ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

SnO2 Quantum Dots and Quantum Wires: Controllable Synthesis, Self-Assembled 2D Architectures, and Gas-Sensing Properties

View Author Information
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
Cite this: J. Am. Chem. Soc. 2008, 130, 37, 12527–12535
Publication Date (Web):August 21, 2008
https://doi.org/10.1021/ja8040527
Copyright © 2008 American Chemical Society

    Article Views

    8690

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    SnO2 quantum dots (QDs) and ultrathin nanowires (NWs) with diameters of ∼0.5−2.5 and ∼1.5−4.5 nm, respectively, were controllably synthesized in a simple solution system. They are supposed to be ideal models for studying the continuous evolution of the quantum-confinement effect in SnO2 1D → 0D systems. The observed transition from strong to weak quantum confinement in SnO2 QDs and ultrathin NWs is interpreted through the use of the Brus effective-mass approximation and the Nosaka finite-depth well model. Photoluminescence properties that were coinfluenced by size effects, defects (oxygen vacancies), and surface capping are discussed in detail. With the SnO2 QDs as building blocks, various 2D porous structures with ordered hexagonal, distorted hexagonal, and square patterns were prepared on silicon-wafer surfaces and exhibited optical features of 2D photonic crystals and enhanced gas sensitivity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    HRTEM/TEM images of SnO2s-QDs and oriented attachment of ultrathin SnO2 NWs, TEM image of me-NCs, PL spectra of dodecanethiol-exchanged SnO2 NWs for different excitation wavelengths, transmission spectrum of 2D photonic crystals self-assembled by SnO2 QDs on a quartz slice surface, and SEM images of self-assembled SnO2 QDs with various 2D patterns on silicon-wafer surfaces. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 368 publications.

    1. Wei-Wei Yang, Mei-Ling Zhao, Mei-Ling Liu, Wen-Bin Liang, Xia Zhong, Ying Zhuo. Circular DNAzyme-Switched CRISPR/Cas12a Assay for Electrochemiluminescent Response of Demethylase Activity. ACS Sensors 2024, 9 (1) , 344-350. https://doi.org/10.1021/acssensors.3c02025
    2. Plaban J. Sarma, Shilpa Neog, Nishant Biswakarma, Dikshita Dowerah, Priyanka Dutta, Tushmita Das, Nand Kishor Gour, Ramesh Ch. Deka. Tuning the Reaction Mechanism toward Selective Hydrogenation of CO2 to Formic Acid on a Sn10O20 Cluster. Industrial & Engineering Chemistry Research 2023, 62 (51) , 21967-21976. https://doi.org/10.1021/acs.iecr.3c03071
    3. Zhilong Song, Jia Yan. Unveiling the Doping Effect of Sub-4 nm Ultrathin SnO2 Quantum Wires on Gas Sensors. Chemistry of Materials 2023, 35 (18) , 7750-7760. https://doi.org/10.1021/acs.chemmater.3c01609
    4. Zheyu Zhang, Tahmineh Mahmoudi, Yeon Ho Im, Yoon-Bong Hahn. Control of Optical and Electrical Characteristics of BaxSn1–xO2–x Films with Bandgap Engineering as a Function of Ba:Sn Ratio. ACS Applied Electronic Materials 2023, 5 (6) , 2970-2976. https://doi.org/10.1021/acsaelm.3c00307
    5. Jinyu Huang, Zichao Ma, Junda Li, Zhonglei Zhang, Jihua Tang, Xiangdong Cao, Wei Xu, Xiaojin Zhao, Yatao Yang, Xiaofang Pan, Yu Du. Au Nanocage/In2O3 Nanoparticle-Based Hybrid Structures for Formaldehyde Sensors. ACS Applied Nano Materials 2023, 6 (9) , 7855-7863. https://doi.org/10.1021/acsanm.3c00986
    6. Yanting Tang, Yunong Zhao, Huan Liu. Room-Temperature Semiconductor Gas Sensors: Challenges and Opportunities. ACS Sensors 2022, 7 (12) , 3582-3597. https://doi.org/10.1021/acssensors.2c01142
    7. Smruti Purohit, Sanjib Shyamal, Saurabh K. Saini, Kanhaiya L. Yadav, Mahesh Kumar, Soumitra Satapathi. Photocatalytic CO2 Reduction Using an Amorphous TiO2-Encapsulated Cs2AgBiBr6 Nanocrystal: Selective Methane Formation. Energy & Fuels 2022, 36 (19) , 12170-12180. https://doi.org/10.1021/acs.energyfuels.2c02484
