ACS Publications. Most Trusted. Most Cited. Most Read
Palladium- and Platinum-Catalyzed Addition of Aldehydes and Imines with Allylstannanes. Chemoselective Allylation of Imines in the Presence of Aldehydes
My Activity

Figure 1Loading Img
    Article

    Palladium- and Platinum-Catalyzed Addition of Aldehydes and Imines with Allylstannanes. Chemoselective Allylation of Imines in the Presence of Aldehydes
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Institute for Fundamental Research of Organic Chemistry, Kyushu University, Fukuoka 812, Japan, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1996, 118, 28, 6641–6647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja9608858
    Published July 17, 1996
    Copyright © 1996 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The reaction of allylstannanes 1 with aldehydes 2 in THF was catalyzed by Pd(II) or Pt(II) complexes (10 mol %) either at room temperature or at reflux, giving the corresponding homoallylic alcohols 3 in high to good yields. Among the catalysts examined, PtCl2(PPh3)2 gave the best result. No only allyltribitylstannane but also methallyl- and crotyltributylstannane could be utilized in this transition metal catalyzed reaction. Detailed mechanistic studies of the Pd(II)-catalyzed allylation, using NMR spectroscopy, revealed that the bis-π-allylpalladium complex is a key intermediate for the catalytic cycle and it exhibits nucleophilic reactivity. The nucleophilic reactivity of the intermediate is in marked contrast to the electrophilic reactivity of ordinary π-allylpalladium complexes (π-allylPdX, X = OAc, halogen, OCO2R, etc.). The addition of allyl-, crotyl-, and methallylstannanes to various imines 4 proceeded very smoothly to give the corresponding allylated products (homoallylic amines 5) in good to high yields. The reactivities of allylstannanes to imines were higher than those to aldehydes under the catalytic conditions, although it is known that the reactivity of allylstannanes to aldehydes is higher than that to imines under the Lewis acid promoted condition. Imines were chemoselectively allylated in the presence of aldehydes and the highest selectivities were obtained using π-allylpalladium chloride dimer 11 as a catalyst.

    Copyright © 1996 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Kyushu University.

     Tohoku University.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Abstract published in Advance ACS Abstracts, June 15, 1996.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 211 publications.

    1. Yuanyun Gu, Yan-En Wang, Yaqi Yuan, Haodong Xu, Yizhou Lu, Yufei Zhang, Fei Xue, Dan Xiong, Jianyou Mao. Alkali–Amide-Catalyzed One-Pot Aminoallylation of Aldehydes with Allylbenzenes. The Journal of Organic Chemistry 2023, 88 (11) , 7362-7372. https://doi.org/10.1021/acs.joc.3c00581
    2. Rachid Taakili, Cécile Barthes, Amel Goëffon, Christine Lepetit, Carine Duhayon, Dmitry A. Valyaev, Yves Canac. NHC Core Phosphonium Ylide-based Palladium(II) Pincer Complexes: The Second Ylide Extremity Makes the Difference. Inorganic Chemistry 2020, 59 (10) , 7082-7096. https://doi.org/10.1021/acs.inorgchem.0c00561
    3. Xiang-Yu Zhang, Lei Zheng, Bing-Tao Guan. Lithium Diisopropylamide Catalyzed Allylic C–H Bond Alkylation with Styrenes. Organic Letters 2018, 20 (22) , 7177-7181. https://doi.org/10.1021/acs.orglett.8b03108
    4. Scott E. Denmark, Zachery D. Matesich, Son T. Nguyen, and Selena Milicevic Sephton . Catalytic Nucleophilic Allylation Driven by the Water–Gas Shift Reaction. The Journal of Organic Chemistry 2018, 83 (1) , 23-48. https://doi.org/10.1021/acs.joc.7b02658
