic and Methacrylic Acids: Preparation of Acidic Polymers with Various Architectures. ACS Macro Letters 2020, 9 (5) , 693-699. https://doi.org/10.1021/acsmacrolett.0c00246
    28. Michael R. Martinez, Julian Sobieski, Francesca Lorandi, Marco Fantin, Sajjad Dadashi-Silab, Guojun Xie, Mateusz Olszewski, Xiangcheng Pan, Thomas G. Ribelli, Krzysztof Matyjaszewski. Understanding the Relationship between Catalytic Activity and Termination in photoATRP: Synthesis of Linear and Bottlebrush Polyacrylates. Macromolecules 2020, 53 (1) , 59-67. https://doi.org/10.1021/acs.macromol.9b02397
    29. Zhi-Hao Chen, Xiao-Yan Wang, Xiu-Li Sun, Jun-Fang Li, Ben-Hu Zhu, Yong Tang. Highly Efficient Atom Transfer Radical Polymerization System Based on the SaBOX/Copper Catalyst. Macromolecules 2019, 52 (24) , 9792-9798. https://doi.org/10.1021/acs.macromol.9b01797
    30. Manon Rolland, Richard Whitfield, Daniel Messmer, Kostas Parkatzidis, Nghia P. Truong, Athina Anastasaki. Effect of Polymerization Components on Oxygen-Tolerant Photo-ATRP. ACS Macro Letters 2019, 8 (12) , 1546-1551. https://doi.org/10.1021/acsmacrolett.9b00855
    31. Stefanie L. Baker, Bibifatima Kaupbayeva, Sushil Lathwal, Subha R. Das, Alan J. Russell, Krzysztof Matyjaszewski. Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules 2019, 20 (12) , 4272-4298. https://doi.org/10.1021/acs.biomac.9b01271
    32. Jirong Wang, Jianyu Han, Xiaolin Xie, Zhigang Xue, Christophe Fliedel, Rinaldo Poli. FeBr2-Catalyzed Bulk ATRP Promoted by Simple Inorganic Salts. Macromolecules 2019, 52 (14) , 5366-5376. https://doi.org/10.1021/acs.macromol.9b01015
    33. Bailey Risteen, Michael McBride, Miguel Gonzalez, Brian Khau, Guoyan Zhang, Elsa Reichmanis. Functionalized Cellulose Nanocrystal-Mediated Conjugated Polymer Aggregation. ACS Applied Materials & Interfaces 2019, 11 (28) , 25338-25350. https://doi.org/10.1021/acsami.9b06072
    34. Marco Fantin, Francesca Lorandi, Thomas G. Ribelli, Grzegorz Szczepaniak, Alan E. Enciso, Christophe Fliedel, Lucas Thevenin, Abdirisak A. Isse, Rinaldo Poli, Krzysztof Matyjaszewski. Impact of Organometallic Intermediates on Copper-Catalyzed Atom Transfer Radical Polymerization. Macromolecules 2019, 52 (11) , 4079-4090. https://doi.org/10.1021/acs.macromol.9b00870
    35. Cheng Fang, Marco Fantin, Xiangcheng Pan, Kurt de Fiebre, Michelle L. Coote, Krzysztof Matyjaszewski, Peng Liu. Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP). Journal of the American Chemical Society 2019, 141 (18) , 7486-7497. https://doi.org/10.1021/jacs.9b02158
    36. Joe Collins, Thomas G. McKenzie, Mitchell D. Nothling, Stephanie Allison-Logan, Muthupandian Ashokkumar, Greg G. Qiao. Sonochemically Initiated RAFT Polymerization in Organic Solvents. Macromolecules 2019, 52 (1) , 185-195. https://doi.org/10.1021/acs.macromol.8b01845
    37. Jing Lyu, Yongsheng Gao, Zidan Zhang, Udo Greiser, Piotr Polanowski, Jeremiasz K. Jeszka, Krzysztof Matyjaszewski, Hongyun Tai, Wenxin Wang. Monte Carlo Simulations of Atom Transfer Radical (Homo)polymerization of Divinyl Monomers: Applicability of Flory–Stockmayer Theory. Macromolecules 2018, 51 (17) , 6673-6681. https://doi.org/10.1021/acs.macromol.8b01630
    38. Sandra Wohlhauser, Gwendoline Delepierre, Marianne Labet, Gaëlle Morandi, Wim Thielemans, Christoph Weder, Justin O. Zoppe. Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules 2018, 51 (16) , 6157-6189. https://doi.org/10.1021/acs.macromol.8b00733
    39. Guojun Xie, Michael R. Martinez, William F. M. Daniel, Andrew N. Keith, Thomas G. Ribelli, Marco Fantin, Sergei S. Sheiko, Krzysztof Matyjaszewski. Benefits of Catalyzed Radical Termination: High-Yield Synthesis of Polyacrylate Molecular Bottlebrushes without Gelation. Macromolecules 2018, 51 (16) , 6218-6225. https://doi.org/10.1021/acs.macromol.8b00849
    40. Sajjad Dadashi-Silab, Krzysztof Matyjaszewski. Temporal Control in Atom Transfer Radical Polymerization Using Zerovalent Metals. Macromolecules 2018, 51 (11) , 4250-4258. https://doi.org/10.1021/acs.macromol.8b00698
    41. Thomas G. Ribelli, Marco Fantin, Jean-Claude Daran, Kyle F. Augustine, Rinaldo Poli, and Krzysztof Matyjaszewski . Synthesis and Characterization of the Most Active Copper ATRP Catalyst Based on Tris[(4-dimethylaminopyridyl)methyl]amine. Journal of the American Chemical Society 2018, 140 (4) , 1525-1534. https://doi.org/10.1021/jacs.7b12180
    42. . Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies. 2018https://doi.org/10.1021/bk-2018-1284
    43. Sivaprakash Shanmugam Krzysztof Matyjaszewski . Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017. 2018, 1-39. https://doi.org/10.1021/bk-2018-1284.ch001
    44. Francesca Lorandi Marco Fantin Francesco De Bon Abdirisak A. Isse Armando Gennaro . Electrochemical Procedures To Determine Thermodynamic and Kinetic Parameters of Atom Transfer Radical Polymerization. 2018, 161-189. https://doi.org/10.1021/bk-2018-1284.ch007
    45. Yi Wang, Francesca Lorandi, Marco Fantin, Paweł Chmielarz, Abdirisak A. Isse, Armando Gennaro, and Krzysztof Matyjaszewski . Miniemulsion ARGET ATRP via Interfacial and Ion-Pair Catalysis: From ppm to ppb of Residual Copper. Macromolecules 2017, 50 (21) , 8417-8425. https://doi.org/10.1021/acs.macromol.7b01730
    46. John J. Keating IV, Alexander Lee, and Georges Belfort . Predictive Tool for Design and Analysis of ARGET ATRP Grafting Reactions. Macromolecules 2017, 50 (20) , 7930-7939. https://doi.org/10.1021/acs.macromol.7b01572
    47. Justin O. Zoppe, Alix Vaimiti Marie Dupire, Théo Gaston Gérard Lachat, Philipp Lemal, Laura Rodriguez-Lorenzo, Alke Petri-Fink, Christoph Weder, and Harm-Anton Klok . Cellulose Nanocrystals with Tethered Polymer Chains: Chemically Patchy versus Uniform Decoration. ACS Macro Letters 2017, 6 (9) , 892-897. https://doi.org/10.1021/acsmacrolett.7b00383
    48. Yuanyuan Pang, Lei Wan, Guangcheng Huang, Xiaosa Zhang, Xiaosa Jin, Peng Xu, Yadong Liu, Miaomiao Han, Guang-Peng Wu, and Shengxiang Ji . Controlling Block Copolymer–Substrate Interactions by Homopolymer Brushes/Mats. Macromolecules 2017, 50 (17) , 6733-6741. https://doi.org/10.1021/acs.macromol.7b00743