    8. Zongming Deng, Yumin Zhang, Dong Xu, Baoye Zi, Jiyang Zeng, Qiang Lu, Kai Xiong, Jin Zhang, Jianhong Zhao, Qingju Liu. Ultrasensitive Formaldehyde Sensor Based on SnO2 with Rich Adsorbed Oxygen Derived from a Metal Organic Framework. ACS Sensors 2022, 7 (9) , 2577-2588. https://doi.org/10.1021/acssensors.2c00589
    9. Sudakhina Saikia, Rasna Devi, Pranjal Gogoi, Lakshi Saikia, Boyapati M. Choudary, Thirumalaiswamy Raja, Pangkita Deka, Ramesh C. Deka. Regioselective Friedel–Crafts Acylation Reaction Using Single Crystalline and Ultrathin Nanosheet Assembly of Scrutinyite-SnO2. ACS Omega 2022, 7 (36) , 32225-32237. https://doi.org/10.1021/acsomega.2c03555
    10. T. A. Nirmal Peiris, Hasitha C. Weerasinghe, Manoj Sharma, Jueng-Eun Kim, Monika Michalska, Naresh Chandrasekaran, Dimuthu C. Senevirathna, Hanchen Li, Anthony S. R. Chesman, Doojin Vak, Jacek J. Jasieniak. Non-Aqueous One-Pot SnO2 Nanoparticle Inks and Their Use in Printable Perovskite Solar Cells. Chemistry of Materials 2022, 34 (12) , 5535-5545. https://doi.org/10.1021/acs.chemmater.2c00578
    11. Sukhwinder Singh, Sandeep Sharma. Temperature-Based Selective Detection of Hydrogen Sulfide and Ethanol with MoS2/WO3 Composite. ACS Omega 2022, 7 (7) , 6075-6085. https://doi.org/10.1021/acsomega.1c06471
    12. Haoyang Fu, Xing Gao, Xin Zhang, Lan Ling. Recent Advances in Nonclassical Crystallization: Fundamentals, Applications, and Challenges. Crystal Growth & Design 2022, 22 (2) , 1476-1499. https://doi.org/10.1021/acs.cgd.1c01084
    13. Guillermo Gutierrez, Emma M. Sundin, Paul Gaurav Nalam, Vishal Zade, Rebecca Romero, Aruna N Nair, Sreeprasad Sreenivasan, Debabrata Das, Chunqiang Li, C. V. Ramana. Interfacial Phase Modulation-Induced Structural Distortion, Band Gap Reduction, and Nonlinear Optical Activity in Tin-Incorporated Ga2O3. The Journal of Physical Chemistry C 2021, 125 (37) , 20468-20481. https://doi.org/10.1021/acs.jpcc.1c04005
    14. Keroles B. Riad, Suong V. Hoa, Paula M. Wood-Adams. Metal Oxide Quantum Dots Embedded in Silica Matrices Made by Flame Spray Pyrolysis. ACS Omega 2021, 6 (17) , 11411-11417. https://doi.org/10.1021/acsomega.0c06227
    15. Sukhwinder Singh, Raghottam M. Sattigeri, Suresh Kumar, Prafulla K. Jha, Sandeep Sharma. Superior Room-Temperature Ammonia Sensing Using a Hydrothermally Synthesized MoS2/SnO2 Composite. ACS Omega 2021, 6 (17) , 11602-11613. https://doi.org/10.1021/acsomega.1c00805
    16. Jianlong Yang, Ning Sun, Ziqing Zhang, Ji Bian, Yang Qu, Zhijun Li, Mingzheng Xie, Weihua Han, Liqiang Jing. Ultrafine SnO2/010 Facet-Exposed BiVO4 Nanocomposites as Efficient Photoanodes for Controllable Conversion of 2,4-Dichlorophenol via a Preferential Dechlorination Path. ACS Applied Materials & Interfaces 2020, 12 (25) , 28264-28272. https://doi.org/10.1021/acsami.0c06892
    17. Lian Sun, Bing Wang, Yingde Wang. High-Temperature Gas Sensor Based on Novel Pt Single Atoms@SnO2 Nanorods@SiC Nanosheets Multi-heterojunctions. ACS Applied Materials & Interfaces 2020, 12 (19) , 21808-21817. https://doi.org/10.1021/acsami.0c02160
    18. Busheng Wang, Rabii Larhlimi, Hubert Valencia, Frédéric Guégan, Gilles Frapper. Prediction of Novel Tin Nitride SnxNy Phases Under Pressure. The Journal of Physical Chemistry C 2020, 124 (15) , 8080-8093. https://doi.org/10.1021/acs.jpcc.9b11404
    19. Yan-Mei Lei, Ying Zhuo, Mu-Lin Guo, Ya-Qin Chai, Ruo Yuan. Pore Confinement-Enhanced Electrochemiluminescence on SnO2 Nanocrystal Xerogel with NO3– As Co-Reactant and Its Application in Facile and Sensitive Bioanalysis. Analytical Chemistry 2020, 92 (3) , 2839-2846. https://doi.org/10.1021/acs.analchem.9b05367
    20. Yusuke Inomata, Ken Albrecht, Naoki Haruta, Kimihisa Yamamoto. Dendrimer-Templated Synthesis and Characterization of Tin Oxide Quantum Dots Deposited on a Silica Glass Substrate. Chemistry of Materials 2019, 31 (20) , 8373-8382. https://doi.org/10.1021/acs.chemmater.9b01925
    21. Mohamed Karmaoui, Ana Belen Jorge, Paul F. McMillan, Abil E. Aliev, Robert C. Pullar, João António Labrincha, David Maria Tobaldi. One-Step Synthesis, Structure, and Band Gap Properties of SnO2 Nanoparticles Made by a Low Temperature Nonaqueous Sol–Gel Technique. ACS Omega 2018, 3 (10) , 13227-13238. https://doi.org/10.1021/acsomega.8b02122
    22. So Yeon Park, Mi Yeon Baek, Yeonkyeon Ju, Dong Hoe Kim, Chan Su Moon, Jun Hong Noh, Hyun Suk Jung. Simultaneous Ligand Exchange Fabrication of Flexible Perovskite Solar Cells using Newly Synthesized Uniform Tin Oxide Quantum Dots. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5460-5467. https://doi.org/10.1021/acs.jpclett.8b02408
    23. Xiu-Qing Qiao, Zhen-Wei Zhang, Dong-Fang Hou, Dong-Sheng Li, Yunlin Liu, Ya-Qian Lan, Jian Zhang, Pingyun Feng, Xianhui Bu. Tunable MoS2/SnO2 P–N Heterojunctions for an Efficient Trimethylamine Gas Sensor and 4-Nitrophenol Reduction Catalyst. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 12375-12384. https://doi.org/10.1021/acssuschemeng.8b02842
    24. He Zhu, Qiang Li, Chao Yang, Qinghua Zhang, Yang Ren, Qilong Gao, Na Wang, Kun Lin, Jinxia Deng, Jun Chen, Lin Gu, Jiawang Hong, Xianran Xing. Twin Crystal Induced near Zero Thermal Expansion in SnO2 Nanowires. Journal of the American Chemical Society 2018, 140 (24) , 7403-7406. https://doi.org/10.1021/jacs.8b03232
    25. Vahid Ghodsi, Pavle V. Radovanovic. Turning Weakly Luminescent SnO2 Nanocrystals into Tunable and Efficient Light Emitters by Aliovalent Alloying. Chemistry of Materials 2018, 30 (10) , 3578-3587. https://doi.org/10.1021/acs.chemmater.8b01574
    26. Aifei Wang, Xingxu Yan, Mian Zhang, Shibin Sun, Ming Yang, Wei Shen, Xiaoqing Pan, Peng Wang, and Zhengtao Deng . Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process. Chemistry of Materials 2016, 28 (22) , 8132-8140. https://doi.org/10.1021/acs.chemmater.6b01329
    27. Muhammad Imran, Francesco Di Stasio, Zhiya Dang, Claudio Canale, Ali Hossain Khan, Javad Shamsi, Rosaria Brescia, Mirko Prato, and Liberato Manna . Colloidal Synthesis of Strongly Fluorescent CsPbBr3 Nanowires with Width Tunable down to the Quantum Confinement Regime. Chemistry of Materials 2016, 28 (18) , 6450-6454. https://doi.org/10.1021/acs.chemmater.6b03081
    28. Juwon Park, Sanghwa Jeong, Jiwon Bang, Bomi Kim, Hyunmi Doh, Seungho Cho, Sungjae Hwang, and Sungjee Kim . Formation and Stepwise Self-Assembly of Cadmium Chalcogenide Nanocrystals to Colloidal Supra-Quantum Dots and the Superlattices. Chemistry of Materials 2016, 28 (15) , 5329-5335. https://doi.org/10.1021/acs.chemmater.6b01126
    29. Zheng-Wei Zhou, Yi-Tao Liu, Xu-Ming Xie, and Xiong-Ying Ye . Constructing Novel Si@SnO2 Core–Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage. ACS Applied Materials & Interfaces 2016, 8 (11) , 7092-7100. https://doi.org/10.1021/acsami.6b00107
    30. Zhilong Song, Zeru Wei, Baocun Wang, Zhen Luo, Songman Xu, Wenkai Zhang, Haoxiong Yu, Min Li, Zhao Huang, Jianfeng Zang, Fei Yi, and Huan Liu . Sensitive Room-Temperature H2S Gas Sensors Employing SnO2 Quantum Wire/Reduced Graphene Oxide Nanocomposites. Chemistry of Materials 2016, 28 (4) , 1205-1212. https://doi.org/10.1021/acs.chemmater.5b04850
    31. Huan Liu, Wenkai Zhang, Haoxiong Yu, Liang Gao, Zhilong Song, Songman Xu, Min Li, Yang Wang, Haisheng Song, and Jiang Tang . Solution-Processed Gas Sensors Employing SnO2 Quantum Dot/MWCNT Nanocomposites. ACS Applied Materials & Interfaces 2016, 8 (1) , 840-846. https://doi.org/10.1021/acsami.5b10188
    32. Yuelan Zhang, Liping Li, Jing Zheng, Qi Li, Ying Zuo, Errui Yang, and Guangshe Li . Two-Step Grain-Growth Kinetics of Sub-7 nm SnO2 Nanocrystal under Hydrothermal Condition. The Journal of Physical Chemistry C 2015, 119 (33) , 19505-19512. https://doi.org/10.1021/acs.jpcc.5b05282
    33. Mingxi Chen, Huan Wang, Lingzhi Li, Zhe Zhang, Cong Wang, Yu Liu, Wei Wang, and Jianping Gao . Novel and Facile Method, Dynamic Self-Assemble, To Prepare SnO2/rGO Droplet Aerogel with Complex Morphologies and Their Application in Supercapacitors. ACS Applied Materials & Interfaces 2014, 6 (16) , 14327-14337. https://doi.org/10.1021/am5036169
    34. Kuan-Ting Lee, Cheng-Hsien Lin, and Shih-Yuan Lu . SnO2 Quantum Dots Synthesized with a Carrier Solvent Assisted Interfacial Reaction for Band-Structure Engineering of TiO2 Photocatalysts. The Journal of Physical Chemistry C 2014, 118 (26) , 14457-14463. https://doi.org/10.1021/jp5045749
    35. Hongkang Wang and Andrey L. Rogach . Hierarchical SnO2 Nanostructures: Recent Advances in Design, Synthesis, and Applications. Chemistry of Materials 2014, 26 (1) , 123-133. https://doi.org/10.1021/cm4018248
    36. Peng-peng Wang, Yong Yang, Jing Zhuang, and Xun Wang . Self-Adjustable Crystalline Inorganic Nanocoils. Journal of the American Chemical Society 2013, 135 (18) , 6834-6837. https://doi.org/10.1021/ja403065z
    37. Kazuyoshi Sato, Yohei Yokoyama, Jean-Christophe Valmalette, Kazuo Kuruma, Hiroya Abe, and Takayuki Takarada . Hydrothermal Growth of Tailored SnO2 Nanocrystals. Crystal Growth & Design 2013, 13 (4) , 1685-1693. https://doi.org/10.1021/cg400013q
    38. Nilesh Mazumder, Dipayan Sen, Subhajit Saha, Uttam Kumar Ghorai, Nirmalya Sankar Das, and Kalyan Kumar Chattopadhyay . Enhanced Ultraviolet Emission from Mg Doped SnO2 Nanocrystals at Room Temperature and Its Modulation upon H2 Annealing. The Journal of Physical Chemistry C 2013, 117 (12) , 6454-6461. https://doi.org/10.1021/jp4000329
    39. Hongkang Wang, Yu Wang, Jun Xu, Haihua Yang, Chun-Sing Lee, and Andrey L. Rogach . Polyvinylpyrrolidone-Assisted Ultrasonic Synthesis of SnO Nanosheets and Their Use as Conformal Templates for Tin Dioxide Nanostructures. Langmuir 2012, 28 (28) , 10597-10601. https://doi.org/10.1021/la301827p
    40. Cen Wang, Gaohui Du, Kenny Ståhl, Haixiao Huang, Yijun Zhong, and J. Z. Jiang . Ultrathin SnO2 Nanosheets: Oriented Attachment Mechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances. The Journal of Physical Chemistry C 2012, 116 (6) , 4000-4011. https://doi.org/10.1021/jp300136p
    41. LiLi Wang, Teng Fei, Zheng Lou, and Tong Zhang . Three-Dimensional Hierarchical Flowerlike α-Fe2O3 Nanostructures: Synthesis and Ethanol-Sensing Properties. ACS Applied Materials & Interfaces 2011, 3 (12) , 4689-4694. https://doi.org/10.1021/am201112z
    42. Feng Gu, Xiang Ren, Jian Zhang, Wei Shao, Guangjian Huang, and Chunzhong Li . Morphological Evolution from SnO2 Quantum Dots to Quantum Chains inside Channels of Mesoporous Spheres. Industrial & Engineering Chemistry Research 2011, 50 (22) , 12542-12547. https://doi.org/10.1021/ie201152e
    43. Arik Kar, Simanta Kundu, and Amitava Patra. Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles. The Journal of Physical Chemistry C 2011, 115 (1) , 118-124. https://doi.org/10.1021/jp110313b
    44. Shuling Shen, Zhihong Tang, Qing Liu and Xun Wang. Precisely Controlled Growth of Heterostructured Nanocrystals via a Dissolution−Attachment Process. Inorganic Chemistry 2010, 49 (17) , 7799-7807. https://doi.org/10.1021/ic100601a
    45. Qiang Yuan, Zhiyou Zhou, Jing Zhuang and Xun Wang . Tunable Aqueous Phase Synthesis and Shape-Dependent Electrochemical Properties of Rhodium Nanostructures. Inorganic Chemistry 2010, 49 (12) , 5515-5521. https://doi.org/10.1021/ic100249t
    46. Hui-Xiong Deng, Shu-Shen Li and Jingbo Li. Quantum Confinement Effects and Electronic Properties of SnO2 Quantum Wires and Dots. The Journal of Physical Chemistry C 2010, 114 (11) , 4841-4845. https://doi.org/10.1021/jp911035z
    47. Guangcheng Xi and Jinhua Ye. Ultrathin SnO2 Nanorods: Template- and Surfactant-Free Solution Phase Synthesis, Growth Mechanism, Optical, Gas-Sensing, and Surface Adsorption Properties. Inorganic Chemistry 2010, 49 (5) , 2302-2309. https://doi.org/10.1021/ic902131a
    48. Yu-Fen Wang, Bing-Xin Lei, Yuan-Fang Hou, Wen-Xia Zhao, Chao-Lun Liang, Cheng-Yong Su and Dai-Bin Kuang . Facile Fabrication of Hierarchical SnO2 Microspheres Film on Transparent FTO Glass. Inorganic Chemistry 2010, 49 (4) , 1679-1686. https://doi.org/10.1021/ic902092e
    49. Shuisheng Wu, Huaqiang Cao, Shuangfeng Yin, Xiangwen Liu and Xinrong Zhang . Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals. The Journal of Physical Chemistry C 2009, 113 (41) , 17893-17898. https://doi.org/10.1021/jp9068762
    50. Wenbo Bu, Zhenxing Chen, Feng Chen and Jianlin Shi. Oleic Acid/Oleylamine Cooperative-Controlled Crystallization Mechanism for Monodisperse Tetragonal Bipyramid NaLa(MoO4)2 Nanocrystals. The Journal of Physical Chemistry C 2009, 113 (28) , 12176-12185. https://doi.org/10.1021/jp901437a
    51. Xiangxing Xu and Xun Wang. Size- and Surface-Determined Transformations: From Ultrathin InOOH Nanowires to Uniform c-In2O3 Nanocubes and rh-In2O3 Nanowires. Inorganic Chemistry 2009, 48 (8) , 3890-3895. https://doi.org/10.1021/ic802449w
    52. Wooyeon Kim, Jigeon Kim, Dayoung Kim, Bonkee Koo, Subin Yu, Yuelong Li, Younghoon Kim, Min Jae Ko. Completely annealing-free flexible Perovskite quantum dot solar cells employing UV-sintered Ga-doped SnO2 electron transport layers. npj Flexible Electronics 2024, 8 (1) https://doi.org/10.1038/s41528-024-00305-3
    53. Utsav Sengupta, Muthaimanoj Periyasamy, Jit Satra, Sudipta Mukhopadhyay, Arik Kar. Controlled and automatic fabrication of ultra small SnO2-CdS nano-heterojunction via continuous flow method designed for photochemical treatment of dye contaminated natural water resources. Journal of Industrial and Engineering Chemistry 2024, 134 , 399-414. https://doi.org/10.1016/j.jiec.2024.01.004
    54. Vibhav Katoch, Naveen Kumar Arjunan Shanmugam, Alisha Rohal, M Ramananda Singh, Manish Kaushal, Bhanu Prakash. Miniaturized droplets flow reactor for one-step highly controlled synthesis of SnO 2 quantum dots at room temperature. Engineering Research Express 2024, 6 (1) , 015091. https://doi.org/10.1088/2631-8695/ad26dd
    55. Weichao Li, Qiming Yuan, Zhangcheng Xia, Xiaoxue Ma, Lifang He, Ling Jin, Xiangfeng Chu, Kui Zhang. ZnO quantum dots sensitized ZnSnO3 for highly formaldehyde sensing at a low temperature. Sensors and Actuators B: Chemical 2024, 400 , 134912. https://doi.org/10.1016/j.snb.2023.134912
    56. A. Amutha, S. Amirthapandian, B. Sundaravel, B.K. Panigrahi, P. Thangadurai. Size- and temperature-dependent optical, and electron field emission characteristics on SnO2 nanocrystals. Physica B: Condensed Matter 2024, 674 , 415599. https://doi.org/10.1016/j.physb.2023.415599
    57. Yanhua Sang, Kexin Qin, Ruikang Tang, Zhaoming Liu. Inorganic ionic polymerization: From biomineralization to materials manufacturing. Nano Research 2024, 17 (2) , 550-569. https://doi.org/10.1007/s12274-023-6033-z
    58. Khushboo Kumari, Md. Ahmaruzzaman. SnO2 quantum dots (QDs): Synthesis and potential applications in energy storage and environmental remediation. Materials Research Bulletin 2023, 168 , 112446. https://doi.org/10.1016/j.materresbull.2023.112446
    59. Tingting Chen, Jianhai Sun, Ning Xue, Wen Wang, Zongchang Luo, Qinqin Liang, Tianye Zhou, Hao Quan, Haoyuan Cai, Kangsong Tang, Kaisheng Jiang. Cu-doped SnO2/rGO nanocomposites for ultrasensitive H2S detection at low temperature. Microsystems & Nanoengineering 2023, 9 (1) https://doi.org/10.1038/s41378-023-00517-z
    60. Asiyeh Kalateh, Ali Jalali, Mohammad Javad Kamali Ashtiani, Mohammad Mohammadimasoudi, Hajieh Bastami, Majid Mohseni. Resistive switching transparent SnO2 thin film sensitive to light and humidity. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-45790-0
    61. Hao Kan, Zhuogeng Lin, Zhao Wang, Song Gao, Wenhao Yang, Wei Zheng. Highly Sensitive Photovoltaic-Type DUV Detector Based on SnO₂ Quantum Dots. IEEE Transactions on Electron Devices 2023, 70 (12) , 6406-6409. https://doi.org/10.1109/TED.2023.3324619
    62. Danfeng Jiang, Tao Liu, Zhenyu Chu, Yi Wang. Advances in nanostructured material-based non-enzymatic electrochemical glucose sensors. Analytical Methods 2023, 15 (46) , 6344-6361. https://doi.org/10.1039/D3AY01664A
    63. F. F. H. Aragón, L. Villegas-Lelovsky, J. I. Castillo-Llanos, C. M. Soncco, J. L. Solis, G. H. Peralta-Alarcón, D. G. Pacheco-Salazar, P. C. Morais. Cu-doped SnO 2 nanoparticles: size and antibacterial activity investigations. RSC Advances 2023, 13 (41) , 28482-28492. https://doi.org/10.1039/D3RA05089K
    64. Gailian Zhou, Ting He, Xueting Xie, Jianfeng Qin, Wei Wei, Yujing Zhang, Erwei Hao. Improved Recognition Accuracy of Myrrh Decoction Pieces by Electronic Nose Technology Using GC-MS Analysis and Sensor Selection. Chemosensors 2023, 11 (7) , 396. https://doi.org/10.3390/chemosensors11070396
    65. Harsimranjot Kaur, H. S. Bhatti, Karamjit Singh. Tb-doped SnO2 nanostructures for fluorescence sensing and dye degradation applications. Journal of Materials Science: Materials in Electronics 2023, 34 (18) https://doi.org/10.1007/s10854-023-10843-7
    66. Y.J. An, B. Bathula, K. Yoo, H.M. Kwon, S.B. Eadi, H.D. Lee. Demonstration of high on/off ratio and linearity of SnO2-quantum-dot-based synaptic device. Materials Letters 2023, 341 , 134193. https://doi.org/10.1016/j.matlet.2023.134193
    67. Jinzhou Bai, Yanbai Shen, Sikai Zhao, Ang Li, Zhangke Kang, Baoyu Cui, Dezhou Wei, Zhenyu Yuan, Fanli Meng. Room‐Temperature NH 3 Sensor Based on SnO 2 Quantum Dots Functionalized SnS 2 Nanosheets. Advanced Materials Technologies 2023, 8 (8) https://doi.org/10.1002/admt.202201671
    68. Zhangcheng Xia, Cong Zheng, Jingjie Hu, Qiming Yuan, Cheng Zhang, Jian Zhang, Lifang He, Hongliang Gao, Ling Jin, Xiangfeng Chu, Fanli Meng. Synthesis of SnO2 quantum dot sensitized LaFeO3 for conductometric formic acid gas sensors. Sensors and Actuators B: Chemical 2023, 379 , 133198. https://doi.org/10.1016/j.snb.2022.133198
    69. Xinyang Sun, Tingting Chen, Yong Liang, Chao Zhang, Shoupei Zhai, Jianhai Sun, Wen Wang. Enhanced sensitivity of SAW based ammonia sensor employing GO-SnO2 nanocomposites. Sensors and Actuators B: Chemical 2023, 375 , 132884. https://doi.org/10.1016/j.snb.2022.132884
    70. Baohui Zhang, Chong Li, Min Li, Chen Fu, Ran Tao, Honglang Li, Jingting Luo. High-Performance Ppb Level NO2 Gas Sensor Based on Colloidal SnO2 Quantum Wires/Ti3C2Tx MXene Composite. Nanomaterials 2022, 12 (24) , 4464. https://doi.org/10.3390/nano12244464
    71. Ramesh Ch. Deka, Plaban J. Sarma, Ajanta Deka, Nishant Biswakarma, Dikshita Dowerah, Satyajit Dey Baruah. Mechanistic Details of Catalytic Hydrogenation of CO 2 to Useful Chemicals Using SnO 2 Clusters. 2022, 305-335. https://doi.org/10.1002/9781119772057.ch25
    72. Sakshi Sharma, Anjali Oudhia, A.K. Shrivastav, Mohan L. Verma. Computational simulation-based study of novel ZnO Buckyball structures. Journal of Molecular Graphics and Modelling 2022, 116 , 108241. https://doi.org/10.1016/j.jmgm.2022.108241
    73. Rabie M. Youssef, A.M.S. Salem, Ahmed Shawky, Shaker Ebrahim, Moataz Soliman, Mohamed S.A. Abdel-Mottaleb, Said M. El-Sheikh. Solution-processed quantum dot SnO2 as an interfacial electron transporter for stable fully-air-fabricated metal-free perovskite solar cells. Journal of Materiomics 2022, 8 (6) , 1172-1183. https://doi.org/10.1016/j.jmat.2022.06.001
    74. Eunhee Park, Taehyun Park, Hocheon Yoo, Jaehyun Hur. Self-powered high-performance ultraviolet C photodetector based on poly(9-vinyl carbazole)/SnO2 quantum dot heterojunction. Journal of Alloys and Compounds 2022, 918 , 165502. https://doi.org/10.1016/j.jallcom.2022.165502
    75. D. Manikandan, Ramaswamy Murugan. Genesis and tuning of ferromagnetism in SnO2 semiconductor nanostructures: Comprehensive review on size, morphology, magnetic properties and DFT investigations. Progress in Materials Science 2022, 130 , 100970. https://doi.org/10.1016/j.pmatsci.2022.100970
    76. Jia Yan, Xuyun Guo, Ye Zhu, Zhilong Song, Lawrence Yoon Suk Lee. Solution-processed metal doping of sub-3 nm SnO 2 quantum wires for enhanced H 2 S sensing at low temperature. Journal of Materials Chemistry A 2022, 10 (29) , 15657-15664. https://doi.org/10.1039/D2TA03012H
    77. Yuzhuo Sun, Dong Li, Guanjie Xing, Yunchao Li. Controllable synthesis, fascinating properties and functional applications of ultrathin semiconductor nanowires and nanorods. Chinese Science Bulletin 2022, 67 (20) , 2280-2297. https://doi.org/10.1360/TB-2022-0146
    78. Jiale Liu, Sheng Li, Shuang Liu, Yanmeng Chu, Ting Ye, Cheng Qiu, Zexiong Qiu, Xiadong Wang, Yifan Wang, Yaqiong Su, Yue Hu, Yaoguang Rong, Anyi Mei, Hongwei Han. Oxygen Vacancy Management for High‐Temperature Mesoporous SnO 2 Electron Transport Layers in Printable Perovskite Solar Cells. Angewandte Chemie International Edition 2022, 61 (26) https://doi.org/10.1002/anie.202202012
    79. Jiale Liu, Sheng Li, Shuang Liu, Yanmeng Chu, Ting Ye, Cheng Qiu, Zexiong Qiu, Xiadong Wang, Yifan Wang, Yaqiong Su, Yue Hu, Yaoguang Rong, Anyi Mei, Hongwei Han. Oxygen Vacancy Management for High‐Temperature Mesoporous SnO 2 Electron Transport Layers in Printable Perovskite Solar Cells. Angewandte Chemie 2022, 134 (26) https://doi.org/10.1002/ange.202202012
    80. Yunqi Tang, Chun Hong Mak, Guohua Jia, Kuan-Chen Cheng, Ji-Jung Kai, Chang-Wei Hsieh, Fanxu Meng, Wenxin Niu, Fang-Fang Li, Hsin-Hui Shen, Xunjin Zhu, Hao Ming Chen, Hsien-Yi Hsu. Lead-free hybrid perovskite photocatalysts: surface engineering, charge-carrier behaviors, and solar-driven applications. Journal of Materials Chemistry A 2022, 10 (23) , 12296-12316. https://doi.org/10.1039/D2TA01170K
    81. C. V. Ramana, Debabrata Das, Guillermo Gutierrez, Felicia S. Manciu, V. Shutthanandan. Microstructure, chemical inhomogeneity, and electronic properties of tin-incorporated Ga2O3 compounds. Journal of Materials Science 2022, 57 (24) , 11170-11188. https://doi.org/10.1007/s10853-022-07207-7
    82. Livia Alexandra Dinu, Valentin Buiculescu, Angela Mihaela Baracu. Recent Progress on Nanomaterials for NO2 Surface Acoustic Wave Sensors. Nanomaterials 2022, 12 (12) , 2120. https://doi.org/10.3390/nano12122120
    83. Ali Mirzaei, Zoheir Kordrostami, Mehrdad Shahbaz, Jin-Young Kim, Hyoun Woo Kim, Sang Sub Kim. Resistive-Based Gas Sensors Using Quantum Dots: A Review. Sensors 2022, 22 (12) , 4369. https://doi.org/10.3390/s22124369
    84. Zhilong Song, Zhixiang Hu, Jingyao Liu, Jia Yan, Huaming Li, Jianjun Jiang, Jiang Tang, Huan Liu. Metastable Antimony‐Doped SnO 2 Quantum Wires for Ultrasensitive Gas Sensors. Advanced Electronic Materials 2022, 8 (5) https://doi.org/10.1002/aelm.202101049
    85. Shaima K. Abdulradha, Mohammed T. Hussein, Mudar Ahmed Abdulsattar. Study of the Interaction Between Reduced Graphene Oxide and NO 2 Gas Molecules via Density Functional Theory (DFT). International Journal of Nanoscience 2022, 21 (02) https://doi.org/10.1142/S0219581X22500090
    86. Jingting Luo, Chong Li, Qutong Yang, Lanxin Yan, Baohui Zhang, Ran Tao, Sana Rauf, Honglang Li, Chen Fu. Facile Fabrication of MoS 2 Nanoflowers/SnO 2 Colloidal Quantum Dots Nanocomposite for Enhanced NO 2 Sensing at Room Temperature. IEEE Sensors Journal 2022, 22 (7) , 6295-6302. https://doi.org/10.1109/JSEN.2022.3151068
    87. Milan Y. Patel, Michael J. Mortelliti, Jillian L. Dempsey. A compendium and meta-analysis of flatband potentials for TiO2, ZnO, and SnO2 semiconductors in aqueous media. Chemical Physics Reviews 2022, 3 (1) https://doi.org/10.1063/5.0063170
    88. Jinzhou Bai, Yanbai Shen, Sikai Zhao, Yunshuang Chen, Guodong Li, Cong Han, Dezhou Wei, Zhenyu Yuan, Fanli Meng. Flower-like MoS2 hierarchical architectures assembled by 2D nanosheets sensitized with SnO2 quantum dots for high-performance NH3 sensing at room temperature. Sensors and Actuators B: Chemical 2022, 353 , 131191. https://doi.org/10.1016/j.snb.2021.131191
    89. Fawzy G. El Desouky, M.M. Saadeldin, I.K. El Zawawi. Synthesis and tuning the structure, morphological, optical, and photoluminescence properties of heterostructure cerium oxide and tin oxide nanocomposites. Journal of Luminescence 2022, 241 , 118450. https://doi.org/10.1016/j.jlumin.2021.118450
    90. Chenghui Hong, Pei Zhang, Kening Lu, Yu Ji, Shuang He, Dongqin Liu, Nengqin Jia. A dual-signal electrochemiluminescence immunosensor for high-sensitivity detection of acute myocardial infarction biomarker. Biosensors and Bioelectronics 2021, 194 , 113591. https://doi.org/10.1016/j.bios.2021.113591
    91. Wanyin Ge, Gongfan Zhang, Pengtao Wang, Zhaosheng Li, Ye Deng. Highly selective detection of ethanol based on hierarchical three-dimensional SnO2: Combining experiment with first-principles calculation. Sensors and Actuators A: Physical 2021, 331 , 112994. https://doi.org/10.1016/j.sna.2021.112994
    92. Xunbo Hu, Mei Wang, Jianfeng Deng, Syed ul Hasnain Bakhtiar, Zhiping Zheng, Wei Luo, Wen Dong, Qiuyun Fu. Sensing Properties and Mechanism of Gas Sensors Based on Zinc Oxide Quantum Dots. IEEE Sensors Journal 2021, 21 (18) , 19722-19730. https://doi.org/10.1109/JSEN.2021.3098002
    93. Guanjie Lu, Zhencai Dong, Wei Liu, Xiaoping Jiang, Zuguang Yang, Qiwen Liu, Xiukang Yang, Dan Wu, Zongyang Li, Qiannan Zhao, Xiaolin Hu, Chaohe Xu, Fusheng Pan. Universal lithiophilic interfacial layers towards dendrite-free lithium anodes for solid-state lithium-metal batteries. Science Bulletin 2021, 66 (17) , 1746-1753. https://doi.org/10.1016/j.scib.2021.04.034
    94. Lele Zhou, Zhizhang Shen, Shuibing Wang, Junxian Gao, Lingling Tang, Ji Li, Yuming Dong, Zhenyu Wang, Jinze Lyu. Construction of quantum-scale catalytic regions on anatase TiO2 nanoparticles by loading TiO2 quantum dots for the photocatalytic degradation of VOCs. Ceramics International 2021, 47 (15) , 21090-21098. https://doi.org/10.1016/j.ceramint.2021.04.112
    95. Bin Yu, Yuchan Li, Yunjian Wang, Hua Li, Ruiping Zhang. Facile hydrothermal synthesis of SnO2 quantum dots with enhanced photocatalytic degradation activity: Role of surface modification with chloroacetic acid. Journal of Environmental Chemical Engineering 2021, 9 (4) , 105618. https://doi.org/10.1016/j.jece.2021.105618
    96. J. Divya, A. Pramothkumar, H. Jude Leonard Hilary, P. Jamila Jayanthi, P. C. Jobe prabakar. Impact of copper (Cu) and iron (Fe) co-doping on structural, optical, magnetic and electrical properties of tin oxide (SnO2) nanoparticles for optoelectronics applications. Journal of Materials Science: Materials in Electronics 2021, 32 (12) , 16775-16785. https://doi.org/10.1007/s10854-021-06235-4
    97. Fei Zhang, Dongwen Yang, Zhifeng Shi, Chaochao Qin, Minghuan Cui, Zhuangzhuang Ma, Lintao Wang, Meng Wang, Xinzhen Ji, Xu Chen, Di Wu, Xinjian Li, Lijun Zhang, Chongxin Shan. Stable zero-dimensional cesium indium bromide hollow nanocrystals emitting blue light from self-trapped excitons. Nano Today 2021, 38 , 101153. https://doi.org/10.1016/j.nantod.2021.101153
    98. Vardan Galstyan. “Quantum dots: Perspectives in next-generation chemical gas sensors” ‒ A review. Analytica Chimica Acta 2021, 1152 , 238192. https://doi.org/10.1016/j.aca.2020.12.067
    99. Fawzy G. El Desouky, M.M. Saadeldin, Manal A. Mahdy, I.K. El Zawawi. Tuning the structure, morphological variations, optical and magnetic properties of SnO2/NiFe2O4 nanocomposites for promising applications. Vacuum 2021, 185 , 110003. https://doi.org/10.1016/j.vacuum.2020.110003
    100. Fan Yang, Fang Yang, Ting-Ting Tu, Ni Liao, Ya-Qin Chai, Ruo Yuan, Ying Zhuo. A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO2 QDs for MicroRNA detection using 3D DNA walker amplification. Biosensors and Bioelectronics 2021, 173 , 112820. https://doi.org/10.1016/j.bios.2020.112820
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect