ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Crystal Structures of Cyclohexanone Monooxygenase Reveal Complex Domain Movements and a Sliding Cofactor

View Author Information
Departments of Biochemistry and Microbiology & Immunology, McGill University, 3649 Prom Sir William Osler, Bellini Pavilion, Room 466, Montreal, QC, Canada H3G 0B1, Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P 2R2, Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan, and Process Technology Research Laboratories, Daiichi Sankyo Co. Ltd, Kasai R&D Center, 1-16-13, Kitakasai Edogawa-ku, Tokyo 134-8630, Japan
†McGill University.
‡National Research Council Canada.
§Kansai University.
∥Daiichi Sankyo Co. Ltd.
Cite this: J. Am. Chem. Soc. 2009, 131, 25, 8848–8854
Publication Date (Web):April 22, 2009
https://doi.org/10.1021/ja9010578
Copyright © 2009 American Chemical Society

    Article Views

    4280

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (3)»

    Abstract

    Abstract Image

    Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer−Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O2 as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP+ in two distinct states, to resolutions of 2.3 and 2.2 Å. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer−Villiger oxidation.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Cloning, overexpression, purification, mutagenesis, and substrate profiling of CHMO. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 143 publications.

    1. Andrea M. Chánique, Nakia Polidori, Lucija Sovic, Daniel Kracher, Leen Assil-Companioni, Philipp Galuska, Loreto P. Parra, Karl Gruber, Robert Kourist. A Cold-Active Flavin-Dependent Monooxygenase from Janthinobacterium svalbardensis Unlocks Applications of Baeyer–Villiger Monooxygenases at Low Temperature. ACS Catalysis 2023, 13 (6) , 3549-3562. https://doi.org/10.1021/acscatal.2c05160
    2. Hannah Valentino, Pablo Sobrado. Characterization of a Nitro-Forming Enzyme Involved in Fosfazinomycin Biosynthesis. Biochemistry 2021, 60 (38) , 2851-2864. https://doi.org/10.1021/acs.biochem.1c00512
    3. Sarah Maxel, Samer Saleh, Edward King, Derek Aspacio, Linyue Zhang, Ray Luo, Han Li. Growth-Based, High-Throughput Selection for NADH Preference in an Oxygen-Dependent Biocatalyst. ACS Synthetic Biology 2021, 10 (9) , 2359-2370. https://doi.org/10.1021/acssynbio.1c00258
    4. Xiaoqi Ji, Jiajia Tu, Yongxiang Song, Chunyan Zhang, Liyan Wang, Qinglian Li, Jianhua Ju. A Luciferase-Like Monooxygenase and Flavin Reductase Pair AbmE2/AbmZ Catalyzes Baeyer–Villiger Oxidation in Neoabyssomicin Biosynthesis. ACS Catalysis 2020, 10 (4) , 2591-2595. https://doi.org/10.1021/acscatal.9b05488
    5. Maximilian J. L. J. Fürst, Alejandro Gran-Scheuch, Friso S. Aalbers, Marco W. Fraaije. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catalysis 2019, 9 (12) , 11207-11241. https://doi.org/10.1021/acscatal.9b03396
    6. Yan Zhang, Yin-Qi Wu, Na Xu, Qian Zhao, Hui-Lei Yu, Jian-He Xu. Engineering of Cyclohexanone Monooxygenase for the Enantioselective Synthesis of (S)-Omeprazole. ACS Sustainable Chemistry & Engineering 2019, 7 (7) , 7218-7226. https://doi.org/10.1021/acssuschemeng.9b00224
    7. Maximilian J. L. J. Fürst, Elvira Romero, J. Rúben Gómez Castellanos, Marco W. Fraaije, Andrea Mattevi. Side-Chain Pruning Has Limited Impact on Substrate Preference in a Promiscuous Enzyme. ACS Catalysis 2018, 8 (12) , 11648-11656. https://doi.org/10.1021/acscatal.8b03793
    8. Giovanni Bistoni, Iakov Polyak, Manuel Sparta, Walter Thiel, Frank Neese. Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory. Journal of Chemical Theory and Computation 2018, 14 (7) , 3524-3531. https://doi.org/10.1021/acs.jctc.8b00348