    5. Wei Bao, Hanno Kossen, and Uwe Schneider . Formal Allylic C(sp3)–H Bond Activation of Alkenes Triggered by a Sodium Amide. Journal of the American Chemical Society 2017, 139 (12) , 4362-4365. https://doi.org/10.1021/jacs.7b01542
    6. Yoshikazu Horino, Ataru Aimono, and Hitoshi Abe . Pd-Catalyzed Three-Component Reaction of 3-(Pinacolatoboryl)ally Acetates, Aldehydes, and Organoboranes: A New Entry to Stereoselective Synthesis of (Z)-anti-Homoallylic Alcohols. Organic Letters 2015, 17 (11) , 2824-2827. https://doi.org/10.1021/acs.orglett.5b01244
    7. Benoît Riflade, David Lachkar, Julie Oble, Joaquim Li, Serge Thorimbert, Bernold Hasenknopf, and Emmanuel Lacôte . Pd-Containing Organopolyoxometalates Derived from Dawson Polyoxometalate [P2W15V3O62]9–: Lewis Acidity and Dual Site Catalysis. Organic Letters 2014, 16 (15) , 3860-3863. https://doi.org/10.1021/ol501644c
    8. Banibrata Ghosh, Maria Del Rosario I. Amado-Sierra, Daniel Holmes, and Robert E. Maleczka, Jr. . A One-Pot Allylation–Hydrostannation Sequence with Recycling of the Intermediate Tin Waste. Organic Letters 2014, 16 (9) , 2318-2321. https://doi.org/10.1021/ol500460u
    9. Elizabeth A. Bielinski, Wei Dai, Louise M. Guard, Nilay Hazari, and Michael K. Takase . Synthesis, Properties, and Reactivity of Palladium and Nickel NHC Complexes Supported by Combinations of Allyl, Cyclopentadienyl, and Indenyl Ligands. Organometallics 2013, 32 (15) , 4025-4037. https://doi.org/10.1021/om4002632
    10. Hidemasa Hikawa and Yuusaku Yokoyama . Palladium-Catalyzed Benzylation of Unprotected Anthranilic Acids with Benzyl Alcohols in Water. Organic Letters 2011, 13 (24) , 6512-6515. https://doi.org/10.1021/ol2028042
    11. Sanjay Pratihar and Sujit Roy . Reactivity and Selectivity of Organotin Reagents in Allylation and Arylation: Nucleophilicity Parameter as a Guide. Organometallics 2011, 30 (12) , 3257-3269. https://doi.org/10.1021/om101030c
    12. Shu̅ Kobayashi, Yuichiro Mori, John S. Fossey, and Matthew M. Salter . Catalytic Enantioselective Formation of C−C Bonds by Addition to Imines and Hydrazones: A Ten-Year Update. Chemical Reviews 2011, 111 (4) , 2626-2704. https://doi.org/10.1021/cr100204f
    13. Nicklas Selander and Kálmán J. Szabó . Catalysis by Palladium Pincer Complexes. Chemical Reviews 2011, 111 (3) , 2048-2076. https://doi.org/10.1021/cr1002112
    14. Martín Pérez-Rodríguez, Ataualpa A. C. Braga, Angel R. de Lera, Feliu Maseras, Rosana Álvarez, and Pablo Espinet . A DFT Study of the Effect of the Ligands in the Reductive Elimination from Palladium Bis(allyl) Complexes. Organometallics 2010, 29 (21) , 4983-4991. https://doi.org/10.1021/om1001974
    15. Shirong Lu, Tienan Jin, Ming Bao and Yoshinori Yamamoto. Palladium-Catalyzed Three-Component [3 + 2] Cycloaddition of Propargyl Trifluoroacetates, Ethylidene Malononitriles, and Allyltributylstannane. Organic Letters 2010, 12 (4) , 864-866. https://doi.org/10.1021/ol9029275
    16. Masakazu Nambo, Atsushi Wakamiya, Shigehiro Yamaguchi and Kenichiro Itami. Regioselective Unsymmetrical Tetraallylation of C60 through Palladium Catalysis. Journal of the American Chemical Society 2009, 131 (42) , 15112-15113. https://doi.org/10.1021/ja9071173
    17. Scott E. Denmark and Son T. Nguyen. Catalytic, Nucleophilic Allylation of Aldehydes with Allyl Acetate. Organic Letters 2009, 11 (3) , 781-784. https://doi.org/10.1021/ol8028725
