Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments

View Author Information
Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
†University of Calgary.
‡École Polytechnique Fédérale de Lausanne.
§University of Groningen.
∥Present address: Department of Pharmaceutical Chemistry, University of California, San Francisco.
Cite this: J. Am. Chem. Soc. 2009, 131, 35, 12714–12720
Publication Date (Web):August 12, 2009
https://doi.org/10.1021/ja903529f
Copyright © 2009 American Chemical Society

    Article Views

    4677

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investigate the partitioning of cholesterol in a systematic set of lipid bilayers. In addition to atomistic simulations, we undertook a large set of coarse grained simulations, which allowed longer time and length scales to be sampled. Our results agree with recent experiments (Steck, T. L.; et al. Biophys. J.2002, 83, 2118−2125) that the rate of cholesterol flip-flop can be fast on physiological time scales, while extending our understanding of this process to a range of lipids. We predicted that the rate of flip-flop is strongly dependent on the composition of the bilayer. In polyunsaturated bilayers, cholesterol undergoes flip-flop on a submicrosecond time scale, while flip-flop occurs in the second range in saturated bilayers with high cholesterol content. We also calculated the free energy of cholesterol desorption, which can be equated to the excess chemical potential of cholesterol in the bilayer compared to water. The free energy of cholesterol desorption from a DPPC bilayer is 80 kJ/mol, compared to 67 kJ/mol for a DAPC bilayer. In general, cholesterol prefers more ordered and rigid bilayers and has the lowest affinity for bilayers with two polyunsaturated chains. Overall, the simulations provide a detailed molecular level thermodynamic description of cholesterol interactions with lipid bilayers, of fundamental importance to eukaryotic life.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    CG vs AA models, enthalpy and entropy decomposition, snapshots of cholesterol at the center of AA and CG DPPC-0%C bilayers, PMFs for the transfer of cholesterol from water to octane slab. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 241 publications.

    1. Charlotte Bouquiaux, Benoît Champagne, Pierre Beaujean. Multimillion Atom Simulations of Di-8-ANEPPS Chromophores Embedded in a Model Plasma Membrane: Toward the Investigation of Realistic Dyed Cell Membranes. Journal of Chemical Information and Modeling 2024, 64 (2) , 518-531. https://doi.org/10.1021/acs.jcim.3c01568
    2. Luís Borges-Araújo, Ana C. Borges-Araújo, Tugba Nur Ozturk, Daniel P. Ramirez-Echemendia, Balázs Fábián, Timothy S. Carpenter, Sebastian Thallmair, Jonathan Barnoud, Helgi I. Ingólfsson, Gerhard Hummer, D. Peter Tieleman, Siewert J. Marrink, Paulo C. T. Souza, Manuel N. Melo. Martini 3 Coarse-Grained Force Field for Cholesterol. Journal of Chemical Theory and Computation 2023, 19 (20) , 7387-7404. https://doi.org/10.1021/acs.jctc.3c00547
    3. Samavi Farnush Bint E Naser, Han-Yuan Liu, Hui Su, Antonios Kouloumpis, Juliana Debrito Carten, Susan Daniel. An Impedance-Based Approach for Sensing Cyclodextrin-Mediated Modulation of Membrane Cholesterol. Langmuir 2023, 39 (28) , 9831-9840. https://doi.org/10.1021/acs.langmuir.3c00938
    4. Shakkira Erimban, Snehasis Daschakraborty. Fickian Yet Non-Gaussian Nanoscopic Lipid Diffusion in the Raft-Mimetic Membrane. The Journal of Physical Chemistry B 2023, 127 (22) , 4939-4951. https://doi.org/10.1021/acs.jpcb.3c00019
    5. Jing Wu, Jun-Hua Zhou, Dong-Feng Liu, Jie Wu, Ru-Li He, Zhou-Hua Cheng, Hui-Hui Li, Wen-Wei Li. Phthalates Promote Dissemination of Antibiotic Resistance Genes: An Overlooked Environmental Risk. Environmental Science & Technology 2023, 57 (17) , 6876-6887. https://doi.org/10.1021/acs.est.2c09491
    6. Shasha Feng, Soohyung Park, Yeol Kyo Choi, Wonpil Im. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. Journal of Chemical Theory and Computation 2023, 19 (8) , 2161-2185. https://doi.org/10.1021/acs.jctc.2c01246
    7. Curran G. Gahan, Reid C. Van Lehn, Helen E. Blackwell, David M. Lynn. Interactions of Bacterial Quorum Sensing Signals with Model Lipid Membranes: Influence of Membrane Composition on Membrane Remodeling. Langmuir 2023, 39 (1) , 295-307. https://doi.org/10.1021/acs.langmuir.2c02506
    8. Tomokazu Yasuda, Hirofumi Watanabe, Koichiro M. Hirosawa, Kenichi G. N. Suzuki, Keishi Suga, Shinya Hanashima. Fluorescence Spectroscopic Analysis of Lateral and Transbilayer Fluidity of Exosome Membranes. Langmuir 2022, 38 (48) , 14695-14703. https://doi.org/10.1021/acs.langmuir.2c02258
    9. Xiu Li, Shiying Zhou, Xubo Lin. Molecular View on the Impact of DHA Molecules on the Physical Properties of a Model Cell Membrane. Journal of Chemical Information and Modeling 2022, 62 (10) , 2421-2431. https://doi.org/10.1021/acs.jcim.2c00074
    10. Callum J. Dickson, Ross C. Walker, Ian R. Gould. Lipid21: Complex Lipid Membrane Simulations with AMBER. Journal of Chemical Theory and Computation 2022, 18 (3) , 1726-1736. https://doi.org/10.1021/acs.jctc.1c01217
    11. Katie A. Wilson, Lily Wang, Megan L. O’Mara. Site of Cholesterol Oxidation Impacts Its Localization and Domain Formation in the Neuronal Plasma Membrane. ACS Chemical Neuroscience 2021, 12 (20) , 3873-3884. https://doi.org/10.1021/acschemneuro.1c00395
    12. Paul Smith, Christian D. Lorenz. LiPyphilic: A Python Toolkit for the Analysis of Lipid Membrane Simulations. Journal of Chemical Theory and Computation 2021, 17 (9) , 5907-5919. https://doi.org/10.1021/acs.jctc.1c00447
    13. Sebastian Thallmair, Matti Javanainen, Balázs Fábián, Hector Martinez-Seara, Siewert J. Marrink. Nonconverged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simulations. The Journal of Physical Chemistry B 2021, 125 (33) , 9537-9546. https://doi.org/10.1021/acs.jpcb.1c03665
    14. Sze May Yee, Christian D. Lorenz. On the Structure and Flip-flop of Free Docosahexaenoic Acid in a Model Human Brain Membrane. The Journal of Physical Chemistry B 2021, 125 (29) , 8038-8047. https://doi.org/10.1021/acs.jpcb.1c03929
    15. Katie A. Wilson, Hugo I. MacDermott-Opeskin, Eden Riley, Yiechang Lin, Megan L. O’Mara. Understanding the Link between Lipid Diversity and the Biophysical Properties of the Neuronal Plasma Membrane. Biochemistry 2020, 59 (33) , 3010-3018. https://doi.org/10.1021/acs.biochem.0c00524
    16. Kang Liu, Shuohan Huang, Danjun Fang. Electrochemical Measurement of Cholesterol Flip-Flop in Plasma Membrane at Single Cells. Analytical Chemistry 2020, 92 (16) , 10961-10965. https://doi.org/10.1021/acs.analchem.0c01991
    17. Ruo-Xu Gu, Svetlana Baoukina, D. Peter Tieleman. Phase Separation in Atomistic Simulations of Model Membranes. Journal of the American Chemical Society 2020, 142 (6) , 2844-2856. https://doi.org/10.1021/jacs.9b11057
    18. Eric Wang, Jeffery B. Klauda. Molecular Structure of the Long Periodicity Phase in the Stratum Corneum. Journal of the American Chemical Society 2019, 141 (42) , 16930-16943. https://doi.org/10.1021/jacs.9b08995
    19. Hujun Shen, Kun Zhao, Zhenhua Wu. Effects of Ether Linkage on Membrane Dipole Potential and Cholesterol Flip-Flop Motion in Lipid Bilayer Membranes. The Journal of Physical Chemistry B 2019, 123 (37) , 7818-7828. https://doi.org/10.1021/acs.jpcb.9b06570
    20. Hujun Shen, Zhenhua Wu, Kun Zhao, Hengxiu Yang, Mingsen Deng, Shuiguo Wen. Effect of Cholesterol and 6-Ketocholestanol on Membrane Dipole Potential and Sterol Flip-Flop Motion in Bilayer Membranes. Langmuir 2019, 35 (34) , 11232-11241. https://doi.org/10.1021/acs.langmuir.9b01802
    21. Yuki Takechi-Haraya, Yukihiro Goda, Kenichi Izutsu, Kumiko Sakai-Kato. Improved Atomic Force Microscopy Stiffness Measurements of Nanoscale Liposomes by Cantilever Tip Shape Evaluation. Analytical Chemistry 2019, 91 (16) , 10432-10440. https://doi.org/10.1021/acs.analchem.9b00250
    22. Guilherme B. Berselli, Nirod Kumar Sarangi, Sivaramakrishnan Ramadurai, Paul V. Murphy, Tia E. Keyes. Microcavity-Supported Lipid Membranes: Versatile Platforms for Building Asymmetric Lipid Bilayers and for Protein Recognition. ACS Applied Bio Materials 2019, 2 (8) , 3404-3417. https://doi.org/10.1021/acsabm.9b00378
    23. Alison N. Leonard, Eric Wang, Viviana Monje-Galvan, Jeffery B. Klauda. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chemical Reviews 2019, 119 (9) , 6227-6269. https://doi.org/10.1021/acs.chemrev.8b00384
    24. Siewert J. Marrink, Valentina Corradi, Paulo C.T. Souza, Helgi I. Ingólfsson, D. Peter Tieleman, Mark S.P. Sansom. Computational Modeling of Realistic Cell Membranes. Chemical Reviews 2019, 119 (9) , 6184-6226. https://doi.org/10.1021/acs.chemrev.8b00460
    25. Giray Enkavi, Matti Javanainen, Waldemar Kulig, Tomasz Róg, Ilpo Vattulainen. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chemical Reviews 2019, 119 (9) , 5607-5774. https://doi.org/10.1021/acs.chemrev.8b00538
    26. Ruo-Xu Gu, Svetlana Baoukina, D. Peter Tieleman. Cholesterol Flip-Flop in Heterogeneous Membranes. Journal of Chemical Theory and Computation 2019, 15 (3) , 2064-2070. https://doi.org/10.1021/acs.jctc.8b00933
    27. Sangjae Seo, Wataru Shinoda. SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol. Journal of Chemical Theory and Computation 2019, 15 (1) , 762-774. https://doi.org/10.1021/acs.jctc.8b00987
    28. Phansiri Boonnoy, Mikko Karttunen, Jirasak Wong-ekkabut. Does α-Tocopherol Flip-Flop Help to Protect Membranes Against Oxidation?. The Journal of Physical Chemistry B 2018, 122 (45) , 10362-10370. https://doi.org/10.1021/acs.jpcb.8b09064
    29. Younghoon Oh, Bong June Sung. Facilitated and Non-Gaussian Diffusion of Cholesterol in Liquid Ordered Phase Bilayers Depends on the Flip-Flop and Spatial Arrangement of Cholesterol. The Journal of Physical Chemistry Letters 2018, 9 (22) , 6529-6535. https://doi.org/10.1021/acs.jpclett.8b02982
    30. Kalina Atkovska, Johannes Klingler, Johannes Oberwinkler, Sandro Keller, Jochen S. Hub. Rationalizing Steroid Interactions with Lipid Membranes: Conformations, Partitioning, and Kinetics. ACS Central Science 2018, 4 (9) , 1155-1165. https://doi.org/10.1021/acscentsci.8b00332
    31. Sebastian Thallmair, Helgi I. Ingólfsson, Siewert J. Marrink. Cholesterol Flip-Flop Impacts Domain Registration in Plasma Membrane Models. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5527-5533. https://doi.org/10.1021/acs.jpclett.8b01877
    32. Xiaoling Leng, Fangqiang Zhu, Stephen R. Wassall. Vitamin E Has Reduced Affinity for a Polyunsaturated Phospholipid: An Umbrella Sampling Molecular Dynamics Simulations Study. The Journal of Physical Chemistry B 2018, 122 (35) , 8351-8358. https://doi.org/10.1021/acs.jpcb.8b05016
    33. Michael D. Weiner, Gerald W. Feigenson. Presence and Role of Midplane Cholesterol in Lipid Bilayers Containing Registered or Antiregistered Phase Domains. The Journal of Physical Chemistry B 2018, 122 (34) , 8193-8200. https://doi.org/10.1021/acs.jpcb.8b03949
    34. Hujun Shen, Mingsen Deng, Zhenhua Wu, Jihua Zhang, Yachao Zhang, Chengui Gao, Cao Cen. Effect of Cholesterol on Membrane Dipole Potential: Atomistic and Coarse-Grained Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2018, 14 (7) , 3780-3795. https://doi.org/10.1021/acs.jctc.8b00092
    35. Hugo A. L. Filipe, Matti Javanainen, Armindo Salvador, Adelino M. Galvão, Ilpo Vattulainen, Luís M. S. Loura, Maria João Moreno. Quantitative Assessment of Methods Used To Obtain Rate Constants from Molecular Dynamics Simulations—Translocation of Cholesterol across Lipid Bilayers. Journal of Chemical Theory and Computation 2018, 14 (7) , 3840-3848. https://doi.org/10.1021/acs.jctc.8b00150
    36. Soohyung Park, Wonpil Im. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers. Journal of Chemical Theory and Computation 2018, 14 (6) , 2829-2833. https://doi.org/10.1021/acs.jctc.8b00140
    37. Chi Hang Tse, Jeffrey Comer, Yi Wang, Christophe Chipot. Link between Membrane Composition and Permeability to Drugs. Journal of Chemical Theory and Computation 2018, 14 (6) , 2895-2909. https://doi.org/10.1021/acs.jctc.8b00272
    38. Tomoko Mizuguchi, Nobuyuki Matubayasi. Free-Energy Analysis of Peptide Binding in Lipid Membrane Using All-Atom Molecular Dynamics Simulation Combined with Theory of Solutions. The Journal of Physical Chemistry B 2018, 122 (13) , 3219-3229. https://doi.org/10.1021/acs.jpcb.7b08241
    39. Waldemar Kulig, Heikki Mikkolainen, Agnieszka Olżyńska, Piotr Jurkiewicz, Lukasz Cwiklik, Martin Hof, Ilpo Vattulainen, Pavel Jungwirth, and Tomasz Rog . Bobbing of Oxysterols: Molecular Mechanism for Translocation of Tail-Oxidized Sterols through Biological Membranes. The Journal of Physical Chemistry Letters 2018, 9 (5) , 1118-1123. https://doi.org/10.1021/acs.jpclett.8b00211
    40. Lisa M. Kawakami, Bo Kyeong Yoon, Joshua A. Jackman, Wolfgang Knoll, Paul S. Weiss, Nam-Joon Cho. Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers. Langmuir 2017, 33 (51) , 14756-14765. https://doi.org/10.1021/acs.langmuir.7b03236
    41. Benny Wah, Jeffrey M. Breidigan, Joseph Adams, Piotr Horbal, Sumit Garg, Lionel Porcar, and Ursula Perez-Salas . Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study. Langmuir 2017, 33 (14) , 3384-3394. https://doi.org/10.1021/acs.langmuir.6b04013
    42. Callum J. Dickson, Viktor Hornak, Robert A. Pearlstein, and Jose S. Duca . Structure–Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling. Journal of the American Chemical Society 2017, 139 (1) , 442-452. https://doi.org/10.1021/jacs.6b11215
    43. Inna Ermilova and Alexander P. Lyubartsev . Extension of the Slipids Force Field to Polyunsaturated Lipids. The Journal of Physical Chemistry B 2016, 120 (50) , 12826-12842. https://doi.org/10.1021/acs.jpcb.6b05422
    44. Xubo Lin, Joseph H. Lorent, Allison D. Skinkle, Kandice R. Levental, M. Neal Waxham, Alemayehu A. Gorfe, and Ilya Levental . Domain Stability in Biomimetic Membranes Driven by Lipid Polyunsaturation. The Journal of Physical Chemistry B 2016, 120 (46) , 11930-11941. https://doi.org/10.1021/acs.jpcb.6b06815
    45. Ting Yu, Guangnan Zhou, Xia Hu, and Shuji Ye . Transport and Organization of Cholesterol in a Planar Solid-Supported Lipid Bilayer Depend on the Phospholipid Flip-Flop Rate. Langmuir 2016, 32 (44) , 11681-11689. https://doi.org/10.1021/acs.langmuir.6b02560
    46. Nirod Kumar Sarangi, Ilanila I. P, K. G. Ayappa, Sandhya. S. Visweswariah, and Jaydeep Kumar Basu . Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins. Langmuir 2016, 32 (37) , 9649-9657. https://doi.org/10.1021/acs.langmuir.6b01848
    47. George Hedger, David Shorthouse, Heidi Koldsø, and Mark S. P. Sansom . Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor. The Journal of Physical Chemistry B 2016, 120 (33) , 8154-8163. https://doi.org/10.1021/acs.jpcb.6b01387
    48. Sebastian Kmiecik, Dominik Gront, Michal Kolinski, Lukasz Wieteska, Aleksandra Elzbieta Dawid, and Andrzej Kolinski . Coarse-Grained Protein Models and Their Applications. Chemical Reviews 2016, 116 (14) , 7898-7936. https://doi.org/10.1021/acs.chemrev.6b00163
    49. Michał Flasiński, Beata Konderla, Marcin Broniatowski, and Paweł Wydro . Sterol–Phospholipid Hybrids at the Air/Water Interface: Studies on Properties and Interactions with Parent Lipid Molecules. Langmuir 2016, 32 (16) , 4095-4102. https://doi.org/10.1021/acs.langmuir.5b04311
    50. Djurre H. de Jong, Nicoletta Liguori, Tom van den Berg, Clement Arnarez, Xavier Periole, and Siewert J. Marrink . Atomistic and Coarse Grain Topologies for the Cofactors Associated with the Photosystem II Core Complex. The Journal of Physical Chemistry B 2015, 119 (25) , 7791-7803. https://doi.org/10.1021/acs.jpcb.5b00809
    51. Michelle K. Baker and Cameron F. Abrams . Dynamics of Lipids, Cholesterol, and Transmembrane α-Helices from Microsecond Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2014, 118 (47) , 13590-13600. https://doi.org/10.1021/jp507027t
    52. Chenyu Wei and Andrew Pohorille . Flip-Flop of Oleic Acid in a Phospholipid Membrane: Rate and Mechanism. The Journal of Physical Chemistry B 2014, 118 (45) , 12919-12926. https://doi.org/10.1021/jp508163e
    53. Helgi I. Ingólfsson, Manuel N. Melo, Floris J. van Eerden, Clément Arnarez, Cesar A. Lopez, Tsjerk A. Wassenaar, Xavier Periole, Alex H. de Vries, D. Peter Tieleman, and Siewert J. Marrink . Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society 2014, 136 (41) , 14554-14559. https://doi.org/10.1021/ja507832e
    54. W. F. Drew Bennett and D. Peter Tieleman . The Importance of Membrane Defects—Lessons from Simulations. Accounts of Chemical Research 2014, 47 (8) , 2244-2251. https://doi.org/10.1021/ar4002729
    55. Michael D. Daily, Brett N. Olsen, Paul H. Schlesinger, Daniel S. Ory, and Nathan A. Baker . Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers. Journal of Chemical Theory and Computation 2014, 10 (5) , 2137-2150. https://doi.org/10.1021/ct401028g
    56. Sulan Ma, Hongchun Li, Kangzhen Tian, Shuji Ye, and Yi Luo . In Situ and Real-Time SFG Measurements Revealing Organization and Transport of Cholesterol Analogue 6-Ketocholestanol in a Cell Membrane. The Journal of Physical Chemistry Letters 2014, 5 (3) , 419-424. https://doi.org/10.1021/jz402537w
    57. An-Tsung Kuo and Chien-Hsiang Chang . Cholesterol-Induced Condensing and Disordering Effects on a Rigid Catanionic Bilayer: A Molecular Dynamics Study. Langmuir 2014, 30 (1) , 55-62. https://doi.org/10.1021/la403676w
    58. Chris Neale, Chris Madill, Sarah Rauscher, and Régis Pomès . Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal. Journal of Chemical Theory and Computation 2013, 9 (8) , 3686-3703. https://doi.org/10.1021/ct301005b
    59. Lidia Ferrer-Tasies, Evelyn Moreno-Calvo, Mary Cano-Sarabia, Marcel Aguilella-Arzo, Angelina Angelova, Sylviane Lesieur, Susagna Ricart, Jordi Faraudo, Nora Ventosa, and Jaume Veciana . Quatsomes: Vesicles Formed by Self-Assembly of Sterols and Quaternary Ammonium Surfactants. Langmuir 2013, 29 (22) , 6519-6528. https://doi.org/10.1021/la4003803
    60. Zak E. Hughes, Chris J. Malajczuk, and Ricardo L. Mancera . The Effects of Cryosolvents on DOPC−β-Sitosterol Bilayers Determined from Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2013, 117 (12) , 3362-3375. https://doi.org/10.1021/jp400975y
    61. George Khelashvili and Daniel Harries . How Cholesterol Tilt Modulates the Mechanical Properties of Saturated and Unsaturated Lipid Membranes. The Journal of Physical Chemistry B 2013, 117 (8) , 2411-2421. https://doi.org/10.1021/jp3122006
    62. Djurre H. de Jong, Gurpreet Singh, W. F. Drew Bennett, Clement Arnarez, Tsjerk A. Wassenaar, Lars V. Schäfer, Xavier Periole, D. Peter Tieleman, and Siewert J. Marrink . Improved Parameters for the Martini Coarse-Grained Protein Force Field. Journal of Chemical Theory and Computation 2013, 9 (1) , 687-697. https://doi.org/10.1021/ct300646g
    63. Jianjun Pan, Xiaolin Cheng, Frederick A. Heberle, Barmak Mostofian, Norbert Kučerka, Paul Drazba, and John Katsaras . Interactions between Ether Phospholipids and Cholesterol As Determined by Scattering and Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2012, 116 (51) , 14829-14838. https://doi.org/10.1021/jp310345j
    64. Giulia Parisio, Maria Maddalena Sperotto, and Alberta Ferrarini . Flip-Flop of Steroids in Phospholipid Bilayers: Effects of the Chemical Structure on Transbilayer Diffusion. Journal of the American Chemical Society 2012, 134 (29) , 12198-12208. https://doi.org/10.1021/ja304007t
    65. C. Rosetti and C. Pastorino . Comparison of Ternary Bilayer Mixtures with Asymmetric or Symmetric Unsaturated Phosphatidylcholine Lipids by Coarse Grained Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2012, 116 (11) , 3525-3537. https://doi.org/10.1021/jp212406u
    66. Joseph B. Lim, Brent Rogaski, and Jeffery B. Klauda . Update of the Cholesterol Force Field Parameters in CHARMM. The Journal of Physical Chemistry B 2012, 116 (1) , 203-210. https://doi.org/10.1021/jp207925m
    67. Antonio De Nicola, Ying Zhao, Toshihiro Kawakatsu, Danilo Roccatano, and Giuseppe Milano . Hybrid Particle-Field Coarse-Grained Models for Biological Phospholipids. Journal of Chemical Theory and Computation 2011, 7 (9) , 2947-2962. https://doi.org/10.1021/ct200132n
    68. Björn Sommer, Tim Dingersen, Christian Gamroth, Sebastian E. Schneider, Sebastian Rubert, Jens Krüger, and Karl-Josef Dietz . CELLmicrocosmos 2.2 MembraneEditor: A Modular Interactive Shape-Based Software Approach To Solve Heterogeneous Membrane Packing Problems. Journal of Chemical Information and Modeling 2011, 51 (5) , 1165-1182. https://doi.org/10.1021/ci1003619
    69. Jason D. Perlmutter and Jonathan N. Sachs . Interleaflet Interaction and Asymmetry in Phase Separated Lipid Bilayers: Molecular Dynamics Simulations. Journal of the American Chemical Society 2011, 133 (17) , 6563-6577. https://doi.org/10.1021/ja106626r
    70. Andrew Hung and Irene Yarovsky. Gap Junction Hemichannel Interactions with Zwitterionic Lipid, Anionic Lipid, and Cholesterol: Molecular Simulation Studies. Biochemistry 2011, 50 (9) , 1492-1504. https://doi.org/10.1021/bi1004156
    71. Emma S. E. Eriksson and Leif A. Eriksson . The Influence of Cholesterol on the Properties and Permeability of Hypericin Derivatives in Lipid Membranes. Journal of Chemical Theory and Computation 2011, 7 (3) , 560-574. https://doi.org/10.1021/ct100528u
    72. Sunhwan Jo, Huan Rui, Joseph B. Lim, Jeffery B. Klauda, and Wonpil Im. Cholesterol Flip-Flop: Insights from Free Energy Simulation Studies. The Journal of Physical Chemistry B 2010, 114 (42) , 13342-13348. https://doi.org/10.1021/jp108166k
    73. Andrey A. Gurtovenko, Jamshed Anwar, and Ilpo Vattulainen. Defect-Mediated Trafficking across Cell Membranes: Insights from in Silico Modeling. Chemical Reviews 2010, 110 (10) , 6077-6103. https://doi.org/10.1021/cr1000783
    74. Sergi Garcia-Manyes, Lorena Redondo-Morata, Gerard Oncins, and Fausto Sanz. Nanomechanics of Lipid Bilayers: Heads or Tails?. Journal of the American Chemical Society 2010, 132 (37) , 12874-12886. https://doi.org/10.1021/ja1002185
    75. Norbert Kučerka, Drew Marquardt, Thad A. Harroun, Mu-Ping Nieh, Stephen R. Wassall, Djurre H. de Jong, Lars V. Schäfer, Siewert J. Marrink and John Katsaras . Cholesterol in Bilayers with PUFA Chains: Doping with DMPC or POPC Results in Sterol Reorientation and Membrane-Domain Formation. Biochemistry 2010, 49 (35) , 7485-7493. https://doi.org/10.1021/bi100891z
    76. Frédérick J.-M. de Meyer, Ayelet Benjamini, Jocelyn M. Rodgers, Yannick Misteli and Berend Smit. Molecular Simulation of the DMPC-Cholesterol Phase Diagram. The Journal of Physical Chemistry B 2010, 114 (32) , 10451-10461. https://doi.org/10.1021/jp103903s
    77. Giulia Parisio and Alberta Ferrarini. Solute Partitioning into Lipid Bilayers: An Implicit Model for Nonuniform and Ordered Environment. Journal of Chemical Theory and Computation 2010, 6 (8) , 2267-2280. https://doi.org/10.1021/ct100210u
    78. Roy Ziblat, Leslie Leiserowitz and Lia Addadi. Crystalline Domain Structure and Cholesterol Crystal Nucleation in Single Hydrated DPPC:Cholesterol:POPC Bilayers. Journal of the American Chemical Society 2010, 132 (28) , 9920-9927. https://doi.org/10.1021/ja103975g
    79. George Khelashvili, Georg Pabst and Daniel Harries . Cholesterol Orientation and Tilt Modulus in DMPC Bilayers. The Journal of Physical Chemistry B 2010, 114 (22) , 7524-7534. https://doi.org/10.1021/jp101889k
    80. Yuliya G. Smirnova, Siewert-Jan Marrink, Reinhard Lipowsky and Volker Knecht . Solvent-Exposed Tails as Prestalk Transition States for Membrane Fusion at Low Hydration. Journal of the American Chemical Society 2010, 132 (19) , 6710-6718. https://doi.org/10.1021/ja910050x
    81. Qing Liang, Qing-Hu Chen and Yu-qiang Ma. Membrane-Mediated Interactions between Nanoparticles on a Substrate. The Journal of Physical Chemistry B 2010, 114 (16) , 5359-5364. https://doi.org/10.1021/jp910852d
    82. Marlon J. Hinner, Siewert-J. Marrink and Alex H. de Vries. Location, Tilt, and Binding: A Molecular Dynamics Study of Voltage-Sensitive Dyes in Biomembranes. The Journal of Physical Chemistry B 2009, 113 (48) , 15807-15819. https://doi.org/10.1021/jp907981y
    83. Jason D. Perlmutter and Jonathan N. Sachs . Inhibiting Lateral Domain Formation in Lipid Bilayers: Simulations of Alternative Steroid Headgroup Chemistries. Journal of the American Chemical Society 2009, 131 (45) , 16362-16363. https://doi.org/10.1021/ja9079258
    84. Marcos Asis Rodriguez, Iván Felsztyna, Daniel A. García, Mariela E. Sánchez-Borzone, Virginia Miguel. Interaction of fluralaner with binary model membranes. Potential implications in the selectivity for invertebrates/vertebrates. Journal of Molecular Liquids 2024, 403 , 124891. https://doi.org/10.1016/j.molliq.2024.124891
    85. Anita Wnętrzak, Anna Chachaj-Brekiesz, Jan Kobierski, Patrycja Dynarowicz-Latka. The Structure of Oxysterols Determines Their Behavior at Phase Boundaries: Implications for Model Membranes and Structure–Activity Relationships. 2024, 3-29. https://doi.org/10.1007/978-3-031-43883-7_1
    86. Hanif M. Khan, D. Peter Tieleman. Coarse Grained Models: The Martini Force Field. 2024, 660-673. https://doi.org/10.1016/B978-0-12-821978-2.00087-8
    87. Arpita Tripathy, Sudipti Priyadarsinee, Nirmalya Bag. Evaluation of functional transbilayer coupling in live cells by controlled lipid exchange and imaging fluorescence correlation spectroscopy. 2024https://doi.org/10.1016/bs.mie.2024.04.001
    88. Milka Doktorova, Ilya Levental, Frederick A. Heberle. Seeing the Membrane from Both Sides Now: Lipid Asymmetry and Its Strange Consequences. Cold Spring Harbor Perspectives in Biology 2023, 15 (12) , a041393. https://doi.org/10.1101/cshperspect.a041393
    89. Austen Bernardi, W. F. Drew Bennett, Stewart He, Derek Jones, Dan Kirshner, Brian J. Bennion, Timothy S. Carpenter. Advances in Computational Approaches for Estimating Passive Permeability in Drug Discovery. Membranes 2023, 13 (11) , 851. https://doi.org/10.3390/membranes13110851
    90. Mina Aleksanyan, Andrea Grafmüller, Fucsia Crea, Vasil N. Georgiev, Naresh Yandrapalli, Stephan Block, Joachim Heberle, Rumiana Dimova. Photomanipulation of Minimal Synthetic Cells: Area Increase, Softening, and Interleaflet Coupling of Membrane Models Doped with Azobenzene‐Lipid Photoswitches. Advanced Science 2023, 10 (31) https://doi.org/10.1002/advs.202304336
    91. Izi Vieira Nunes Cunha, Angela Machado Campos, Adriana Passarella Gerola, Thiago Caon. Effect of invasome composition on membrane fluidity, vesicle stability and skin interactions. International Journal of Pharmaceutics 2023, 646 , 123472. https://doi.org/10.1016/j.ijpharm.2023.123472
    92. Hugo A. L. Filipe, Luís M. S. Loura, Maria João Moreno. Permeation of a Homologous Series of NBD-Labeled Fatty Amines through Lipid Bilayers: A Molecular Dynamics Study. Membranes 2023, 13 (6) , 551. https://doi.org/10.3390/membranes13060551
    93. Dung Thi Dang, Majid Monajjemi, Fatemeh Mollaamin, Chien Dang. Molecular Dynamics Simulation from Symmetry Breaking Changing to Asymmetrical Phospholipid Membranes Due to Variable Capacitors during Resonance with Helical Proteins. Symmetry 2023, 15 (6) , 1259. https://doi.org/10.3390/sym15061259
    94. Mohammadreza Aghaaminiha, Amir M. Farnoud, Sumit Sharma. Interdependence of cholesterol distribution and conformational order in lipid bilayers. Biointerphases 2023, 18 (3) https://doi.org/10.1116/6.0002489
    95. Isabel Lado-Touriño, Arisbel Cerpa-Naranjo. Coarse-Grained Molecular Dynamics of pH-Sensitive Lipids. International Journal of Molecular Sciences 2023, 24 (5) , 4632. https://doi.org/10.3390/ijms24054632
    96. Choon-Peng Chng, K. Jimmy Hsia, Changjin Huang. Modulation of lipid vesicle–membrane interactions by cholesterol. Soft Matter 2022, 18 (40) , 7752-7761. https://doi.org/10.1039/D2SM00693F
    97. Malavika Varma, Markus Deserno. Distribution of cholesterol in asymmetric membranes driven by composition and differential stress. Biophysical Journal 2022, 121 (20) , 4001-4018. https://doi.org/10.1016/j.bpj.2022.07.032
    98. Shinya Hanashima, Kanako Mito, Yuichi Umegawa, Michio Murata, Hironobu Hojo. Lipid chain-driven interaction of a lipidated Src-family kinase Lyn with the bilayer membrane. Organic & Biomolecular Chemistry 2022, 20 (32) , 6436-6444. https://doi.org/10.1039/D2OB01079H
    99. Dongyu Lyu, Tanlin Wei, Lei Zhang, Yong Zhang. Toy model that explains the regulation of cholesterol on lipid rafts. Communications in Theoretical Physics 2022, 74 (8) , 085601. https://doi.org/10.1088/1572-9494/ac7783
    100. Ana Sofía Vallés, Francisco J. Barrantes. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. Membranes 2022, 12 (8) , 812. https://doi.org/10.3390/membranes12080812
    Load more citations