    9. Hanan L. Messiha, Syed T. Ahmed, Vijaykumar Karuppiah, Reynier Suardíaz, Gabriel A. Ascue Avalos, Natalie Fey, Stephen Yeates, Helen S. Toogood, Adrian J. Mulholland, Nigel S. Scrutton. Biocatalytic Routes to Lactone Monomers for Polymer Production. Biochemistry 2018, 57 (13) , 1997-2008. https://doi.org/10.1021/acs.biochem.8b00169
    10. Elvira Romero, J. Rubén Gómez Castellanos, Giovanni Gadda, Marco W. Fraaije, Andrea Mattevi. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chemical Reviews 2018, 118 (4) , 1742-1769. https://doi.org/10.1021/acs.chemrev.7b00650
    11. Hugo L. van Beek, Elvira Romero, and Marco W. Fraaije . Engineering Cyclohexanone Monooxygenase for the Production of Methyl Propanoate. ACS Chemical Biology 2017, 12 (1) , 291-299. https://doi.org/10.1021/acschembio.6b00965
    12. Ke Chen, Shiwen Wu, Lu Zhu, Chengde Zhang, Wensheng Xiang, Zixin Deng, Haruo Ikeda, David E. Cane, and Dongqing Zhu . Substitution of a Single Amino Acid Reverses the Regiospecificity of the Baeyer–Villiger Monooxygenase PntE in the Biosynthesis of the Antibiotic Pentalenolactone. Biochemistry 2016, 55 (48) , 6696-6704. https://doi.org/10.1021/acs.biochem.6b01040
    13. Yangyang Zhao, Guoliang Qian, Yonghao Ye, Stephen Wright, Haotong Chen, Yuemao Shen, Fengquan Liu, and Liangcheng Du . Heterocyclic Aromatic N-Oxidation in the Biosynthesis of Phenazine Antibiotics from Lysobacter antibioticus. Organic Letters 2016, 18 (10) , 2495-2498. https://doi.org/10.1021/acs.orglett.6b01089
    14. Adam G. Newman and Craig A. Townsend . Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae. Journal of the American Chemical Society 2016, 138 (12) , 4219-4228. https://doi.org/10.1021/jacs.6b00633
    15. Kathleen Balke, Sandy Schmidt, Maika Genz, and Uwe T. Bornscheuer . Switching the Regioselectivity of a Cyclohexanone Monooxygenase toward (+)-trans-Dihydrocarvone by Rational Protein Design. ACS Chemical Biology 2016, 11 (1) , 38-43. https://doi.org/10.1021/acschembio.5b00723
    16. Brahm J. Yachnin, Michelle B. McEvoy, Roderick J. D. MacCuish, Krista L. Morley, Peter C. K. Lau, and Albert M. Berghuis . Lactone-Bound Structures of Cyclohexanone Monooxygenase Provide Insight into the Stereochemistry of Catalysis. ACS Chemical Biology 2014, 9 (12) , 2843-2851. https://doi.org/10.1021/cb500442e
    17. Jeremy W. Setser, John R. Heemstra, Jr., Christopher T. Walsh, and Catherine L. Drennan . Crystallographic Evidence of Drastic Conformational Changes in the Active Site of a Flavin-Dependent N-Hydroxylase. Biochemistry 2014, 53 (38) , 6063-6077. https://doi.org/10.1021/bi500655q
    18. Christian Martinoli, Hanna M. Dudek, Roberto Orru, Dale E. Edmondson, Marco W. Fraaije, and Andrea Mattevi . Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer–Villiger Oxygenation Reaction. ACS Catalysis 2013, 3 (12) , 3058-3062. https://doi.org/10.1021/cs400837z
    19. Mary A. Bosserman, Theresa Downey, Nicholas Noinaj, Susan K. Buchanan, and Jürgen Rohr . Molecular Insight into Substrate Recognition and Catalysis of Baeyer–Villiger Monooxygenase MtmOIV, the Key Frame-Modifying Enzyme in the Biosynthesis of Anticancer Agent Mithramycin. ACS Chemical Biology 2013, 8 (11) , 2466-2477. https://doi.org/10.1021/cb400399b
    20. Iakov Polyak, Manfred T. Reetz, and Walter Thiel . Quantum Mechanical/Molecular Mechanical Study on the Enantioselectivity of the Enzymatic Baeyer–Villiger Reaction of 4-Hydroxycyclohexanone. The Journal of Physical Chemistry B 2013, 117 (17) , 4993-5001. https://doi.org/10.1021/jp4018019
    21. Richa Dhatwalia, Harkewal Singh, Luis M. Solano, Michelle Oppenheimer, Reeder M. Robinson, Jacob F. Ellerbrock, Pablo Sobrado, and John J. Tanner . Identification of the NAD(P)H Binding Site of Eukaryotic UDP-Galactopyranose Mutase. Journal of the American Chemical Society 2012, 134 (43) , 18132-18138. https://doi.org/10.1021/ja308188z
