ACS Publications. Most Trusted. Most Cited. Most Read
Cobalt-Catalyzed Regioselective Dehydrohalogenation of Alkyl Halides with Dimethylphenylsilylmethylmagnesium Chloride
My Activity

Figure 1Loading Img
    Communication

    Cobalt-Catalyzed Regioselective Dehydrohalogenation of Alkyl Halides with Dimethylphenylsilylmethylmagnesium Chloride
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 34, 11276–11277
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja804277x
    Published July 31, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Cobalt-catalyzed reactions of haloalkanes with dimethylphenylsilylmethylmagnesium chloride result in highly regioselective dehydrohalogenation. The reaction does not follow the conventional E2 elimination mechanism but includes β-hydride elimination from the corresponding alkylcobalt intermediate. The interesting reaction mechanism of the cobalt-catalyzed dehydrohalogenation offered unique transformations that are otherwise difficult to attain.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details, additional experimental data, and characterization data of products. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 75 publications.

    1. Chunyang Zhao, Chao Dong, Wenxuan Ma, Lili Shi, Dezhi Liu, Xiaoxuan Zhang, Zhoufeng Cui, Zhiwei Wang, Junkai Fu. Cobalt-Catalyzed Regiodivergent Heck-Type Reaction of Simple Unactivated Alkenes. ACS Catalysis 2024, 14 (19) , 14475-14485. https://doi.org/10.1021/acscatal.4c03917
    2. Sen Yang, Hao Hu, Ming Chen. Photoinduced Palladium-Catalyzed Regio- and Chemoselective Elimination of Primary Alkyl Bromides: A Mild Route to Synthesize Unactivated Terminal Olefins. Organic Letters 2023, 25 (44) , 7968-7973. https://doi.org/10.1021/acs.orglett.3c02980
    3. Sourav Sekhar Bera, Michal Szostak. Cobalt–N-Heterocyclic Carbene Complexes in Catalysis. ACS Catalysis 2022, 12 (5) , 3111-3137. https://doi.org/10.1021/acscatal.1c05869
    4. Huaibo Zhao, Alastair J. McMillan, Timothée Constantin, Rory C. Mykura, Fabio Juliá, Daniele Leonori. Merging Halogen-Atom Transfer (XAT) and Cobalt Catalysis to Override E2-Selectivity in the Elimination of Alkyl Halides: A Mild Route toward contra-Thermodynamic Olefins. Journal of the American Chemical Society 2021, 143 (36) , 14806-14813. https://doi.org/10.1021/jacs.1c06768
    5. Yang Liu, Simone Battaglioli, Lorenzo Lombardi, Arianna Menichetti, Giovanni Valenti, Marco Montalti, Marco Bandini. Visible-Light Photoredox Catalyzed Dehydrogenative Synthesis of Allylic Carboxylates from Styrenes. Organic Letters 2021, 23 (11) , 4441-4446. https://doi.org/10.1021/acs.orglett.1c01375
    6. Kang-Fei Hu, Xiao-Shan Ning, Jian-Ping Qu, Yan-Biao Kang. Tuning Regioselectivity of Wacker Oxidation in One Catalytic System: Small Change Makes Big Step. The Journal of Organic Chemistry 2018, 83 (18) , 11327-11332. https://doi.org/10.1021/acs.joc.8b01547
    7. Kimiaki Nakamura, Reina Hara, Yusuke Sunada, Takashi Nishikata. Radical-Organometallic Hybrid Reaction System Enabling Couplings between Tertiary-Alkyl Groups and 1-Alkenyl Groups. ACS Catalysis 2018, 8 (8) , 6791-6795. https://doi.org/10.1021/acscatal.8b01572
    8. Yu Yamane, Naoki Miwa, and Takashi Nishikata . Copper-Catalyzed Functionalized Tertiary-Alkylative Sonogashira Type Couplings via Copper Acetylide at Room Temperature. ACS Catalysis 2017, 7 (10) , 6872-6876. https://doi.org/10.1021/acscatal.7b02615
    9. Jeffrey M. Hammann, Lucie Thomas, Yi-Hung Chen, Diana Haas, and Paul Knochel . Cobalt-Catalyzed Cross-Couplings of Bench-Stable Alkynylzinc Pivalates with (Hetero)Aryl and Alkenyl Halides. Organic Letters 2017, 19 (14) , 3847-3850. https://doi.org/10.1021/acs.orglett.7b01722
    10. Maximilian S. Hofmayer, Jeffrey M. Hammann, Diana Haas, and Paul Knochel . Cobalt-Catalyzed C(sp2)–C(sp3) Cross-Coupling Reactions of Diarylmanganese Reagents with Secondary Alkyl Iodides. Organic Letters 2016, 18 (24) , 6456-6459. https://doi.org/10.1021/acs.orglett.6b03349
    11. Christopher B. Hansen, Richard F. Jordan, and Gregory L. Hillhouse . Protonolysis and Amide Exchange Reactions of a Three-Coordinate Cobalt Amide Complex Supported by an N-Heterocyclic Carbene Ligand. Inorganic Chemistry 2015, 54 (10) , 4603-4610. https://doi.org/10.1021/ic502670x
    12. Takashi Nishikata, Yushi Noda, Ryo Fujimoto, and Tomomi Sakashita . An Efficient Generation of a Functionalized Tertiary-Alkyl Radical for Copper-catalyzed Tertiary-Alkylative Mizoroki-Heck type Reaction. Journal of the American Chemical Society 2013, 135 (44) , 16372-16375. https://doi.org/10.1021/ja409661n
    13. Alex C. Bissember, Anna Levina, and Gregory C. Fu . A Mild, Palladium-Catalyzed Method for the Dehydrohalogenation of Alkyl Bromides: Synthetic and Mechanistic Studies. Journal of the American Chemical Society 2012, 134 (34) , 14232-14237. https://doi.org/10.1021/ja306323x
    14. Zhenbo Mo, Yuxue Li, Hung Kay Lee, and Liang Deng . Square-Planar Cobalt Complexes with Monodentate N-Heterocyclic Carbene Ligation: Synthesis, Structure, and Catalytic Application. Organometallics 2011, 30 (17) , 4687-4694. https://doi.org/10.1021/om200527y
    15. Shirong Lu, Tienan Jin, Ming Bao, and Yoshinori Yamamoto . Cobalt-Catalyzed Hydroalkylation of [60]Fullerene with Active Alkyl Bromides: Selective Synthesis of Monoalkylated Fullerenes. Journal of the American Chemical Society 2011, 133 (32) , 12842-12848. https://doi.org/10.1021/ja204982w
    16. Ke Gao and Naohiko Yoshikai. Regioselectivity-Switchable Hydroarylation of Styrenes. Journal of the American Chemical Society 2011, 133 (3) , 400-402. https://doi.org/10.1021/ja108809u
    17. Zhenhua Ding and Naohiko Yoshikai. Cobalt-Catalyzed Addition of Azoles to Alkynes. Organic Letters 2010, 12 (18) , 4180-4183. https://doi.org/10.1021/ol101777x
    18. Juan Urbano, Ataualpa A. C. Braga, Feliu Maseras, Eleuterio Álvarez, M. Mar Díaz-Requejo and Pedro J. Pérez . The Mechanism of the Catalytic Functionalization of Haloalkanes by Carbene Insertion: An Experimental and Theoretical Study. Organometallics 2009, 28 (20) , 5968-5981. https://doi.org/10.1021/om9006888
    19. Silvia Díez-González, Nicolas Marion and Steven P. Nolan . N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Chemical Reviews 2009, 109 (8) , 3612-3676. https://doi.org/10.1021/cr900074m
    20. Jeanne-Marie Bégouin and Corinne Gosmini . Cobalt-Catalyzed Cross-Coupling Between In Situ Prepared Arylzinc Halides and 2-Chloropyrimidine or 2-Chloropyrazine. The Journal of Organic Chemistry 2009, 74 (8) , 3221-3224. https://doi.org/10.1021/jo900240d
    21. Beatrice Lansbergen, Srija Tewari, Ireneusz Tomczyk, Maik Seemann, Henning Louis Buchholz, Mike Rippegarten, Daniel Chamier Cieminski, Fabio Juliá, Tobias Ritter. Reductive Cross‐Coupling of a Vinyl Thianthrenium Salt and Secondary Alkyl Iodides. Angewandte Chemie International Edition 2023, 62 (52) https://doi.org/10.1002/anie.202313659
    22. Beatrice Lansbergen, Srija Tewari, Ireneusz Tomczyk, Maik Seemann, Henning Louis Buchholz, Mike Rippegarten, Daniel Chamier Cieminski, Fabio Juliá, Tobias Ritter. Reductive Cross‐Coupling of a Vinyl Thianthrenium Salt and Secondary Alkyl Iodides. Angewandte Chemie 2023, 135 (52) https://doi.org/10.1002/ange.202313659
    23. Jie Han, Siyuan Liu, Huanan Wang, Jie Wang, Hui Qian, Zhiming Li, Shengming Ma, Junliang Zhang. Pd/Xu-Phos-catalyzed asymmetric elimination of fully substituted enol triflates into axially chiral trisubstituted allenes. Science Advances 2023, 9 (11) https://doi.org/10.1126/sciadv.adg1002
    24. Balaji D. Barve, Yao‐Haur Kuo, Wen‐Tai Li. Pd‐Catalyzed CH Functionalization Leading to Alkene Difunctionalization. 2022, 1-38. https://doi.org/10.1002/9783527834242.chf0012
    25. Y. Sumida, H. Ohmiya. 4.4.23.7 Silylmethyl Anions (Update 2022). 2022https://doi.org/10.1055/sos-SD-104-00799
    26. Julian G. West. A blueprint for green chemists: lessons from nature for sustainable synthesis. Pure and Applied Chemistry 2021, 93 (5) , 537-549. https://doi.org/10.1515/pac-2021-0107
    27. Kun-Quan Chen, Jie Shen, Zhi-Xiang Wang, Xiang-Yu Chen. A donor–acceptor complex enables the synthesis of E -olefins from alcohols, amines and carboxylic acids. Chemical Science 2021, 12 (19) , 6684-6690. https://doi.org/10.1039/D1SC01024G
    28. Ming‐Qing Tian, Zhen‐Yao Shen, Xuefei Zhao, Patrick J. Walsh, Xu‐Hong Hu. Iron‐Catalyzed Tertiary Alkylation of Terminal Alkynes with 1,3‐Diesters via a Functionalized Alkyl Radical. Angewandte Chemie 2021, 133 (17) , 9792-9797. https://doi.org/10.1002/ange.202100641
    29. Ming‐Qing Tian, Zhen‐Yao Shen, Xuefei Zhao, Patrick J. Walsh, Xu‐Hong Hu. Iron‐Catalyzed Tertiary Alkylation of Terminal Alkynes with 1,3‐Diesters via a Functionalized Alkyl Radical. Angewandte Chemie International Edition 2021, 60 (17) , 9706-9711. https://doi.org/10.1002/anie.202100641
    30. Songgen Xu, Guixia Liu, Zheng Huang. Iron Catalyzed Isomerization of α‐Alkyl Styrenes to Access Trisubstituted Alkenes. Chinese Journal of Chemistry 2021, 39 (3) , 585-589. https://doi.org/10.1002/cjoc.202000492
    31. Radha Bam, Alexandros S. Pollatos, Austin J. Moser, Julian G. West. Mild olefin formation via bio-inspired vitamin B 12 photocatalysis. Chemical Science 2021, 12 (5) , 1736-1744. https://doi.org/10.1039/D0SC05925K
    32. Aleksandra Piontek, Wioletta Ochędzan‐Siodłak, Elwira Bisz, Michal Szostak. Cobalt−NHC Catalyzed C(sp 2 )−C(sp 3 ) and C(sp 2 )−C(sp 2 ) Kumada Cross‐Coupling of Aryl Tosylates with Alkyl and Aryl Grignard Reagents. ChemCatChem 2021, 13 (1) , 202-206. https://doi.org/10.1002/cctc.202001347
    33. M. Beller. dehydrohalogenation. 2020https://doi.org/10.1002/9783527809080.cataz04939
    34. Biao‐Lin Jiang, Shuang‐Shuang Ma, Meng‐Liang Wang, Dian‐Sheng Liu, Bao‐Hua Xu, Suo‐Jiang Zhang. Cobalt‐Catalyzed Chemoselective Transfer Hydrogenation of C=C and C=O Bonds with Alkanols. ChemCatChem 2019, 11 (6) , 1701-1706. https://doi.org/10.1002/cctc.201900010
    35. Keisuke Uchida, Suguru Yoshida, Takamitsu Hosoya. Synthetic Aryne Chemistry toward Multicomponent Coupling. Journal of Synthetic Organic Chemistry, Japan 2019, 77 (2) , 145-162. https://doi.org/10.5059/yukigoseikyokaishi.77.145
    36. Jun‐ichi Fukuda, Keisuke Nogi, Hideki Yorimitsu. Cobalt‐Catalyzed Reduction of Aryl Sulfones to Arenes by Means of Alkylmagnesium Reagents. Asian Journal of Organic Chemistry 2018, 7 (10) , 2049-2052. https://doi.org/10.1002/ajoc.201800473
    37. Richard C. Larock, Gilson Zeni. Formation of Alkenes by Elimination. 2018, 1-74. https://doi.org/10.1002/9781118662083.cot02-002
    38. Qiao Sun, Naohiko Yoshikai. Cobalt-catalyzed C(sp 2 )–H/C(sp 3 )–H coupling via directed C–H activation and 1,5-hydrogen atom transfer. Organic Chemistry Frontiers 2018, 5 (4) , 582-585. https://doi.org/10.1039/C7QO00906B
    39. Santu Biswas, Anup Pramanik, Pranab Sarkar. Computational studies on the mechanism and selectivity of Al8O12 nanocluster for different elimination reactions. Structural Chemistry 2017, 28 (6) , 1895-1906. https://doi.org/10.1007/s11224-017-0974-3
    40. Jiefeng Hu, Minyan Wang, Xinghui Pu, Zhuangzhi Shi. Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms14993
    41. Yu Nakamura, Suguru Yoshida, Takamitsu Hosoya. Facile Synthesis of Phthalides from Methyl ortho -Iodobenzoates and Ketones via an Iodine–Magnesium Exchange Reaction Using a Silylmethyl Grignard Reagent. Chemistry Letters 2017, 46 (6) , 858-861. https://doi.org/10.1246/cl.170211
    42. Suguru Yoshida, Akira Nagai, Keisuke Uchida, Takamitsu Hosoya. Enhancing the Synthetic Utility of 3-Haloaryne Intermediates by Their Efficient Generation from Readily Synthesizable ortho -Iodoaryl Triflate-type Precursors. Chemistry Letters 2017, 46 (5) , 733-736. https://doi.org/10.1246/cl.170136
    43. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Grignard Reagents/Cobalt( II ) Salts. 2017https://doi.org/10.1002/9780471264194.fos11502.pub5
    44. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Grignard Reagents/Cobalt( II ) Salts. 2017https://doi.org/10.1002/9780471264194.fos11502.pub6
    45. Yulei Wang, Chuan Qin, Xiangqing Jia, Xuebing Leng, Zheng Huang. An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1‐Alkenes to trans ‐2‐Alkenes. Angewandte Chemie 2017, 129 (6) , 1636-1640. https://doi.org/10.1002/ange.201611007
    46. Yulei Wang, Chuan Qin, Xiangqing Jia, Xuebing Leng, Zheng Huang. An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1‐Alkenes to trans ‐2‐Alkenes. Angewandte Chemie International Edition 2017, 56 (6) , 1614-1618. https://doi.org/10.1002/anie.201611007
    47. Hidemasa Hikawa, Yukiko Ijichi, Shoko Kikkawa, Isao Azumaya. Cobalt(II)/TPPMS‐Catalyzed Dehydrative Nucleophilic Substitution of Alcohols in Water. European Journal of Organic Chemistry 2017, 2017 (3) , 465-468. https://doi.org/10.1002/ejoc.201601501
    48. Ming Hu, Ren-Jie Song, Xuan-Hui Ouyang, Fang-Lin Tan, Wen-Ting Wei, Jin-Heng Li. Copper-catalyzed oxidative [2+2+1] annulation of 1,n-enynes with α-carbonyl alkyl bromides through C–Br/C–H functionalization. Chemical Communications 2016, 52 (16) , 3328-3331. https://doi.org/10.1039/C5CC10132H
    49. Ran Ding, Zhi-Dao Huang, Zheng-Li Liu, Tian-Xiang Wang, Yun-He Xu, Teck-Peng Loh. Palladium-catalyzed cross-coupling of enamides with sterically hindered α-bromocarbonyls. Chemical Communications 2016, 52 (32) , 5617-5620. https://doi.org/10.1039/C5CC10653B
    50. Suguru Yoshida, Keisuke Uchida, Takamitsu Hosoya. Generation of Arynes Using Trimethylsilylmethyl Grignard Reagent for Activation of ortho -Iodoaryl or ortho -Sulfinylaryl Triflates. Chemistry Letters 2015, 44 (5) , 691-693. https://doi.org/10.1246/cl.150060
    51. Jian‐Hong Fan, Wen‐Ting Wei, Ming‐Bo Zhou, Ren‐Jie Song, Jin‐Heng Li. Palladium‐Catalyzed Oxidative Difunctionalization of Alkenes with α‐Carbonyl Alkyl Bromides Initiated through a Heck‐type Insertion: A Route to Indolin‐2‐ones. Angewandte Chemie 2014, 126 (26) , 6768-6772. https://doi.org/10.1002/ange.201402893
    52. Jian‐Hong Fan, Wen‐Ting Wei, Ming‐Bo Zhou, Ren‐Jie Song, Jin‐Heng Li. Palladium‐Catalyzed Oxidative Difunctionalization of Alkenes with α‐Carbonyl Alkyl Bromides Initiated through a Heck‐type Insertion: A Route to Indolin‐2‐ones. Angewandte Chemie International Edition 2014, 53 (26) , 6650-6654. https://doi.org/10.1002/anie.201402893
    53. Suguru Yoshida, Keisuke Uchida, Kazunobu Igawa, Katsuhiko Tomooka, Takamitsu Hosoya. An efficient generation method and remarkable reactivities of 3-triflyloxybenzyne. Chem. Commun. 2014, 50 (95) , 15059-15062. https://doi.org/10.1039/C4CC07058E
    54. Suguru Yoshida, Takako Nonaka, Takamoto Morita, Takamitsu Hosoya. Modular synthesis of bis- and tris-1,2,3-triazoles by permutable sequential azide–aryne and azide–alkyne cycloadditions. Org. Biomol. Chem. 2014, 12 (38) , 7489-7493. https://doi.org/10.1039/C4OB01654H
    55. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Grignard Reagents/Cobalt( II ) Salts. 2013, 302-302. https://doi.org/10.1002/9780471264194.fos11502.pub4
    56. Kouki Matsubara, Aya Kumamoto, Hitomi Yamamoto, Yuji Koga, Satoshi Kawata. Synthesis and structure of cobalt(II) iodide bearing a bulky N-heterocyclic carbene ligand, and catalytic activation of bromoalkanes. Journal of Organometallic Chemistry 2013, 727 , 44-49. https://doi.org/10.1016/j.jorganchem.2012.12.025
    57. Kouki Matsubara, Tsukasa Sueyasu, Mariko Esaki, Aya Kumamoto, Shinya Nagao, Hitomi Yamamoto, Yuji Koga, Satoshi Kawata, Taisuke Matsumoto. Cobalt(II) Complexes Bearing a Bulky N‐Heterocyclic Carbene for Catalysis of Kumada–Tamao–Corriu Cross‐Coupling Reactions of Aryl Halides. European Journal of Inorganic Chemistry 2012, 2012 (18) , 3079-3086. https://doi.org/10.1002/ejic.201200095
    58. Hideki Yorimitsu. Transition Metals and Radicals. 2012https://doi.org/10.1002/9781119953678.rad030
    59. V. Tamara Perchyonok. Radicals and Transition-metal Catalysis: a Complementary Solution to Increase Reactivity and Selectivity in Organic Chemistry*. 2011, 296-308. https://doi.org/10.1039/9781839169052-00296
    60. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Grignard Reagents/Cobalt( II ) Salts. 2011, 302-302. https://doi.org/10.1002/9780471264194.fos11502.pub3
    61. Tsuneyuki Kobayashi, Hideki Yorimitsu, Koichiro Oshima. Cobalt‐Catalyzed Addition of Styrylboronic Acids to 2‐Vinylpyridine Derivatives. Chemistry – An Asian Journal 2011, 6 (2) , 669-673. https://doi.org/10.1002/asia.201000275
    62. Gerald Pratsch, Markus R. Heinrich. Modern Developments in Aryl Radical Chemistry. 2011, 33-59. https://doi.org/10.1007/128_2011_127
    63. Ullrich Jahn. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? – A Fruitful Interplay Anyway. 2011, 191-322. https://doi.org/10.1007/128_2011_285
    64. Kei Murakami, Hideki Yorimitsu, Koichiro Oshima. Synthesis of Tetraorganosilanes: (Chloromethyl)Dimethylphenylsilane. 2010, 178-183. https://doi.org/10.1002/0471264229.os087.19
    65. Vincent César, Lutz H. Gade, Stéphane Bellemin-Laponnaz. NHC–Cobalt, Rhodium and Iridium Complexes in Catalysis. 2010, 228-251. https://doi.org/10.1039/9781849732161-00228
    66. Elena Mas-Marzá, Michael J. Page, Michael K. Whittlesey. N-Heterocyclic Carbene Complexes in Dehalogenation Reactions. 2010, 207-216. https://doi.org/10.1007/978-90-481-2866-2_8
    67. Jeanne-Marie Begouin, Michael Rivard, Corinne Gosmini. Cobalt-catalyzed C–SMe bond activation of heteroaromatic thioethers. Chemical Communications 2010, 46 (32) , 5972. https://doi.org/10.1039/c0cc01055c
    68. Shan-Yong Chen, Ji Zhang, Ying-Hao Li, Jun Wen, Shao-Quan Bian, Xiao-Qi Yu. Cobalt-catalyzed homo-coupling of aryl and alkenyl bromide using atmospheric oxygen as oxidant. Tetrahedron Letters 2009, 50 (49) , 6795-6797. https://doi.org/10.1016/j.tetlet.2009.09.092
    69. Leigh Ford, Ullrich Jahn. Radikale und Übergangsmetallkatalyse – eine Allianz par excellence zur Steigerung von Reaktivität und Selektivität in der organischen Chemie. Angewandte Chemie 2009, 121 (35) , 6504-6507. https://doi.org/10.1002/ange.200901761
    70. Leigh Ford, Ullrich Jahn. Radicals and Transition‐Metal Catalysis: An Alliance Par Excellence to Increase Reactivity and Selectivity in Organic Chemistry. Angewandte Chemie International Edition 2009, 48 (35) , 6386-6389. https://doi.org/10.1002/anie.200901761
    71. Tsuneyuki Kobayashi, Hideki Yorimitsu, Koichiro Oshima. Cobalt‐Catalyzed Isomerization of 1‐Alkenes to ( E )‐2‐Alkenes with Dimethylphenylsilylmethylmagnesium Chloride and Its Application to the Stereoselective Synthesis of ( E )‐Alkenylsilanes. Chemistry – An Asian Journal 2009, 4 (7) , 1078-1083. https://doi.org/10.1002/asia.200900111
    72. Tsuneyuki Kobayashi, Hirohisa Ohmiya, Hideki Yorimitsu, Koichiro Oshima. ChemInform Abstract: Cobalt‐Catalyzed Regioselective Dehydrohalogenation of Alkyl Halides with Dimethylphenylsilylmethylmagnesium Chloride.. ChemInform 2009, 40 (1) https://doi.org/10.1002/chin.200901039
    73. Anaïs Geny, Sophie Gaudrel, Franck Slowinski, Muriel Amatore, Gaëlle Chouraqui, Max Malacria, Corinne Aubert, Vincent Gandon. A Straightforward Procedure for the [2+2+2] Cycloaddition of Enediynes. Advanced Synthesis & Catalysis 2009, 351 (1-2) , 271-275. https://doi.org/10.1002/adsc.200800646
    74. Martin B. Smith. Cobalt, rhodium and iridium. Annual Reports Section "A" (Inorganic Chemistry) 2009, 105 , 233. https://doi.org/10.1039/b818262k
    75. Hiroyuki Hamaguchi, Minoru Uemura, Hiroto Yasui, Hideki Yorimitsu, Koichiro Oshima. Cobalt-catalyzed Cross-coupling Reactions of Aryl Bromides with Alkyl Grignard Reagents. Chemistry Letters 2008, 37 (11) , 1178-1179. https://doi.org/10.1246/cl.2008.1178

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 34, 11276–11277
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja804277x
    Published July 31, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    4029

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.