    18. Michael B. Shaghafi, Benjamin L. Kohn and Elizabeth R. Jarvo. Palladium-Catalyzed Conjugate Allylation Reactions of α,β-Unsaturated N-Acylpyrroles. Organic Letters 2008, 10 (21) , 4743-4746. https://doi.org/10.1021/ol801830h
    19. Juhanes Aydin,, K. Senthil Kumar,, Mahmoud J. Sayah,, Olov A. Wallner, and, Kálmán J. Szabó. Synthesis and Catalytic Application of Chiral 1,1‘-Bi-2-naphthol- and Biphenanthrol-Based Pincer Complexes:  Selective Allylation of Sulfonimines with Allyl Stannane and Allyl Trifluoroborate. The Journal of Organic Chemistry 2007, 72 (13) , 4689-4697. https://doi.org/10.1021/jo070288b
    20. Fabio Pichierri and, Yoshinori Yamamoto. Mechanism and Chemoselectivity of the Pd(II)-Catalyzed Allylation of Aldehydes:  A Density Functional Theory Study. The Journal of Organic Chemistry 2007, 72 (3) , 861-869. https://doi.org/10.1021/jo061985r
    21. Qingwei Yao and, Matthew Sheets. A SeCSe−Pd(II) Pincer Complex as a Highly Efficient Catalyst for Allylation of Aldehydes with Allyltributyltin. The Journal of Organic Chemistry 2006, 71 (14) , 5384-5387. https://doi.org/10.1021/jo060456k
    22. Kao-Hsien Shen and, Ching-Fa Yao. Novel and Efficient Method for the Allylation of Carbonyl Compounds and Imines Using Triallylaluminum. The Journal of Organic Chemistry 2006, 71 (10) , 3980-3983. https://doi.org/10.1021/jo052385f
    23. Niclas Solin,, Olov A. Wallner, and, Kálmán J. Szabó. Palladium Pincer-Complex Catalyzed Allylation of Tosylimines by Potassium Trifluoro(allyl)borates. Organic Letters 2005, 7 (4) , 689-691. https://doi.org/10.1021/ol0475010
    24. Masamichi Shimizu,, Masanari Kimura,, Toshiya Watanabe, and, Yoshinao Tamaru. Palladium-Catalyzed Allylation of Imines with Allyl Alcohols. Organic Letters 2005, 7 (4) , 637-640. https://doi.org/10.1021/ol047609f
    25. Christopher Krug and, John F. Hartwig. Reactions of an Arylrhodium Complex with Aldehydes, Imines, Ketones, and Alkynones. New Classes of Insertion Reactions. Organometallics 2004, 23 (20) , 4594-4607. https://doi.org/10.1021/om0496582
    26. Niclas Solin,, Johan Kjellgren, and, Kálmán J. Szabó. Pincer Complex-Catalyzed Allylation of Aldehyde and Imine Substrates via Nucleophilic η1-Allyl Palladium Intermediates. Journal of the American Chemical Society 2004, 126 (22) , 7026-7033. https://doi.org/10.1021/ja049357j
    27. Itaru Nakamura and, Yoshinori Yamamoto. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Chemical Reviews 2004, 104 (5) , 2127-2198. https://doi.org/10.1021/cr020095i
    28. Prodeep Phukan. Iodine as a Very Powerful Catalyst for Three-Component Synthesis of Protected Homoallylic Amines. The Journal of Organic Chemistry 2004, 69 (11) , 4005-4006. https://doi.org/10.1021/jo0498462
    29. Rodney A. Fernandes and, Yoshinori Yamamoto. The First Catalytic Asymmetric Allylation of Imines with the Tetraallylsilane−TBAF−MeOH System, Using the Chiral Bis-π-allylpalladium Complex. The Journal of Organic Chemistry 2004, 69 (3) , 735-738. https://doi.org/10.1021/jo035453b
    30. Rodney A. Fernandes,, Anton Stimac, and, Yoshinori Yamamoto. Chiral Bis-π-allylpalladium Complex Catalyzed Asymmetric Allylation of Imines:  Enhancement of the Enantioselectivity and Chemical Yield in the Presence of Water. Journal of the American Chemical Society 2003, 125 (46) , 14133-14139. https://doi.org/10.1021/ja037272x
    31. Sara Sebelius,, Olov A. Wallner, and, Kálmán J. Szabó. Palladium-Catalyzed Coupling of Allyl Acetates with Aldehyde and Imine Electrophiles in the Presence of Bis(pinacolato)diboron. Organic Letters 2003, 5 (17) , 3065-3068. https://doi.org/10.1021/ol035052i