    22. Brahm J. Yachnin, Tara Sprules, Michelle B. McEvoy, Peter C. K. Lau, and Albert M. Berghuis . The Substrate-Bound Crystal Structure of a Baeyer–Villiger Monooxygenase Exhibits a Criegee-like Conformation. Journal of the American Chemical Society 2012, 134 (18) , 7788-7795. https://doi.org/10.1021/ja211876p
    23. Iakov Polyak, Manfred T. Reetz, and Walter Thiel . Quantum Mechanical/Molecular Mechanical Study on the Mechanism of the Enzymatic Baeyer–Villiger Reaction. Journal of the American Chemical Society 2012, 134 (5) , 2732-2741. https://doi.org/10.1021/ja2103839
    24. Hannes Leisch, Krista Morley, and Peter C. K. Lau . Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chemical Reviews 2011, 111 (7) , 4165-4222. https://doi.org/10.1021/cr1003437
    25. Peter C. K. Lau Hannes Leisch Brahm J. Yachnin I. Ahmad Mirza Albert M. Berghuis Hiroaki Iwaki Yoshie Hasegawa . Sustained Development in Baeyer-Villiger Biooxidation Technology. 2010, 343-372. https://doi.org/10.1021/bk-2010-1043.ch024
    26. Manfred T. Reetz and Sheng Wu. Laboratory Evolution of Robust and Enantioselective Baeyer−Villiger Monooxygenases for Asymmetric Catalysis. Journal of the American Chemical Society 2009, 131 (42) , 15424-15432. https://doi.org/10.1021/ja906212k
    27. Jiaoyang Jiang, Charles N. Tetzlaff, Satoshi Takamatsu, Masato Iwatsuki, Mamoru Komatsu, Haruo Ikeda and David E. Cane . Genome Mining in Streptomyces avermitilis: A Biochemical Baeyer−Villiger Reaction and Discovery of a New Branch of the Pentalenolactone Family Tree. Biochemistry 2009, 48 (27) , 6431-6440. https://doi.org/10.1021/bi900766w
    28. Yinqi Wu, Qianqian Chen, Qi Chen, Qiang Geng, Qiaoyu Zhang, Yu-Cong Zheng, Chen Zhao, Yan Zhang, Jiahai Zhou, Binju Wang, Jian-He Xu, Hui-Lei Yu. Precise regulation of the substrate selectivity of Baeyer-Villiger monooxygenase to minimize overoxidation of prazole sulfoxides. Chinese Journal of Catalysis 2023, 51 , 157-167. https://doi.org/10.1016/S1872-2067(23)64482-1
    29. Simon Gäfe, Hartmut H. Niemann. Structural basis of regioselective tryptophan dibromination by the single-component flavin-dependent halogenase AetF. Acta Crystallographica Section D Structural Biology 2023, 79 (7) , 596-609. https://doi.org/10.1107/S2059798323004254
    30. Zohre Kurt, Yi Qu, Jim C. Spain. Novel catabolic pathway for 4-Nitroaniline in a Rhodococcus sp. strain JS360. Journal of Hazardous Materials 2023, 454 , 131473. https://doi.org/10.1016/j.jhazmat.2023.131473
    31. Kirill Kopylov, Evgeny Kirilin, Vytas Švedas. Conformational transitions induced by NADH binding promote reduction half-reaction in 2-hydroxybiphenyl-3-monooxygenase catalytic cycle. Biochemical and Biophysical Research Communications 2023, 639 , 77-83. https://doi.org/10.1016/j.bbrc.2022.11.066
    32. Panu Pimviriyakul, Pimchai Chaiyen. Formation and stabilization of C4a‐hydroperoxy‐ FAD by the Arg/Asn pair in HadA monooxygenase. The FEBS Journal 2023, 290 (1) , 176-195. https://doi.org/10.1111/febs.16591
    33. A. R. Lopes, E. Bunin, A. T. Viana, H. Froufe, A. Muñoz-Merida, D. Pinho, J. Figueiredo, C. Barroso, I. Vaz-Moreira, X. Bellanger, C. Egas, O. C. Nunes. In silico prediction of the enzymes involved in the degradation of the herbicide molinate by Gulosibacter molinativorax ON4T. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-18732-5
    34. Alina Nastke, Harald Gröger. Biocatalytic Synthesis of Heterocycles. 2022, 159-214. https://doi.org/10.1002/9783527832002.ch6
    35. Chandrakant Sahu, Pooja A. Chawla. Baeyer–Villiger Monooxygenases (BVMOs) as Biocatalysts. SynOpen 2022, 06 (03) , 195-197. https://doi.org/10.1055/s-0042-1751359