    49. Chen-Gang Wang and Atsushi Goto . Solvent-Selective Reactions of Alkyl Iodide with Sodium Azide for Radical Generation and Azide Substitution and Their Application to One-Pot Synthesis of Chain-End-Functionalized Polymers. Journal of the American Chemical Society 2017, 139 (30) , 10551-10560. https://doi.org/10.1021/jacs.7b05879
    50. Timothy J. Zerk and Paul V. Bernhardt . Organo-Copper(II) Complexes as Products of Radical Atom Transfer. Inorganic Chemistry 2017, 56 (10) , 5784-5792. https://doi.org/10.1021/acs.inorgchem.7b00402
    51. Marco Fantin, Abdirisak A. Isse, Krzysztof Matyjaszewski, and Armando Gennaro . ATRP in Water: Kinetic Analysis of Active and Super-Active Catalysts for Enhanced Polymerization Control. Macromolecules 2017, 50 (7) , 2696-2705. https://doi.org/10.1021/acs.macromol.7b00246
    52. Justin O. Zoppe, Nariye Cavusoglu Ataman, Piotr Mocny, Jian Wang, John Moraes, and Harm-Anton Klok . Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chemical Reviews 2017, 117 (3) , 1105-1318. https://doi.org/10.1021/acs.chemrev.6b00314
    53. Sonia Lanzalaco, Marco Fantin, Onofrio Scialdone, Alessandro Galia, Abdirisak A. Isse, Armando Gennaro, and Krzysztof Matyjaszewski . Atom Transfer Radical Polymerization with Different Halides (F, Cl, Br, and I): Is the Process “Living” in the Presence of Fluorinated Initiators?. Macromolecules 2017, 50 (1) , 192-202. https://doi.org/10.1021/acs.macromol.6b02286
    54. Marco Fantin, Sangwoo Park, Yi Wang, and Krzysztof Matyjaszewski . Electrochemical Atom Transfer Radical Polymerization in Miniemulsion with a Dual Catalytic System. Macromolecules 2016, 49 (23) , 8838-8847. https://doi.org/10.1021/acs.macromol.6b02037
    55. Sebastian Smolne, Michael Buback, Serhiy Demeshko, Krzysztof Matyjaszewski, Franc Meyer, Hendrik Schroeder, and Antonina Simakova . Kinetics of Fe–Mesohemin–(MPEG500)2-Mediated RDRP in Aqueous Solution. Macromolecules 2016, 49 (21) , 8088-8097. https://doi.org/10.1021/acs.macromol.6b01774
    56. Thomas G. Ribelli, S. M. Wahidur Rahaman, Jean-Claude Daran, Pawel Krys, Krzysztof Matyjaszewski, and Rinaldo Poli . Effect of Ligand Structure on the CuII–R OMRP Dormant Species and Its Consequences for Catalytic Radical Termination in ATRP. Macromolecules 2016, 49 (20) , 7749-7757. https://doi.org/10.1021/acs.macromol.6b01334
    57. Pawel Krys, Hendrik Schroeder, Johannes Buback, Michael Buback, and Krzysztof Matyjaszewski . The Borderline between Simultaneous Reverse and Normal Initiation and Initiators for Continuous Activator Regeneration ATRP. Macromolecules 2016, 49 (20) , 7793-7803. https://doi.org/10.1021/acs.macromol.6b01765
    58. Maya M. Arce, Ching W. Pan, Madalyn M. Thursby, Jessica P. Wu, Elizabeth M. Carnicom, and Eric S. Tillman . Influence of Solvent on Radical Trap-Assisted Dimerization and Cyclization of Polystyrene Radicals. Macromolecules 2016, 49 (20) , 7804-7813. https://doi.org/10.1021/acs.macromol.6b01794
    59. Yin-Ning Zhou, Jun-Kang Guo, Jin-Jin Li, and Zheng-Hong Luo . Photoinduced Iron(III)-Mediated Atom Transfer Radical Polymerization with In Situ Generated Initiator: Mechanism and Kinetics Studies. Industrial & Engineering Chemistry Research 2016, 55 (39) , 10235-10242. https://doi.org/10.1021/acs.iecr.6b02846
    60. Timothy J. Zerk, Manuel Martinez, and Paul V. Bernhardt . A Kinetico-Mechanistic Study on CuII Deactivators Employed in Atom Transfer Radical Polymerization. Inorganic Chemistry 2016, 55 (19) , 9848-9857. https://doi.org/10.1021/acs.inorgchem.6b01700
    61. Yanhui Huang, Xingyi Huang, Linda S. Schadler, Jinliang He, and Pingkai Jiang . Core@Double-Shell Structured Nanocomposites: A Route to High Dielectric Constant and Low Loss Material. ACS Applied Materials & Interfaces 2016, 8 (38) , 25496-25507. https://doi.org/10.1021/acsami.6b06650
    62. Marc Guerre, S. M. Wahidur Rahaman, Bruno Améduri, Rinaldo Poli, and Vincent Ladmiral . Limits of Vinylidene Fluoride RAFT Polymerization. Macromolecules 2016, 49 (15) , 5386-5396. https://doi.org/10.1021/acs.macromol.6b01087
    63. Jit Sarkar, Longqiang Xiao, and Atsushi Goto . Living Radical Polymerization with Alkali and Alkaline Earth Metal Iodides as Catalysts. Macromolecules 2016, 49 (14) , 5033-5042. https://doi.org/10.1021/acs.macromol.6b00974
    64. Nicolai Soerensen, Hendrik Schroeder, and Michael Buback . SP–PLP–EPR Measurement of CuII-Mediated ATRP Deactivation and CuI-Mediated Organometallic Reactions in Butyl Acrylate Polymerization. Macromolecules 2016, 49 (13) , 4732-4738. https://doi.org/10.1021/acs.macromol.6b00760
    65. Solmaz Saboohi, Bryan R. Coad, Andrew Michelmore, Robert D. Short, and Hans J. Griesser . Hyperthermal Intact Molecular Ions Play Key Role in Retention of ATRP Surface Initiation Capability of Plasma Polymer Films from Ethyl α-Bromoisobutyrate. ACS Applied Materials & Interfaces 2016, 8 (25) , 16493-16502. https://doi.org/10.1021/acsami.6b04477
    66. Michael Buback, Hendrik Schroeder, and Hendrik Kattner . Detailed Kinetic and Mechanistic Insight into Radical Polymerization by Spectroscopic Techniques. Macromolecules 2016, 49 (9) , 3193-3213. https://doi.org/10.1021/acs.macromol.5b02660
    67. Suree Brown, Yanfeng Yue, Li-Jung Kuo, Nada Mehio, Meijun Li, Gary Gill, Costas Tsouris, Richard T. Mayes, Tomonori Saito, and Sheng Dai . Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)-co-chlorinated Poly(vinyl chloride) (PVC-co-CPVC) Fiber. Industrial & Engineering Chemistry Research 2016, 55 (15) , 4139-4148. https://doi.org/10.1021/acs.iecr.5b03355
    68. Suree Brown, Sabornie Chatterjee, Meijun Li, Yanfeng Yue, Costas Tsouris, Christopher J. Janke, Tomonori Saito, and Sheng Dai . Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization from Chlorinated Polypropylene and Polyethylene Trunk Fibers. Industrial & Engineering Chemistry Research 2016, 55 (15) , 4130-4138. https://doi.org/10.1021/acs.iecr.5b03667
    69. Pawel Krys, Thomas G. Ribelli, Krzysztof Matyjaszewski, and Armando Gennaro . Relation between Overall Rate of ATRP and Rates of Activation of Dormant Species. Macromolecules 2016, 49 (7) , 2467-2476. https://doi.org/10.1021/acs.macromol.6b00058
    70. Elkin Amado and Jörg Kressler . Reversible Complexation of Iminophenylboronates with Mono- and Dihydroxy Methacrylate Monomers and Their Polymerization at Low Temperature by Photoinduced ATRP in One Pot. Macromolecules 2016, 49 (5) , 1532-1544. https://doi.org/10.1021/acs.macromol.5b02771
    71. Cyrille Boyer, Nathaniel Alan Corrigan, Kenward Jung, Diep Nguyen, Thuy-Khanh Nguyen, Nik Nik M. Adnan, Susan Oliver, Sivaprakash Shanmugam, and Jonathan Yeow . Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chemical Reviews 2016, 116 (4) , 1803-1949. https://doi.org/10.1021/acs.chemrev.5b00396
    72. Xiangcheng Pan, Cheng Fang, Marco Fantin, Nikhil Malhotra, Woong Young So, Linda A. Peteanu, Abdirisak A. Isse, Armando Gennaro, Peng Liu, and Krzysztof Matyjaszewski . Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies. Journal of the American Chemical Society 2016, 138 (7) , 2411-2425. https://doi.org/10.1021/jacs.5b13455
    73. Thomas G. Ribelli, Pawel Krys, Yidan Cong, and Krzysztof Matyjaszewski . Model Studies of Alkyl Halide Activation and Comproportionation Relevant to RDRP in the Presence of Cu0. Macromolecules 2015, 48 (23) , 8428-8436. https://doi.org/10.1021/acs.macromol.5b01952
    74. Ya-Jo Chen, Bing-Jyun Wu, Fu-Sheng Wang, Mu-Huan Chi, Jiun-Tai Chen, and Chi-How Peng . Hybridization of CMRP and ATRP: A Direct Living Chain Extension from Poly(vinyl acetate) to Poly(methyl methacrylate) and Polystyrene. Macromolecules 2015, 48 (19) , 6832-6838. https://doi.org/10.1021/acs.macromol.5b01101
    75. Marco Fantin, Abdirisak A. Isse, Armando Gennaro, and Krzysztof Matyjaszewski . Understanding the Fundamentals of Aqueous ATRP and Defining Conditions for Better Control. Macromolecules 2015, 48 (19) , 6862-6875. https://doi.org/10.1021/acs.macromol.5b01454
    76. Hong Y. Cho, Pawel Krys, Katarzyna Szcześniak, Hendrik Schroeder, Sangwoo Park, Stefan Jurga, Michael Buback, and Krzysztof Matyjaszewski . Synthesis of Poly(OEOMA) Using Macromonomers via “Grafting-Through” ATRP. Macromolecules 2015, 48 (18) , 6385-6395. https://doi.org/10.1021/acs.macromol.5b01592
    77. Valerie A. Williams and Krzysztof Matyjaszewski . Expanding the ATRP Toolbox: Methacrylate Polymerization with an Elemental Silver Reducing Agent. Macromolecules 2015, 48 (18) , 6457-6464. https://doi.org/10.1021/acs.macromol.5b01696
    78. Hendrik Schroeder and Michael Buback . SP–PLP–EPR Measurement of Iron-Mediated ATRP Deactivation Rate. Macromolecules 2015, 48 (17) , 6108-6113. https://doi.org/10.1021/acs.macromol.5b01270
    79. Hendrik Schroeder and Michael Buback , Michael P. Shaver . Kinetics of Amine–Bis(phenolate) Iron-Mediated ATRP Up to High Pressure. Macromolecules 2015, 48 (17) , 6114-6120. https://doi.org/10.1021/acs.macromol.5b01390
    80. Chao Wang and Richard A. Venditti . UV Cross-Linkable Lignin Thermoplastic Graft Copolymers. ACS Sustainable Chemistry & Engineering 2015, 3 (8) , 1839-1845. https://doi.org/10.1021/acssuschemeng.5b00416
    81. Qiang Zhang, Muxiu Li, Chongyu Zhu, Gabit Nurumbetov, Zaidong Li, Paul Wilson, Kristian Kempe, and David M. Haddleton . Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly. Journal of the American Chemical Society 2015, 137 (29) , 9344-9353. https://doi.org/10.1021/jacs.5b04139
    82. Hendrik Schroeder, Johannes Buback, Serhiy Demeshko, Krzysztof Matyjaszewski, Franc Meyer, and Michael Buback . Speciation Analysis in Iron-Mediated ATRP Studied via FT-Near-IR and Mössbauer Spectroscopy. Macromolecules 2015, 48 (7) , 1981-1990. https://doi.org/10.1021/acs.macromol.5b00023
    83. Robert W. Graff, Xiaofeng Wang, and Haifeng Gao . Exploring Self-Condensing Vinyl Polymerization of Inimers in Microemulsion To Regulate the Structures of Hyperbranched Polymers. Macromolecules 2015, 48 (7) , 2118-2126. https://doi.org/10.1021/acs.macromol.5b00278
    84. Aman Kaur, Thomas G. Ribelli, Kristin Schröder, Krzysztof Matyjaszewski, and Tomislav Pintauer . Properties and ATRP Activity of Copper Complexes with Substituted Tris(2-pyridylmethyl)amine-Based Ligands. Inorganic Chemistry 2015, 54 (4) , 1474-1486. https://doi.org/10.1021/ic502484s
    85. Krzysztof Matyjaszewski . Controlled Radical Polymerization: State-of-the-Art in 2014. 2015, 1-17. https://doi.org/10.1021/bk-2015-1187.ch001
    86. Dominik Konkolewicz Krzysztof Matyjaszewski . Catalyst Activity in ATRP, Determining Conditions for Well-Controlled Polymerizations. 2015, 87-103. https://doi.org/10.1021/bk-2015-1187.ch005
    87. Tomislav Pintauer . Tris(2-pyridylmethyl)amine Based Ligands in Copper Catalyzed Atom Transfer Radical Addition (ATRA) and Polymerization (ATRP). 2015, 105-128. https://doi.org/10.1021/bk-2015-1187.ch006
    88. Shannon R. Woodruff Nicolay V. Tsarevsky . Synthesis of Star Polymers with Epoxide-Containing Highly Branched Cores by Low-Catalyst Concentration Atom Transfer Radical Polymerization and Post-Polymerization Modifications. 2015, 149-167. https://doi.org/10.1021/bk-2015-1188.ch011
    89. Yi-Chien Lin, Yi-Liang Hsieh, Yuan-Deng Lin, and Chi-How Peng . Cobalt Bipyridine Bisphenolate Complex in Controlled/Living Radical Polymerization of Vinyl Monomers. Macromolecules 2014, 47 (21) , 7362-7369. https://doi.org/10.1021/ma5018764
    90. Timothy J. Zerk and Paul V. Bernhardt . New Method for Exploring Deactivation Kinetics in Copper-Catalyzed Atom-Transfer-Radical Reactions. Inorganic Chemistry 2014, 53 (21) , 11351-11353. https://doi.org/10.1021/ic5022005
    91. Lin Lei, Miho Tanishima, Atsushi Goto, Hironori Kaji, Yu Yamaguchi, Hiroto Komatsu, Takuya Jitsukawa, and Michihiko Miyamoto . Systematic Study on Alkyl Iodide Initiators in Living Radical Polymerization with Organic Catalysts. Macromolecules 2014, 47 (19) , 6610-6618. https://doi.org/10.1021/ma501569j
    92. Thomas G. Ribelli, Dominik Konkolewicz, Stefan Bernhard, and Krzysztof Matyjaszewski . How are Radicals (Re)Generated in Photochemical ATRP?. Journal of the American Chemical Society 2014, 136 (38) , 13303-13312. https://doi.org/10.1021/ja506379s
    93. Chin Ming Hui, Alei Dang, Beibei Chen, Jiajun Yan, Dominik Konkolewicz, Hongkun He, Rachel Ferebee, Michael R. Bockstaller, and Krzysztof Matyjaszewski . Effect of Thermal Self-Initiation on the Synthesis, Composition, and Properties of Particle Brush Materials. Macromolecules 2014, 47 (16) , 5501-5508. https://doi.org/10.1021/ma501319m
    94. Patrícia V. Mendonça, Saadyah E. Averick, Dominik Konkolewicz, Arménio C. Serra, Anatoliy V. Popov, Tamaz Guliashvili, Krzysztof Matyjaszewski, and Jorge F. J. Coelho . Straightforward ARGET ATRP for the Synthesis of Primary Amine Polymethacrylate with Improved Chain-End Functionality under Mild Reaction Conditions. Macromolecules 2014, 47 (14) , 4615-4621. https://doi.org/10.1021/ma501007j
    95. Bastien Barthélémy, Simon Maheux, Sébastien Devillers, Frédéric Kanoufi, Catherine Combellas, Joseph Delhalle, and Zineb Mekhalif . Synergistic Effect on Corrosion Resistance of Phynox Substrates Grafted with Surface-Initiated ATRP (Co)polymerization of 2-Methacryloyloxyethyl Phosphorylcholine (MPC) and 2-Hydroxyethyl Methacrylate (HEMA). ACS Applied Materials & Interfaces 2014, 6 (13) , 10060-10071. https://doi.org/10.1021/am500725d
    96. Carolina Toloza Porras, Dagmar R. D’hooge, Paul H. M. Van Steenberge, Marie-Françoise Reyniers, and Guy B. Marin . ICAR ATRP for Estimation of Intrinsic Macro-Activation/Deactivation Arrhenius Parameters under Polymerization Conditions. Industrial & Engineering Chemistry Research 2014, 53 (23) , 9674-9685. https://doi.org/10.1021/ie5007596
    97. Krzysztof Matyjaszewski and Nicolay V. Tsarevsky . Macromolecular Engineering by Atom Transfer Radical Polymerization. Journal of the American Chemical Society 2014, 136 (18) , 6513-6533. https://doi.org/10.1021/ja408069v
    98. Nicholas Ballard, Maitane Salsamendi, José Ignacio Santos, Fernando Ruipérez, Jose R. Leiza, and Jose M. Asua . Experimental Evidence Shedding Light on the Origin of the Reduction of Branching of Acrylates in ATRP. Macromolecules 2014, 47 (3) , 964-972. https://doi.org/10.1021/ma4025637
    99. Dominik Konkolewicz, Pawel Krys, Joana R. Góis, Patrícia V. Mendonça, Mingjiang Zhong, Yu Wang, Armando Gennaro, Abdirisak A. Isse, Marco Fantin, and Krzysztof Matyjaszewski . Aqueous RDRP in the Presence of Cu0: The Exceptional Activity of CuI Confirms the SARA ATRP Mechanism. Macromolecules 2014, 47 (2) , 560-570. https://doi.org/10.1021/ma4022983
    100. Chin Ming Hui, Joanna Pietrasik, Michael Schmitt, Clare Mahoney, Jihoon Choi, Michael R. Bockstaller, and Krzysztof Matyjaszewski . Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. Chemistry of Materials 2014, 26 (1) , 745-762. https://doi.org/10.1021/cm4023634
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 32, 10702–10713
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja802290a
    Published July 19, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    11k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.