    32. Olov A. Wallner and, Kálmán J. Szabó. Palladium-Catalyzed Electrophilic Substitution of Allyl Chlorides and Acetates via Bis-allylpalladium Intermediates. The Journal of Organic Chemistry 2003, 68 (7) , 2934-2943. https://doi.org/10.1021/jo026767m
    33. Olov A. Wallner and, Kálmán J. Szabó. Regioselective Palladium-Catalyzed Electrophilic Allylic Substitution in the Presence of Hexamethylditin. Organic Letters 2002, 4 (9) , 1563-1566. https://doi.org/10.1021/ol0257777
    34. Christopher Krug and, John F. Hartwig. Direct Observation of Aldehyde Insertion into Rhodium−Aryl and −Alkoxide Complexes. Journal of the American Chemical Society 2002, 124 (8) , 1674-1679. https://doi.org/10.1021/ja017401e
    35. Shigeyoshi Sakaki,, Tetsuro Ohki,, Tatsunori Takayama,, Manabu Sugimoto,, Teruyuki Kondo, and, Take-aki Mitsudo. Participation of (η3-Allyl)ruthenium(II) Complexes in C−C Bond Formation and C−C Bond Cleavage. A Theoretical Study. Organometallics 2001, 20 (14) , 3145-3158. https://doi.org/10.1021/om010011g
    36. Yukihiro Motoyama,, Masanori Okano,, Hiroki Narusawa,, Nobuyuki Makihara,, Katsuyuki Aoki, and, Hisao Nishiyama. Bis(oxazolinyl)phenylrhodium(III) Aqua Complexes:  Synthesis, Structure, Enantioselective Allylation of Aldehydes, and Mechanistic Studies. Organometallics 2001, 20 (8) , 1580-1591. https://doi.org/10.1021/om010018y
    37. Niclas Solin,, Sanjay Narayan, and, Kálmán J. Szabó. Control of the Regioselectivity in Catalytic Transformations Involving Amphiphilic Bis-allylpalladium Intermediates:  Mechanism and Synthetic Applications. The Journal of Organic Chemistry 2001, 66 (5) , 1686-1693. https://doi.org/10.1021/jo001374d
    38. Niclas Solin,, Sanjay Narayan, and, Kálmán J. Szabó. Palladium-Catalyzed Tandem Bis-allylation of Isocyanates. Organic Letters 2001, 3 (6) , 909-912. https://doi.org/10.1021/ol015545s
    39. Hiroyuki Nakamura,, Kouichi Aoyagi,, Jae-Goo Shim, and, Yoshinori Yamamoto. Catalytic Amphiphilic Allylation via Bis-π-allylpalladium Complexes and Its Application to the Synthesis of Medium-Sized Carbocycles. Journal of the American Chemical Society 2001, 123 (3) , 372-377. https://doi.org/10.1021/ja002931g
    40. Ming Bao,, Hiroyuki Nakamura, and, Yoshinori Yamamoto. Facile Allylative Dearomatization Catalyzed by Palladium. Journal of the American Chemical Society 2001, 123 (4) , 759-760. https://doi.org/10.1021/ja003718n
    41. Kevin R. Roesch and, Richard C. Larock. Synthesis of Isoindolo[2,1-a]indoles by the Palladium-Catalyzed Annulation of Internal Acetylenes. The Journal of Organic Chemistry 2001, 66 (2) , 412-420. https://doi.org/10.1021/jo000997o
    42. Russell J. Franks and, Kenneth M. Nicholas. Palladium-Catalyzed Carboxylative Coupling of Allylstannanes and Allyl Halides. Organometallics 2000, 19 (8) , 1458-1460. https://doi.org/10.1021/om0000966
    43. Hiroyuki Nakamura,, Hideki Iwama,, Masateru Ito, and, Yoshinori Yamamoto. Palladium(0)-Catalyzed Cope Rearrangement of Acyclic 1,5-Dienes. Bis(π-allyl)palladium(II) Intermediate. Journal of the American Chemical Society 1999, 121 (46) , 10850-10851. https://doi.org/10.1021/ja992117x
    44. Shū Kobayashi and, Haruro Ishitani. Catalytic Enantioselective Addition to Imines. Chemical Reviews 1999, 99 (5) , 1069-1094. https://doi.org/10.1021/cr980414z
    45. Kaori Nakamura,, Hiroyuki Nakamura, and, Yoshinori Yamamoto. Chiral π-Allylpalladium-Catalyzed Asymmetric Allylation of Imines:  Replacement of Allylstannanes by Allylsilanes. The Journal of Organic Chemistry 1999, 64 (8) , 2614-2615. https://doi.org/10.1021/jo9901081
    46. Hiroyuki Nakamura,, Kaori Nakamura, and, Yoshinori Yamamoto. Catalytic Asymmetric Allylation of Imines via Chiral Bis-π-allylpalladium Complexes. Journal of the American Chemical Society 1998, 120 (17) , 4242-4243. https://doi.org/10.1021/ja973540d
    47. Min Shi and, Kenneth M. Nicholas. Palladium-Catalyzed Carboxylation of Allyl Stannanes. Journal of the American Chemical Society 1997, 119 (21) , 5057-5058. https://doi.org/10.1021/ja9639832
    48. Benjamin J. Rose, Matthias Brewer. Lewis acid mediated allylation of vinyl diazonium ions by allylstannanes. Organic & Biomolecular Chemistry 2024, 22 (21) , 4274-4277. https://doi.org/10.1039/D4OB00254G
    49. Masanari Kimura. Metal Homoenolates and Homoallyl Anions. 2024https://doi.org/10.1016/B978-0-323-96025-0.00043-0
    50. Branislav Kokić, Ana Andrijević, Igor M. Opsenica. Catalytic C–C Bond Forming Reaction to Imines. 2024https://doi.org/10.1016/B978-0-323-96025-0.00054-5
    51. Chengyu Yao, Deguang Liu, Zheyuan Xu, Haizhu Yu, Jing Shi. Substituent Effects on the Carboxylation Step of Allyllic Substrates: A Density Functional Theory Study. ChemistrySelect 2023, 8 (20) https://doi.org/10.1002/slct.202300831
    52. Satyanarayana Tummanapalli, Kali Charan Gulipalli, Srinivas Endoori, Srinu Bodige, Anil Kumar Pommidi, Srinivas Medaboina, Swathi Rejinthala, Suresh Choppadandi, Ravi Boya, Ashok Kanuka, Muralikrishna Valluri. A highly regio- and stereoselective Pd-catalyzed electrocarboxylation of Baylis-Hillman acetates: An interesting switchable regioselectivity based on electrode material. Tetrahedron Letters 2022, 104 , 154022. https://doi.org/10.1016/j.tetlet.2022.154022
    53. Yoshikazu Horino, Toshinobu Korenaga. Versatile Reactivity of Metalloid‐Substituted π‐Allylpalladium Species. The Chemical Record 2021, 21 (12) , 3911-3924. https://doi.org/10.1002/tcr.202100203
    54. Yue Li, Peng Chen, Zhi-Chao Chen, Wei Du, Qin Ouyang, Ying-Chun Chen. Palladium-catalysed oxidative nucleophilic allylation between alkenes and activated ketimines. Organic Chemistry Frontiers 2021, 8 (19) , 5418-5423. https://doi.org/10.1039/D1QO00505G
    55. Hidemasa Hikawa, Taku Nakayama, Makiko Takahashi, Shoko Kikkawa, Isao Azumaya. Direct Use of Benzylic Alcohols for Multicomponent Synthesis of 2‐Aryl Quinazolinones Utilizing the π‐Benzylpalladium(II) System in Water. Advanced Synthesis & Catalysis 2021, 363 (16) , 4075-4084. https://doi.org/10.1002/adsc.202100535
    56. Taku Nakayama, Hidemasa Hikawa, Shoko Kikkawa, Isao Azumaya. Water-promoted dehydrative coupling of 2-aminopyridines in heptane via a borrowing hydrogen strategy. RSC Advances 2021, 11 (37) , 23144-23150. https://doi.org/10.1039/D1RA04118E
    57. Yuewei Zhang, Qingqing Bao, Ning Zhang, Shuohang Wang, Xue Yu. Stereocontrolled addition of Grignard reagents to oxa-bridged benzazepines: highly efficient synthesis of functionalized benzazepine scaffolds. RSC Advances 2020, 10 (68) , 41802-41806. https://doi.org/10.1039/D0RA08758K
    58. Jaya Pogula, Soumi Laha, B. Sreedhar, Pravin R. Likhar. Copper‐Impregnated Magnesium‐Lanthanum Mixed Oxide: A Reusable Heterogeneous Catalyst for Allylation of Aldehydes and Ketones. Advanced Synthesis & Catalysis 2020, 362 (5) , 1176-1183. https://doi.org/10.1002/adsc.201901133
    59. Lucero González-Sebastián, David Morales-Morales. Cross-coupling reactions catalysed by palladium pincer complexes. A review of recent advances. Journal of Organometallic Chemistry 2019, 893 , 39-51. https://doi.org/10.1016/j.jorganchem.2019.04.021
    60. Takahiko Akiyama. Development of Chiral Phosphoric Acid Catalyst. Journal of Synthetic Organic Chemistry, Japan 2019, 77 (8) , 850-853. https://doi.org/10.5059/yukigoseikyokaishi.77.850
    61. Ankur Maji, Ovender Singh, Sweety Rathi, U. P. Singh, Kaushik Ghosh. Rational Design of Sterically Hindered and Unsymmetrical N py N im O ph Pincer‐Type Ligands and Their Palladium(II) Complexes: Catalytic Applications in Suzuki–Miyaura Reaction and Allylation of Aldehydes. ChemistrySelect 2019, 4 (24) , 7246-7259. https://doi.org/10.1002/slct.201900946
    62. Hui Sun, Jian Jiang, Yimeng Sun, Qingwu Zhang, Minghua Liu. Self-assembled organic nanotube promoted allylation of ketones in aqueous phase. Chemical Communications 2019, 55 (22) , 3254-3257. https://doi.org/10.1039/C9CC00941H
    63. Hugo Valdés, Marco A. García‐Eleno, Daniel Canseco‐Gonzalez, David Morales‐Morales. Recent Advances in Catalysis with Transition‐Metal Pincer Compounds. ChemCatChem 2018, 10 (15) , 3136-3172. https://doi.org/10.1002/cctc.201702019
    64. Richard C. Larock, Alexandre A. Pletnev. Formation of Amines from Aldehydes, Ketones, and Derivatives. 2018, 1-65. https://doi.org/10.1002/9781118662083.cot05-010
    65. Kim Spielmann, Gilles Niel, Renata Marcia de Figueiredo, Jean-Marc Campagne. Catalytic nucleophilic ‘umpoled’ π-allyl reagents. Chemical Society Reviews 2018, 47 (4) , 1159-1173. https://doi.org/10.1039/C7CS00449D
    66. Hidemasa Hikawa, Risa Ichinose, Shoko Kikkawa, Isao Azumaya. A palladium-catalyzed dehydrative N -benzylation/C–H benzylation cascade of 2-morpholinoanilines on water. Green Chemistry 2018, 20 (6) , 1297-1305. https://doi.org/10.1039/C7GC03780E
    67. Yoshikazu Horino, Miki Sugata, Tetsu Sugita, Ataru Aimono, Hitoshi Abe. Palladium-catalyzed diastereoselective synthesis of homoaldol equivalent products. Tetrahedron Letters 2017, 58 (22) , 2131-2134. https://doi.org/10.1016/j.tetlet.2017.04.064
    68. Mengmeng Sun, Qiang Fu, Lijun Gao, Yanping Zheng, Yangyang Li, Mingshu Chen, Xinhe Bao. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors. Nano Research 2017, 10 (4) , 1403-1412. https://doi.org/10.1007/s12274-017-1512-8
    69. Yoshikazu Horino. Novel Carbon-Carbon Bond Forming Reactions by Allylpalladium Intermediates Possessing Silyl, Boryl, or Stannyl Groups. Journal of Synthetic Organic Chemistry, Japan 2017, 75 (1) , 24-37. https://doi.org/10.5059/yukigoseikyokaishi.75.24
    70. Yoshikazu Horino, Ataru Aimono, Naoki Minoshima, Hitoshi Abe. Facile synthesis of (Z)-anti-homoallylic alcohols from 3-(pinacolatoboryl)allyl alcohols, aldehydes, and triorganoboranes via a palladium-catalyzed three-component reaction. Tetrahedron Letters 2016, 57 (31) , 3561-3564. https://doi.org/10.1016/j.tetlet.2016.06.121
    71. Yoshikazu Horino, Miki Sugata, Hitoshi Abe. Palladium‐Catalyzed Three‐Component Reaction of 3‐(Tri‐ n ‐ butylstannyl)allyl Acetates, Aldehydes, and Triorganoboranes: An Alternative to the Carbonyl Allylation Using α,γ‐Substituted Allylic Tin Reagents. Advanced Synthesis & Catalysis 2016, 358 (7) , 1023-1028. https://doi.org/10.1002/adsc.201501049
    72. Farhad Panahi, Marzieh Bahmani, Nasser Iranpoor. Nickel‐Catalyzed Reductive Benzylation of Aldehydes with Benzyl Halides and Pseudohalides. Advanced Synthesis & Catalysis 2015, 357 (6) , 1211-1220. https://doi.org/10.1002/adsc.201400970
    73. Hidemasa Hikawa, Kyoko Izumi, Yukari Ino, Shoko Kikkawa, Yuusaku Yokoyama, Isao Azumaya. Palladium‐Catalyzed Benzylic CH Benzylation via Bis‐Benzylpalladium(II) Complexes in Water: An Effective Pathway for the Direct Construction of N ‐(1,2‐Diphenylethyl)anilines. Advanced Synthesis & Catalysis 2015, 357 (5) , 1037-1048. https://doi.org/10.1002/adsc.201401017
    74. Hirokazu Tsukamoto, Ayumu Kawase, Takayuki Doi. Asymmetric palladium-catalyzed umpolung cyclization of allylic acetate-aldehyde using formate as a reductant. Chemical Communications 2015, 51 (38) , 8027-8030. https://doi.org/10.1039/C5CC02176F
    75. Yoshikazu Horino, Yu Takahashi, Ryota Kobayashi, Hitoshi Abe. Palladium‐Catalyzed Cyclopropanation of Strained Alkenes with 3‐Pinacolatoboryl‐1‐arylallyl Carboxylates. European Journal of Organic Chemistry 2014, 2014 (35) , 7818-7822. https://doi.org/10.1002/ejoc.201403284
    76. Jian Li, Wenxian Lv, Danfeng Huang, Ke‐Hu Wang, Teng Niu, Yingpeng Su, Yulai Hu. Sn‐mediated one‐pot four‐component allylation of aldimines. Applied Organometallic Chemistry 2014, 28 (4) , 286-289. https://doi.org/10.1002/aoc.3122
    77. Yoshinori Yamamoto. Perspectives on organic synthesis using nanoporous metal skeleton catalysts. Tetrahedron 2014, 70 (14) , 2305-2317. https://doi.org/10.1016/j.tet.2013.09.065
    78. Anton Bayer, Uli Kazmaier. Cross‐Coupling Reactions via sπ‐Allylmetal Intermediates. 2014, 925-994. https://doi.org/10.1002/9783527655588.ch12
    79. Belén Martín‐Matute, Kálmán J. Szabó, Terence N. Mitchell. Organotin Reagents in Cross‐Coupling Reactions. 2014, 423-474. https://doi.org/10.1002/9783527655588.ch6
    80. P.V. Ramachandran, D.R. Nicponski, P.D. Gagare. 2.02 Allylsilanes, Allylstannanes, and Related Compounds. 2014, 72-147. https://doi.org/10.1016/B978-0-08-097742-3.00202-0
    81. M. Kimura. 2.15 Metal Homoenolates. 2014, 606-628. https://doi.org/10.1016/B978-0-08-097742-3.00216-0
    82. Hiroaki Yamamoto, Kei Ohkubo, Seiji Akimoto, Shunichi Fukuzumi, Akihiko Tsuda. Control of reaction pathways in the photochemical reaction of a quinone with tetramethylethylene by metal binding. Org. Biomol. Chem. 2014, 12 (36) , 7004-7017. https://doi.org/10.1039/C4OB00659C
    83. Hidemasa Hikawa, Naoya Matsuda, Hideharu Suzuki, Yuusaku Yokoyama, Isao Azumaya. N ‐Benzylation/Benzylic CH Amidation Cascade by the (η 3 ‐Benzyl)palladium System in Aqueous Media: An Effective Pathway for the Direct Construction of 3‐Phenyl‐3,4‐dihydro‐ (2 H )‐1,2,4‐benzothiadiazine 1,1‐Dioxides. Advanced Synthesis & Catalysis 2013, 355 (11-12) , 2308-2320. https://doi.org/10.1002/adsc.201300317
    84. Stéphanie Toulot, Quentin Bonnin, Virginie Comte, Louis Adriaenssens, Philippe Richard, Pierre Le Gendre. A Straightforward Route to Homoallyl‐Homocrotylamines Promoted by a Titanium Complex. European Journal of Organic Chemistry 2013, 2013 (4) , 736-741. https://doi.org/10.1002/ejoc.201201262
    85. Kálmán J. Szabó. Pincer Complexes as Catalysts in Organic Chemistry. 2013, 203-241. https://doi.org/10.1007/978-3-642-31081-2_7
    86. Manuel Mahlau, Pilar García‐García, Benjamin List. Asymmetric Counteranion‐Directed Catalytic Hosomi–Sakurai Reaction. Chemistry – A European Journal 2012, 18 (51) , 16283-16287. https://doi.org/10.1002/chem.201203623
    87. Jun Takaya, Shuhei Nakamura, Nobuharu Iwasawa. Synthesis, Structure, and Catalytic Activity of Palladium Complexes Bearing a Tridentate PXP-Pincer Ligand of Heavier Group 14 Element (X = Ge, Sn). Chemistry Letters 2012, 41 (9) , 967-969. https://doi.org/10.1246/cl.2012.967
    88. U. Sankappa Rai, Arun M. Isloor, Prakash Shetty, Nishitha Isloor, Mahesh Padaki, Hoong-Kun Fun. A novel series of homoallylic amines as potential antimicrobials. Medicinal Chemistry Research 2012, 21 (7) , 1090-1097. https://doi.org/10.1007/s00044-011-9607-3