    36. Xinqi Xu, Yajiao Zhang, Shaoyu Wang, Lian Xu, Bingmei Su, Lichao Wang, Juan Lin. “Nonpolarity paving” in substrate tunnel of a Limnobacter sp. Phenylacetone monooxygenase for efficient single whole-cell synthesis of esomeprazole. Bioorganic Chemistry 2022, 125 , 105867. https://doi.org/10.1016/j.bioorg.2022.105867
    37. Peter D. Newell, Leticia M. Preciado, Christopher G. Murphy, . A Functional Analysis of the Purine Salvage Pathway in Acetobacter fabarum. Journal of Bacteriology 2022, 204 (7) https://doi.org/10.1128/jb.00041-22
    38. Huan Yue, Amanda Lynn Miller, Vimmy Khetrapal, Vishakha Jayaseker, Stephen Wright, Liangcheng Du. Biosynthesis, regulation, and engineering of natural products from Lysobacter. Natural Product Reports 2022, 39 (4) , 842-874. https://doi.org/10.1039/D1NP00063B
    39. Ye Rin Yoon, Yu-Sin Jang. Potential of Baeyer-Villiger monooxygenases as an enzyme for polyethylene decomposition. Journal of Applied Biological Chemistry 2021, 64 (4) , 433-438. https://doi.org/10.3839/jabc.2021.058
    40. Andrew Willetts. The Isoenzymic Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453—An Episodic History and Still Mysterious after 60 Years. Microorganisms 2021, 9 (12) , 2593. https://doi.org/10.3390/microorganisms9122593
    41. Caroline E. Paul, Daniel Eggerichs, Adrie H. Westphal, Dirk Tischler, Willem J.H. van Berkel. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnology Advances 2021, 51 , 107712. https://doi.org/10.1016/j.biotechadv.2021.107712
    42. Bina K. Singh, Rupam Biswas, Amit Basak, Amit K. Das. Mycobacterial crypto-AcpM as a tool to investigate the consequence of drug binding on its key FAS II partner enzyme HadAB. Biochimica et Biophysica Acta (BBA) - General Subjects 2021, 1865 (10) , 129964. https://doi.org/10.1016/j.bbagen.2021.129964
    43. Pammidimarri D. V. N. Sudheer, Sushma Chauhan, Wooyoung Jeon, Jung-Oh Ahn, Kwon-Young Choi. Monooxygenase-mediated cascade oxidation of fatty acids for the production of biopolymer building blocks. Biomass Conversion and Biorefinery 2021, 60 https://doi.org/10.1007/s13399-021-01991-z
    44. Lisa Bretschneider, Ingeborg Heuschkel, Afaq Ahmed, Katja Bühler, Rohan Karande, Bruno Bühler. Characterization of different biocatalyst formats for BVMO‐catalyzed cyclohexanone oxidation. Biotechnology and Bioengineering 2021, 118 (7) , 2719-2733. https://doi.org/10.1002/bit.27791
    45. Taisei Yamamoto, Kento Kobayashi, Yoshie Hasegawa, Hiroaki Iwaki. Cloning, expression, and characterization of Baeyer–Villiger monooxygenases from eukaryotic Exophiala jeanselmei strain KUFI-6N. Bioscience, Biotechnology, and Biochemistry 2021, 85 (7) , 1675-1685. https://doi.org/10.1093/bbb/zbab079
    46. Marta Hammerstad, Hans-Petter Hersleth. Overview of structurally homologous flavoprotein oxidoreductases containing the low Mr thioredoxin reductase-like fold – A functionally diverse group. Archives of Biochemistry and Biophysics 2021, 702 , 108826. https://doi.org/10.1016/j.abb.2021.108826
    47. Renata A.G. Reis, Hao Li, Maxim Johnson, Pablo Sobrado. New frontiers in flavin-dependent monooxygenases. Archives of Biochemistry and Biophysics 2021, 699 , 108765. https://doi.org/10.1016/j.abb.2021.108765
    48. Shi‐Miao Ren, Feng Liu, Yin‐Qi Wu, Qi Chen, Zhi‐jun Zhang, Hui‐Lei Yu, Jian‐He Xu. Identification two key residues at the intersection of domains of a thioether monooxygenase for improving its sulfoxidation performance. Biotechnology and Bioengineering 2021, 118 (2) , 737-744. https://doi.org/10.1002/bit.27604
    49. André Leonardo Patrício Silva, Taiza Nayara da Silva Caridade, Renata Rodrigues Magalhães, Kelly Teotonio de Sousa, Christian Carlos de Sousa, Juliana Alves Vale. Biocatalytic production of Ɛ-caprolactone using Geotrichum candidum cells immobilized on functionalized silica. Applied Microbiology and Biotechnology 2020, 104 (20) , 8887-8895. https://doi.org/10.1007/s00253-020-10875-7
    50. Yujing Hu, Weihua Xu, Chenggong Hui, Jian Xu, Meilan Huang, Xianfu Lin, Qi Wu. The mutagenesis of a single site for enhancing or reversing the enantio- or regiopreference of cyclohexanone monooxygenases. Chemical Communications 2020, 56 (65) , 9356-9359. https://doi.org/10.1039/D0CC03721D
    51. Sarah Maxel, Linyue Zhang, Edward King, Ana Paula Acosta, Ray Luo, Han Li. In Vivo, High-Throughput Selection of Thermostable Cyclohexanone Monooxygenase (CHMO). Catalysts 2020, 10 (8) , 935. https://doi.org/10.3390/catal10080935
    52. Vinicius Carius de Souza, Deborah Antunes, Lucianna H.S. Santos, Priscila Vanessa Zabala Capriles Goliatt, Ernesto Raul Caffarena, Ana Carolina Ramos Guimarães, Teca Calcagno Galvão. Insights into the Mechanism of Ethionamide Resistance in Mycobacterium tuberculosis through an in silico Structural Evaluation of EthA and Mutants Identified in Clinical Isolates. Catalysts 2020, 10 (5) , 543. https://doi.org/10.3390/catal10050543
    53. Carmien Tolmie, Rodolpho do Aido-Machado, Felix Martin Ferroni, Martha Sophia Smit, Diederik Johannes Opperman. Natural Variation in the ‘Control Loop’ of BVMOAFL210 and Its Influence on Regioselectivity and Sulfoxidation. Catalysts 2020, 10 (3) , 339. https://doi.org/10.3390/catal10030339
    54. Sandy Schmidt, Uwe T. Bornscheuer. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. 2020, 231-281. https://doi.org/10.1016/bs.enz.2020.05.007
    55. Maximilian JLJ Fürst, Filippo Fiorentini, Marco W Fraaije. Beyond active site residues: overall structural dynamics control catalysis in flavin-containing and heme-containing monooxygenases. Current Opinion in Structural Biology 2019, 59 , 29-37. https://doi.org/10.1016/j.sbi.2019.01.019
    56. Yujing Hu, Jian Xu, Yixin Cen, Danyang Li, Yu Zhang, Meilan Huang, Xianfu Lin, Qi Wu. Customizing the Enantioselectivity of a Cyclohexanone Monooxygenase by a Strategy Combining “Size‐Probes” with in silico Study. ChemCatChem 2019, 11 (20) , 5085-5092. https://doi.org/10.1002/cctc.201901200
    57. Maximilian J. L. J. Fürst, Marjon Boonstra, Selle Bandstra, Marco W. Fraaije. Stabilization of cyclohexanone monooxygenase by computational and experimental library design. Biotechnology and Bioengineering 2019, 116 (9) , 2167-2177. https://doi.org/10.1002/bit.27022
    58. Jennifer Engel, Katlego S. Mthethwa, Diederik J. Opperman, Selin Kara. Characterization of new Baeyer-Villiger monooxygenases for lactonizations in redox-neutral cascades. Molecular Catalysis 2019, 468 , 44-51. https://doi.org/10.1016/j.mcat.2019.02.006
    59. Tien Duc Nguyen, Go-Eun Choi, Do-Heon Gu, Pil-Won Seo, Ji-Won Kim, Jin-Byung Park, Jeong-Sun Kim. Structural basis for the selective addition of an oxygen atom to cyclic ketones by Baeyer-Villiger monooxygenase from Parvibaculum lavamentivorans. Biochemical and Biophysical Research Communications 2019, 512 (3) , 564-570. https://doi.org/10.1016/j.bbrc.2019.03.114
    60. Leticia C. P. Gonçalves, Hamid R. Mansouri, Erick L. Bastos, Mohamed Abdellah, Bruna S. Fadiga, Jacinto Sá, Florian Rudroff, Marko D. Mihovilovic. Morpholine-based buffers activate aerobic photobiocatalysis via spin correlated ion pair formation. Catalysis Science & Technology 2019, 9 (6) , 1365-1371. https://doi.org/10.1039/C8CY02524J
    61. Carmien Tolmie, Martha S. Smit, Diederik J. Opperman. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Natural Product Reports 2019, 36 (2) , 326-353. https://doi.org/10.1039/C8NP00054A
    62. Andrew Willetts. Characterised Flavin-Dependent Two-Component Monooxygenases from the CAM Plasmid of Pseudomonas putida ATCC 17453 (NCIMB 10007): ketolactonases by Another Name. Microorganisms 2019, 7 (1) , 1. https://doi.org/10.3390/microorganisms7010001
    63. Osei Boakye Fordwour, Kirsten R. Wolthers. Active site arginine controls the stereochemistry of hydride transfer in cyclohexanone monooxygenase. Archives of Biochemistry and Biophysics 2018, 659 , 47-56. https://doi.org/10.1016/j.abb.2018.09.025
    64. Duanne Alves da Silva, Nicole Victor Ferreira, Amanda Mendes Rego, Pamela Chrystina Pinto Barbosa, Rodrigo Fernandes Machado, Alessandra Pimentel, Lusiano Motta dos Reis, Lucindo Cardoso de Pina, Paulo Redner, Paulo Cesar de Souza Caldas, Fátima Cristina Onofre Fandinho-Montes, Liamar Borga, Suzanne Pereira Leite, Jorge Luiz da Rocha, Leonardo Soares Bastos, Jesus Pais Ramos, Wim Maurits Degrave, L. Caetano M. Antunes, Teca Calcagno Galvão. Integrated analysis of ethionamide resistance loci in Mycobacterium tuberculosis clinical isolates. Tuberculosis 2018, 113 , 163-174. https://doi.org/10.1016/j.tube.2018.08.010
    65. Carmien Tolmie, Martha Smit, Diederik Opperman. Alternative Splicing of the Aflatoxin-Associated Baeyer–Villiger Monooxygenase from Aspergillus flavus: Characterisation of MoxY Isoforms. Toxins 2018, 10 (12) , 521. https://doi.org/10.3390/toxins10120521
    66. Osei Boakye Fordwour, Kirsten R. Wolthers. Active site variants provide insight into the nature of conformational changes that accompany the cyclohexanone monooxygenase catalytic cycle. Archives of Biochemistry and Biophysics 2018, 654 , 85-96. https://doi.org/10.1016/j.abb.2018.07.016
    67. Marie AF Delgove, Matthew T Elford, Katrien V Bernaerts, Stefaan MA De Wildeman. Application of a thermostable Baeyer–Villiger monooxygenase for the synthesis of branched polyester precursors. Journal of Chemical Technology & Biotechnology 2018, 93 (8) , 2131-2140. https://doi.org/10.1002/jctb.5623
    68. Rui F.N. Silva, Antônio César S. Sacco, Ignez Caracelli, Julio Zukerman-Schpector, Edward R.T. Tiekink. Sulfur(lone-pair)…π interactions with FAD in flavoenzymes. Zeitschrift für Kristallographie - Crystalline Materials 2018, 233 (8) , 531-537. https://doi.org/10.1515/zkri-2018-2064
    69. Yan Zhang, Feng Liu, Na Xu, Yin-Qi Wu, Yu-Cong Zheng, Qian Zhao, Guoqiang Lin, Hui-Lei Yu, Jian-He Xu, . Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides. Applied and Environmental Microbiology 2018, 84 (14) https://doi.org/10.1128/AEM.00638-18
    70. Christian Kubitza, Annette Faust, Miriam Gutt, Luzia Gäth, Dietrich Ober, Axel J. Scheidig. Crystal structure of pyrrolizidine alkaloid N -oxygenase from the grasshopper Zonocerus variegatus. Acta Crystallographica Section D Structural Biology 2018, 74 (5) , 422-432. https://doi.org/10.1107/S2059798318003510
    71. Marie A. F. Delgove, Maximilian J. L. J. Fürst, Marco W. Fraaije, Katrien V. Bernaerts, Stefaan M. A. De Wildeman. Exploring the Substrate Scope of Baeyer–Villiger Monooxygenases with Branched Lactones as Entry towards Polyesters. ChemBioChem 2018, 19 (4) , 354-360. https://doi.org/10.1002/cbic.201700427
    72. Sven Bordewick, Andy Beier, Kathleen Balke, Uwe T. Bornscheuer. Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations. Enzyme and Microbial Technology 2018, 109 , 31-42. https://doi.org/10.1016/j.enzmictec.2017.09.008
    73. Kathleen Balke, Andy Beier, Uwe T. Bornscheuer. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnology Advances 2018, 36 (1) , 247-263. https://doi.org/10.1016/j.biotechadv.2017.11.007
    74. Andrew Willetts, David Kelly. Reply to the Comment by Littlechild and Isupov. Microorganisms 2017, 5 (3) , 55. https://doi.org/10.3390/microorganisms5030055
    75. Kathleen Balke, Marcus Bäumgen, Uwe T. Bornscheuer. Controlling the Regioselectivity of Baeyer–Villiger Monooxygenases by Mutation of Active‐Site Residues. ChemBioChem 2017, 18 (16) , 1627-1638. https://doi.org/10.1002/cbic.201700223