    89. Atsushi Shiota, Helena C. Malinakova. Palladacycles: Effective catalysts for a multicomponent reaction  with allylpalladium(II)-intermediates. Journal of Organometallic Chemistry 2012, 704 , 9-16. https://doi.org/10.1016/j.jorganchem.2011.11.038
    90. Rodney A. Fernandes, Dipali A. Chaudhari. Development of the First Menthane‐Based Chiral Bis(π‐allylpalladium) Catalysis: Asymmetric Allylation of Imines. European Journal of Organic Chemistry 2012, 2012 (10) , 1945-1952. https://doi.org/10.1002/ejoc.201101588
    91. Arun Kumar, Gyandshwar K. Rao, Fariha Saleem, Ajai K. Singh. Organoselenium ligands in catalysis. Dalton Transactions 2012, 41 (39) , 11949. https://doi.org/10.1039/c2dt31198d
    92. David J. Hallett, Nongluk Tanikkul, Eric J. Thomas. Remote stereocontrol in reactions between 4- and 5-alkoxyalk-2-enylstannanes and 1-alkoxycarbonylimines and analogues: stereoselective approaches to novel α-amino acids. Organic & Biomolecular Chemistry 2012, 10 (30) , 6130. https://doi.org/10.1039/c2ob25097g
    93. Rodney A. Fernandes, Jothi L. Nallasivam. Enantioselective allylation of imines catalyzed by newly developed (−)-β-pinene-based π-allylpalladium catalyst: an efficient synthesis of (R)-α-propylpiperonylamine and (R)-pipecolic acid. Organic & Biomolecular Chemistry 2012, 10 (38) , 7789. https://doi.org/10.1039/c2ob26188j
    94. Masakazu Nambo, Atsushi Wakamiya, Kenichiro Itami. Palladium-catalyzed tetraallylation of C60 with allyl chloride and allylstannane: mechanism, regioselectivity, and enantioselectivity. Chemical Science 2012, 3 (12) , 3474. https://doi.org/10.1039/c2sc21126b
    95. Haibo Mei, Xiaoyun Ji, Jianlin Han, Yi Pan. Tetrabenzylhafnium as a New Organometallic Reagent for Imine Addition Resulting in α‐Branched Amines. European Journal of Organic Chemistry 2011, 2011 (29) , 5783-5786. https://doi.org/10.1002/ejoc.201100820
    96. Ranjan Jana, James J. Partridge, Jon A. Tunge. Migratory Decarboxylative Coupling of Coumarins: Synthetic and Mechanistic Aspects. Angewandte Chemie 2011, 123 (22) , 5263-5267. https://doi.org/10.1002/ange.201100765
    97. Ranjan Jana, James J. Partridge, Jon A. Tunge. Migratory Decarboxylative Coupling of Coumarins: Synthetic and Mechanistic Aspects. Angewandte Chemie International Edition 2011, 50 (22) , 5157-5161. https://doi.org/10.1002/anie.201100765
    98. Balin Kumar Bhuyan, Arun Jyoti Borah, Kula Kamal Senapati, Prodeep Phukan. Ti-exchanged ZSM-5 as heterogeneous catalyst for allylation of aldehydes with allyltributylstannane. Tetrahedron Letters 2011, 52 (21) , 2649-2651. https://doi.org/10.1016/j.tetlet.2011.03.056
    99. Carolyne Stafford, Bruce A. Arndtsen. Synthesis of neutral nickel–methyl complexes with monodentate imines and their sequential insertion of carbon monoxide and imine. Inorganica Chimica Acta 2011, 369 (1) , 231-239. https://doi.org/10.1016/j.ica.2010.12.024
    100. Alba Millán, Araceli G. Campaña, Btissam Bazdi, Delia Miguel, Luis Álvarez de Cienfuegos, Antonio M. Echavarren, Juan M. Cuerva. Ti/Pd Bimetallic Systems for the Efficient Allylation of Carbonyl Compounds and Homocoupling Reactions. Chemistry – A European Journal 2011, 17 (14) , 3985-3994. https://doi.org/10.1002/chem.201003315
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1996, 118, 28, 6641–6647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja9608858
    Published July 17, 1996
    Copyright © 1996 American Chemical Society

    Article Views

    2762

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.