    76. Gianluca Catucci, Chongliang Gao, Sheila J. Sadeghi, Gianfranco Gilardi. Chemical applications of Class B flavoprotein monooxygenases. Rendiconti Lincei 2017, 28 (S1) , 195-206. https://doi.org/10.1007/s12210-016-0583-x
    77. Leticia C. P. Goncalves, Daniel Kracher, Sofia Milker, Michael J. Fink, Florian Rudroff, Roland Ludwig, Andreas S. Bommarius, Marko D. Mihovilovic. Mutagenesis‐Independent Stabilization of Class B Flavin Monooxygenases in Operation. Advanced Synthesis & Catalysis 2017, 359 (12) , 2121-2131. https://doi.org/10.1002/adsc.201700585
    78. Matías Musumeci, Mariana Lozada, Daniela Rial, Walter Mac Cormack, Janet Jansson, Sara Sjöling, JoLynn Carroll, Hebe Dionisi. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach. Marine Drugs 2017, 15 (4) , 114. https://doi.org/10.3390/md15040114
    79. Anna Panek, Alina Świzdor, Natalia Milecka-Tronina, Jarosław J. Panek. Insight into the orientational versatility of steroid substrates—a docking and molecular dynamics study of a steroid receptor and steroid monooxygenase. Journal of Molecular Modeling 2017, 23 (3) https://doi.org/10.1007/s00894-017-3278-z
    80. Jian-bo Wang, Guangyue Li, Manfred T. Reetz. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chemical Communications 2017, 53 (28) , 3916-3928. https://doi.org/10.1039/C7CC00368D
    81. Iti Saraav, Kirti Pandey, Richa Misra, Swati Singh, Monika Sharma, Sadhna Sharma. Characterization of MymA protein as a flavin‐containing monooxygenase and as a target of isoniazid. Chemical Biology & Drug Design 2017, 89 (1) , 152-160. https://doi.org/10.1111/cbdd.12840
    82. David Leys, Nigel S Scrutton. Sweating the assets of flavin cofactors: new insight of chemical versatility from knowledge of structure and mechanism. Current Opinion in Structural Biology 2016, 41 , 19-26. https://doi.org/10.1016/j.sbi.2016.05.014
    83. Brahm J. Yachnin, Peter C.K. Lau, Albert M. Berghuis. The role of conformational flexibility in Baeyer-Villiger monooxygenase catalysis and structure. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016, 1864 (12) , 1641-1648. https://doi.org/10.1016/j.bbapap.2016.08.015
    84. Gianluca Catucci, Ivan Zgrablic, Francesco Lanciani, Francesca Valetti, Daniela Minerdi, David P. Ballou, Gianfranco Gilardi, Sheila J. Sadeghi. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016, 1864 (9) , 1177-1187. https://doi.org/10.1016/j.bbapap.2016.06.010
    85. Felix Martin Ferroni, Carmien Tolmie, Martha Sophia Smit, Diederik Johannes Opperman, . Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase. PLOS ONE 2016, 11 (7) , e0160186. https://doi.org/10.1371/journal.pone.0160186
    86. Sandy Schmidt, Maika Genz, Kathleen Balke, Uwe T. Bornscheuer. The effect of disulfide bond introduction and related Cys/Ser mutations on the stability of a cyclohexanone monooxygenase. Journal of Biotechnology 2015, 214 , 199-211. https://doi.org/10.1016/j.jbiotec.2015.09.026
    87. Reeder Robinson, Insaf A. Qureshi, Catherine A. Klancher, Pedro J. Rodriguez, John J. Tanner, Pablo Sobrado. Contribution to catalysis of ornithine binding residues in ornithine N5-monooxygenase. Archives of Biochemistry and Biophysics 2015, 585 , 25-31. https://doi.org/10.1016/j.abb.2015.09.008
    88. Loreto P. Parra, Juan P. Acevedo, Manfred T. Reetz. Directed evolution of phenylacetone monooxygenase as an active catalyst for the baeyer–villiger conversion of cyclohexanone to caprolactone. Biotechnology and Bioengineering 2015, 112 (7) , 1354-1364. https://doi.org/10.1002/bit.25564
    89. Claudia Binda, Reeder M. Robinson, Julia S. Martin del Campo, Nicholas D. Keul, Pedro J. Rodriguez, Howard H. Robinson, Andrea Mattevi, Pablo Sobrado. An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation. Journal of Biological Chemistry 2015, 290 (20) , 12676-12688. https://doi.org/10.1074/jbc.M114.629485
    90. Shanshan Cao, Miaomiao Wu, Shihui Xu, Xiuwen Yan, Xiaohua Mao, . Identification of a Putative Flavin Adenine Dinucleotide-Binding Monooxygenase as a Regulator for Myxococcus xanthus Development. Journal of Bacteriology 2015, 197 (7) , 1185-1196. https://doi.org/10.1128/JB.02555-14
    91. Benjamin D. Summers, Muhiadin Omar, Thomas O. Ronson, Jared Cartwright, Michael Lloyd, Gideon Grogan. E. coli cells expressing the Baeyer–Villiger monooxygenase ‘MO14’ (ro03437) from Rhodococcus jostii RHA1 catalyse the gram-scale resolution of a bicyclic ketone in a fermentor. Organic & Biomolecular Chemistry 2015, 13 (6) , 1897-1903. https://doi.org/10.1039/C4OB01441C
    92. Philipp Zeyhle, Judith S. Bauer, Marco Steimle, Franziska Leipoldt, Manuela Rösch, Jörn Kalinowski, Harald Gross, Lutz Heide. A Membrane‐Bound Prenyltransferase Catalyzes the O‐Prenylation of 1,6‐Dihydroxyphenazine in the Marine Bacterium Streptomyces sp. CNQ‐509. ChemBioChem 2014, 15 (16) , 2385-2392. https://doi.org/10.1002/cbic.201402394
    93. Chantel N. Jensen, Sohail T. Ali, Michael J. Allen, Gideon Grogan. Exploring nicotinamide cofactor promiscuity in NAD(P)H-dependent flavin containing monooxygenases (FMOs) using natural variation within the phosphate binding loop. Structure and activity of FMOs from Cellvibrio sp. BR and Pseudomonas stutzeri NF13. Journal of Molecular Catalysis B: Enzymatic 2014, 109 , 191-198. https://doi.org/10.1016/j.molcatb.2014.08.019
    94. Fei Wang, Ying Hou, Jie Zhou, Zhoukun Li, Yan Huang, Zhongli Cui. Purification of an amide hydrolase DamH from Delftia sp. T3-6 and its gene cloning, expression, and biochemical characterization. Applied Microbiology and Biotechnology 2014, 98 (17) , 7491-7499. https://doi.org/10.1007/s00253-014-5710-y
    95. Youcai Hu, David Dietrich, Wei Xu, Ashay Patel, Justin A J Thuss, Jingjing Wang, Wen-Bing Yin, Kangjian Qiao, K N Houk, John C Vederas, Yi Tang. A carbonate-forming Baeyer-Villiger monooxygenase. Nature Chemical Biology 2014, 10 (7) , 552-554. https://doi.org/10.1038/nchembio.1527
    96. Maria Kadow, Kathleen Balke, Andrew Willetts, Uwe T. Bornscheuer, J.-E. Bäckvall. Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli. Applied Microbiology and Biotechnology 2014, 98 (9) , 3975-3986. https://doi.org/10.1007/s00253-013-5338-3
    97. Hanna M. Dudek, Michael J. Fink, Amol V. Shivange, Alexander Dennig, Marko D. Mihovilovic, Ulrich Schwaneberg, Marco W. Fraaije. Extending the substrate scope of a Baeyer–Villiger monooxygenase by multiple-site mutagenesis. Applied Microbiology and Biotechnology 2014, 98 (9) , 4009-4020. https://doi.org/10.1007/s00253-013-5364-1
    98. Reeder M. Robinson, Pedro J. Rodriguez, Pablo Sobrado. Mechanistic studies on the flavin-dependent N6-lysine monooxygenase MbsG reveal an unusual control for catalysis. Archives of Biochemistry and Biophysics 2014, 550-551 , 58-66. https://doi.org/10.1016/j.abb.2014.04.006
    99. Reeder Robinson, Stefano Franceschini, Michael Fedkenheuer, Pedro J. Rodriguez, Jacob Ellerbrock, Elvira Romero, Maria Paulina Echandi, Julia S. Martin del Campo, Pablo Sobrado. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2014, 1844 (4) , 778-784. https://doi.org/10.1016/j.bbapap.2014.02.005
    100. Eduardo Bermúdez, Oscar N. Ventura, Leif A. Eriksson, Patricia Saenz-Méndez. Improved homology model of cyclohexanone monooxygenase from Acinetobacter calcoaceticus based on multiple templates. Computational Biology and Chemistry 2014, 49 , 14-22. https://doi.org/10.1016/j.compbiolchem.2014.01.012
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect