Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes

View Author Information
Contribution from the Laboratory of Inorganic Chemistry, Swiss Federal Institute of Technology (ETH), Universitätstrasse 6, CH-8092 Zürich, Switzerland, and Electrochemistry Section, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
Cite this: J. Am. Chem. Soc. 1999, 121, 36, 8324–8331
Publication Date (Web):August 31, 1999
https://doi.org/10.1021/ja991085a
Copyright © 1999 American Chemical Society

    Article Views

    3121

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Vanadium oxide nanotubes were obtained as the main product in a sol−gel reaction followed by hydrothermal treatment from vanadium(V) alkoxide precursors and primary amines (CnH2n+1NH2 with 4 ≤ n ≤ 22) or α,ω-diamines (H2N[CH2]nNH2 with 14 ≤ n ≤ 20). The structure of the nanotubes has been characterized by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and magnetic measurements. The tubes are up to 15 μm long and have outer diameters ranging from 15 to 150 nm and inner diameters from 5 to 50 nm. The tube walls consist of 2−30 crystalline vanadium oxide layers with amine or diamine molecules intercalated in between. The distance between the layers (1.7−3.8 nm) is proportional to the length of the alkylamine, which acts as a structure-directing template. The structure within the layers has a square metric with a ≈ 0.61 nm. Cross-sectional TEM images demonstrate the predominance of serpentine-like scrolls rather than of concentric tubes. The intercalated templates can be easily substituted, e.g. by diamines, while the tubular morphology is preserved. This points to a highly flexible structure.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     ETH Zürich.

     Paul Scherrer Institute.

    *

     To whom correspondence should be addressed. E-mail:  nesper@ inorg.chem.ethz.ch.

    Cited By

    This article is cited by 410 publications.

    1. Sukanya Datta, Changshin Jo, Michael De Volder, Laura Torrente-Murciano. Morphological Control of Nanostructured V2O5 by Deep Eutectic Solvents. ACS Applied Materials & Interfaces 2020, 12 (16) , 18803-18812. https://doi.org/10.1021/acsami.9b17916
    2. David McNulty, D. Noel Buckley, Colm O’Dwyer. NaV2O5 from Sodium Ion-Exchanged Vanadium Oxide Nanotubes and Its Efficient Reversible Lithiation as a Li-Ion Anode Material. ACS Applied Energy Materials 2019, 2 (1) , 822-832. https://doi.org/10.1021/acsaem.8b01895
    3. Delhia Alby, Nora El Jeaidi, Fabrice Salles, Jerzy Zajac, Clarence Charnay. Influence of the Templating Amine on the Nanostructure and Charge of Layered Vanadates for Radioactive Wastewater Treatment. ACS Applied Nano Materials 2019, 2 (1) , 497-504. https://doi.org/10.1021/acsanm.8b02058
    4. Christian K. Christensen, Espen D. Bøjesen, Daniel R. Sørensen, Jonas H. Kristensen, Jette K. Mathiesen, Bo B. Iversen, Dorthe B. Ravnsbæk. Structural Evolution during Lithium- and Magnesium-Ion Intercalation in Vanadium Oxide Nanotube Electrodes for Battery Applications. ACS Applied Nano Materials 2018, 1 (9) , 5071-5082. https://doi.org/10.1021/acsanm.8b01183
    5. Alexey Cherevan, Paul Gebhardt, Andreas Kunzmann, Rubén D. Costa, Dominik Eder. Beware of Doping: Ta2O5 Nanotube Photocatalyst Using CNTs as Hard Templates. ACS Applied Energy Materials 2018, 1 (3) , 1259-1267. https://doi.org/10.1021/acsaem.8b00006
    6. Wei Cao, Linghong Lu, Liangliang Huang, Yihui Dong, and Xiaohua Lu . Molecular Behavior of Water on Titanium Dioxide Nanotubes: A Molecular Dynamics Simulation Study. Journal of Chemical & Engineering Data 2016, 61 (12) , 4131-4138. https://doi.org/10.1021/acs.jced.6b00551
    7. Ju-Sik Kim, Ryoung-Hee Kim, Dong-Jin Yun, Seok-Soo Lee, Seok-Gwang Doo, Dong Young Kim, and Hyunjin Kim . Cycling Stability of a VOx Nanotube Cathode in Mixture of Ethyl Acetate and Tetramethylsilane-Based Electrolytes for Rechargeable Mg-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (40) , 26657-26663. https://doi.org/10.1021/acsami.6b05808
    8. Bao-Rui Jia, Ming-Li Qin, Zi-Li Zhang, Shu-Mei Li, De-Yin Zhang, Hao-Yang Wu, Lin Zhang, Xin Lu, and Xuan-Hui Qu . Hollow Porous VOx/C Nanoscrolls as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (39) , 25954-25961. https://doi.org/10.1021/acsami.6b07439
    9. Taha Rostamzadeh, Shiva Adireddy, and John B. Wiley . Formation of Scrolled Silver Vanadate Nanopeapods by Both Capture and Insertion Strategies. Chemistry of Materials 2015, 27 (10) , 3694-3699. https://doi.org/10.1021/acs.chemmater.5b01161
    10. Hirotaka Okamoto, Yusuke Sugiyama, Koji Nakanishi, Toshiaki Ohta, Takuya Mitsuoka, and Hideyuki Nakano . Surface Modification of Layered Polysilane with n-Alkylamines, α,ω-Diaminoalkanes, and ω-Aminocarboxylic Acids. Chemistry of Materials 2015, 27 (4) , 1292-1298. https://doi.org/10.1021/cm5042869
    11. Kiyoung Lee, Anca Mazare, and Patrik Schmuki . One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews 2014, 114 (19) , 9385-9454. https://doi.org/10.1021/cr500061m
    12. Ulrich Tritschler, Igor Zlotnikov, Paul Zaslansky, Peter Fratzl, Helmut Schlaad, and Helmut Cölfen . Hierarchically Structured Vanadium Pentoxide–Polymer Hybrid Materials. ACS Nano 2014, 8 (5) , 5089-5104. https://doi.org/10.1021/nn501153u
    13. Antoine Thill, Béatrice Guiose, Maria Bacia-Verloop, Valérie Geertsen, and Luc Belloni . How the Diameter and Structure of (OH)3Al2O3SixGe1–xOH Imogolite Nanotubes Are Controlled by an Adhesion versus Curvature Competition. The Journal of Physical Chemistry C 2012, 116 (51) , 26841-26849. https://doi.org/10.1021/jp310547k
    14. Maguy Jaber, François Ribot, Laurent Binet, Valérie Briois, Sophie Cassaignon, K. J. Rao, Jacques Livage, and Nathalie Steunou . Ex Situ X-ray Diffraction, X-ray Absorption Near Edge Structure, Electron Spin Resonance, and Transmission Electron Microscopy Study of the Hydrothermal Crystallization of Vanadium Oxide Nanotubes: An Insight into the Mechanism of Formation. The Journal of Physical Chemistry C 2012, 116 (47) , 25126-25136. https://doi.org/10.1021/jp3091039
    15. Xiaowei Zhou, Guangming Wu, Guohua Gao, Jichao Wang, Huiyu Yang, Jiandong Wu, Jun Shen, Bin Zhou, and Zhihua Zhang . Electrochemical Performance Improvement of Vanadium Oxide Nanotubes as Cathode Materials for Lithium Ion Batteries through Ferric Ion Exchange Technique. The Journal of Physical Chemistry C 2012, 116 (41) , 21685-21692. https://doi.org/10.1021/jp306098q
    16. Sanjaya D. Perera, Bijal Patel, Jeliza Bonso, Max Grunewald, John P. Ferraris, and Kenneth J. Balkus, Jr. . Vanadium Oxide Nanotube Spherical Clusters Prepared on Carbon Fabrics for Energy Storage Applications. ACS Applied Materials & Interfaces 2011, 3 (11) , 4512-4517. https://doi.org/10.1021/am2011965
    17. Gujjarahalli Thimmanna Chandrappa, Pallellappa Chithaiah, Siddaramanna Ashoka, and Jacques Livage . Morphological Evolution of (NH4)0.5V2O5·mH2O Fibers into Belts, Triangles, and Rings. Inorganic Chemistry 2011, 50 (16) , 7421-7428. https://doi.org/10.1021/ic2005858
    18. Mihyun Park, Nohyun Lee, Seung Hong Choi, Kwangjin An, Seung-Ho Yu, Jeong Hyun Kim, Seung-Hae Kwon, Dokyoon Kim, Hyoungsu Kim, Sung-Il Baek, Tae-Young Ahn, Ok Kyu Park, Jae Sung Son, Yung-Eun Sung, Young-Woon Kim, Zhongwu Wang, Nicola Pinna, and Taeghwan Hyeon . Large-Scale Synthesis of Ultrathin Manganese Oxide Nanoplates and Their Applications to T1 MRI Contrast Agents. Chemistry of Materials 2011, 23 (14) , 3318-3324. https://doi.org/10.1021/cm200414c
    19. Andreia I. Popa, Evgenia Vavilova, Christine Täschner, Vladislav Kataev, Bernd Büchner, and Rüdiger Klingeler . Electrochemical Behavior and Magnetic Properties of Vanadium Oxide Nanotubes. The Journal of Physical Chemistry C 2011, 115 (13) , 5265-5270. https://doi.org/10.1021/jp109327x
    20. Songjun Zeng, Guozhong Ren, Wen Li, Changfu Xu and Qibin Yang. Highly Uniform Tm3+-Doped NaYbF4 Microtubes: Controlled Synthesis and Intense Ultraviolet Photoluminescence. The Journal of Physical Chemistry C 2010, 114 (24) , 10750-10754. https://doi.org/10.1021/jp102175q
    21. Regine Boldt, Martin Kaiser, Daniel Köhler, Frank Krumeich and Michael Ruck . High-Yield Synthesis and Structure of Double-Walled Bismuth-Nanotubes. Nano Letters 2010, 10 (1) , 208-210. https://doi.org/10.1021/nl903291j
    22. Andrey N. Enyashin, Maya Bar-Sadan, Jeremy Sloan, Lothar Houben and Gotthard Seifert . Nanoseashells and Nanooctahedra of MoS2: Routes to Inorganic Fullerenes. Chemistry of Materials 2009, 21 (23) , 5627-5636. https://doi.org/10.1021/cm9021326
    23. Amjad Nisar, Jing Zhuang and Xun Wang. Cluster-Based Self-Assembly: Reversible Formation of Polyoxometalate Nanocones and Nanotubes. Chemistry of Materials 2009, 21 (16) , 3745-3751. https://doi.org/10.1021/cm901305r
    24. Waldir Avansi Jr., Cauê Ribeiro, Edson R. Leite and Valmor R. Mastelaro . Vanadium Pentoxide Nanostructures: An Effective Control of Morphology and Crystal Structure in Hydrothermal Conditions. Crystal Growth & Design 2009, 9 (8) , 3626-3631. https://doi.org/10.1021/cg900373f
    25. Cuicui Yu, Min Yu, Chunxia Li, Cuimiao Zhang, Piaoping Yang and Jun Lin . Spindle-like Lanthanide Orthovanadate Nanoparticles: Facile Synthesis by Ultrasonic Irradiation, Characterization, and Luminescent Properties. Crystal Growth & Design 2009, 9 (2) , 783-791. https://doi.org/10.1021/cg8003189
    26. L. Irais Vera-Robles and Antonio Campero. A Novel Approach to Vanadium Oxide Nanotubes by Oxidation of V4+ species. The Journal of Physical Chemistry C 2008, 112 (50) , 19930-19933. https://doi.org/10.1021/jp807735c
    27. Igor Djerdj, Denis Sheptyakov, Fabia Gozzo, Denis Arčon, Reinhard Nesper and Markus Niederberger . Oxygen Self-Doping in Hollandite-Type Vanadium Oxyhydroxide Nanorods. Journal of the American Chemical Society 2008, 130 (34) , 11364-11375. https://doi.org/10.1021/ja801813a
    28. Tao Gao, Qinglan Wu, Helmer Fjellvåg and Poul Norby. Topological Properties of Titanate Nanotubes. The Journal of Physical Chemistry C 2008, 112 (23) , 8548-8552. https://doi.org/10.1021/jp800714s
    29. Fu Zhou, Xuemei Zhao, Cunguang Yuan and Li Li . Vanadium Pentoxide Nanowires: Hydrothermal Synthesis, Formation Mechanism, and Phase Control Parameters. Crystal Growth & Design 2008, 8 (2) , 723-727. https://doi.org/10.1021/cg060816x
    30. Changdeuck Bae, Hyunjun Yoo, Sihyeong Kim, Kyungeun Lee, Jiyoung Kim, Myung M. Sung and Hyunjung Shin. Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications. Chemistry of Materials 2008, 20 (3) , 756-767. https://doi.org/10.1021/cm702138c
    31. Shufeng Shi,, Minhua Cao,, Xiaoyan He, and, Haiming Xie. Surfactant-Assisted Hydrothermal Growth of Single-Crystalline Ultrahigh-Aspect-Ratio Vanadium Oxide Nanobelts. Crystal Growth & Design 2007, 7 (9) , 1893-1897. https://doi.org/10.1021/cg060847s
    32. J. Cao,, J. L. Musfeldt,, S. Mazumdar,, N. A. Chernova, and, M. S. Whittingham. Pinned Low-Energy Electronic Excitation in Metal-Exchanged Vanadium Oxide Nanoscrolls. Nano Letters 2007, 7 (8) , 2351-2355. https://doi.org/10.1021/nl071002l
    33. Liming Shen,, Ningzhong Bao,, Kazumichi Yanagisawa,, Kazunari Domen,, Craig A. Grimes, and, Arunava Gupta. Organic Molecule-Assisted Hydrothermal Self-Assembly of Size-Controlled Tubular ZnO Nanostructures. The Journal of Physical Chemistry C 2007, 111 (20) , 7280-7287. https://doi.org/10.1021/jp0708603
    34. Mohamed Karmaoui,, Rute A. Sá Ferreira,, Ankush T. Mane,, Luís D. Carlos, and, Nicola Pinna. Lanthanide-Based Lamellar Nanohybrids:  Synthesis, Structural Characterization, and Optical Properties. Chemistry of Materials 2006, 18 (18) , 4493-4499. https://doi.org/10.1021/cm060705l
    35. Xun Wang and, Yadong Li. Solution-Based Synthetic Strategies for 1-D Nanostructures. Inorganic Chemistry 2006, 45 (19) , 7522-7534. https://doi.org/10.1021/ic051885o
    36. Tie Wang,, Rongbo Zheng,, Xiaoge Hu,, Lixue Zhang, and, Shaojun Dong. Templated Assembly of Gold Nanoparticles into Microscale Tubules and Their Application in Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry B 2006, 110 (29) , 14179-14185. https://doi.org/10.1021/jp0620015
    37. Ying Wang and, Guozhong Cao. Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides. Chemistry of Materials 2006, 18 (12) , 2787-2804. https://doi.org/10.1021/cm052765h
    38. Fenghua Zhao , Wenjiao Lin , Mingmei Wu , Ningsheng Xu , Xianfeng Yang , Z. Ryan Tian , and Qiang Su . Hexagonal and Prismatic Nanowalled ZnO Microboxes. Inorganic Chemistry 2006, 45 (8) , 3256-3260. https://doi.org/10.1021/ic051833z
    39. Chenglin Yan and, Dongfeng Xue. General, Spontaneous Ion Replacement Reaction for the Synthesis of Micro- and Nanostructured Metal Oxides. The Journal of Physical Chemistry B 2006, 110 (4) , 1581-1586. https://doi.org/10.1021/jp056373+
    40. Sara Nordlinder,, Leif Nyholm,, Torbjörn Gustafsson, and, Kristina Edström. Lithium Insertion into Vanadium Oxide Nanotubes:  Electrochemical and Structural Aspects. Chemistry of Materials 2006, 18 (2) , 495-503. https://doi.org/10.1021/cm051248w
    41. Olivier Durupthy,, Maguy Jaber,, Nathalie Steunou,, Jocelyne Maquet,, G. T. Chandrappa, and, Jacques Livage. Vanadium Oxide Foams:  An Insight into the Structure of the Vanadium Oxide Walls. Chemistry of Materials 2005, 17 (25) , 6395-6402. https://doi.org/10.1021/cm051429y
    42. Craig Calvert,, Kelly A. Burke, and, Steven L. Suib. Spontaneous and Self-Assembled Line Formations on Silicon Substrates with Vanadium Pentoxide Sol−Gels. The Journal of Physical Chemistry B 2005, 109 (47) , 22685-22691. https://doi.org/10.1021/jp052360k
    43. Rui-Qi Song,, An-Wu Xu,, Bin Deng, and, Yue-Ping Fang. Novel Multilamellar Mesostructured Molybdenum Oxide Nanofibers and Nanobelts:  Synthesis and Characterization. The Journal of Physical Chemistry B 2005, 109 (48) , 22758-22766. https://doi.org/10.1021/jp0533325
    44. Julien Polleux,, Nicola Pinna,, Markus Antonietti, and, Markus Niederberger. Growth and Assembly of Crystalline Tungsten Oxide Nanostructures Assisted by Bioligation. Journal of the American Chemical Society 2005, 127 (44) , 15595-15601. https://doi.org/10.1021/ja0544915
    45. Wei-Qiang Han,, Lijun Wu, and, Yimei Zhu. Formation and Oxidation State of CeO2-x Nanotubes. Journal of the American Chemical Society 2005, 127 (37) , 12814-12815. https://doi.org/10.1021/ja054533p
    46. Jinhui Song,, Xudong Wang,Xudong Wang,, Elisa Riedo, and, Zhong L. Wang. Systematic Study on Experimental Conditions for Large-Scale Growth of Aligned ZnO Nanwires on Nitrides. The Journal of Physical Chemistry B 2005, 109 (20) , 9869-9872. https://doi.org/10.1021/jp051615r
    47. Wingkei Ho,, Jimmy C. Yu, and, Jiaguo Yu. Photocatalytic TiO2/Glass Nanoflake Array Films. Langmuir 2005, 21 (8) , 3486-3492. https://doi.org/10.1021/la047308e
    48. Sergey V. Krivovichev,, Volker Kahlenberg,, Ivan G. Tananaev,, Reinhard Kaindl,, Edgar Mersdorf, and, Boris F. Myasoedov. Highly Porous Uranyl Selenate Nanotubules. Journal of the American Chemical Society 2005, 127 (4) , 1072-1073. https://doi.org/10.1021/ja0436289
    49. Chun Liu,, Zheng Hu,, Qiang Wu,, Xizhang Wang,, Yi Chen,, Hai Sang,, Jianmin Zhu,, Shaozhi Deng, and, Ningsheng Xu. Vapor−Solid Growth and Characterization of Aluminum Nitride Nanocones. Journal of the American Chemical Society 2005, 127 (4) , 1318-1322. https://doi.org/10.1021/ja045682v
    50. Hua Gui Yang and, Hua Chun Zeng. Synthetic Architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O, and ZnO/TiO2 Nanocomposites. Journal of the American Chemical Society 2005, 127 (1) , 270-278. https://doi.org/10.1021/ja045253x
    51. Yuanbing Mao and, Stanislaus S. Wong. General, Room-Temperature Method for the Synthesis of Isolated as Well as Arrays of Single-Crystalline ABO4-Type Nanorods. Journal of the American Chemical Society 2004, 126 (46) , 15245-15252. https://doi.org/10.1021/ja046331j
    52. A. G. Souza Filho,, O. P. Ferreira,, E. J. G. Santos,, J. Mendes Filho, and, O. L. Alves. Raman Spectra in Vanadate Nanotubes Revisited. Nano Letters 2004, 4 (11) , 2099-2104. https://doi.org/10.1021/nl0488477
    53. Zhilei Yin,, Yasuhiro Sakamoto,, Jihong Yu,, Sixiu Sun,, Osamu Terasaki, and, Ruren Xu. Microemulsion-Based Synthesis of Titanium Phosphate Nanotubes via Amine Extraction System. Journal of the American Chemical Society 2004, 126 (29) , 8882-8883. https://doi.org/10.1021/ja047684l
    54. Xudong Wang,, Yong Ding,, Christopher J. Summers, and, Zhong Lin Wang. Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. The Journal of Physical Chemistry B 2004, 108 (26) , 8773-8777. https://doi.org/10.1021/jp048482e
    55. Lifang Liang,, Huifang Xu,, Qiang Su,, Hiromi Konishi,, Yingbin Jiang,, Mingmei Wu,, Yifeng Wang, and, Deying Xia. Hydrothermal Synthesis of Prismatic NaHoF4 Microtubes and NaSmF4 Nanotubes. Inorganic Chemistry 2004, 43 (5) , 1594-1596. https://doi.org/10.1021/ic034833c
    56. J. Cao,, J. Choi, and, J. L. Musfeldt, , S. Lutta and, M. S. Whittingham. Effect of Sheet Distance on the Optical Properties of Vanadate Nanotubes. Chemistry of Materials 2004, 16 (4) , 731-736. https://doi.org/10.1021/cm035119w
    57. Hua Gui Yang and, Hua Chun Zeng. Lattice Strain Directed Synthesis of Anatase TiO2 Single-Crystal Microplatelet Arrays on α-MoO3 (010) Template. The Journal of Physical Chemistry B 2004, 108 (3) , 819-823. https://doi.org/10.1021/jp036760o
    58. Huibiao Liu,, Yuliang Li,, Shengqiang Xiao,, Haiyang Gan,, Tonggang Jiu,, Hongmei Li,, Lei Jiang,, Daoben Zhu,, Dapeng Yu,, Bin Xiang, and, Yaofeng Chen. Synthesis of Organic One-Dimensional Nanomaterials by Solid-Phase Reaction. Journal of the American Chemical Society 2003, 125 (36) , 10794-10795. https://doi.org/10.1021/ja036697g
    59. Sara Nordlinder,, Andreas Augustsson,, Thorsten Schmitt,, Jinghua Guo,, Laurent C. Duda,, Joseph Nordgren,, Torbjörn Gustafsson, and, Kristina Edström. Redox Behavior of Vanadium Oxide Nanotubes As Studied by X-ray Photoelectron Spectroscopy and Soft X-ray Absorption Spectroscopy. Chemistry of Materials 2003, 15 (16) , 3227-3232. https://doi.org/10.1021/cm031004g
    60. Qiang Wu,, Zheng Hu,, Xizhang Wang,, Yinong Lu,, Xin Chen,, Hua Xu, and, Yi Chen. Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotubes. Journal of the American Chemical Society 2003, 125 (34) , 10176-10177. https://doi.org/10.1021/ja0359963
    61. Nicola Pinna,, Marc Willinger,, Klaus Weiss,, Joachim Urban, and, Robert Schlögl. Local Structure of Nanoscopic Materials:  V2O5 Nanorods and Nanowires. Nano Letters 2003, 3 (8) , 1131-1134. https://doi.org/10.1021/nl034326s
    62. Xuedong Bai,, Ee Ge Wang,, Puxian Gao, and, Zhong Lin Wang. Measuring the Work Function at a Nanobelt Tip and at a Nanoparticle Surface. Nano Letters 2003, 3 (8) , 1147-1150. https://doi.org/10.1021/nl034342p
    63. Zi-Sheng Chao and, Eli Ruckenstein. Phase Behavior of Mesostructured V-Mg-O. Langmuir 2003, 19 (10) , 4235-4245. https://doi.org/10.1021/la026902q
    64. Xu Ming Wei and, Hua Chun Zeng. Large-Scale Organizations of MoO3 Nanoplatelets with Single-Crystalline MoO3(4,4‘-bipyridyl)0.5. The Journal of Physical Chemistry B 2003, 107 (12) , 2619-2622. https://doi.org/10.1021/jp0274177
    65. Puxian Gao, , Zhong Lin Wang. Self-Assembled Nanowire−Nanoribbon Junction Arrays of ZnO. The Journal of Physical Chemistry B 2002, 106 (49) , 12653-12658. https://doi.org/10.1021/jp0265485
    66. Markus Niederberger,, Michael H. Bartl, and, Galen D. Stucky. Benzyl Alcohol and Transition Metal Chlorides as a Versatile Reaction System for the Nonaqueous and Low-Temperature Synthesis of Crystalline Nano-Objects with Controlled Dimensionality. Journal of the American Chemical Society 2002, 124 (46) , 13642-13643. https://doi.org/10.1021/ja027115i
    67. Xiaoming Sun,, Xing Chen, and, Yadong Li. Large-Scale Synthesis of Sodium and Potassium Titanate Nanobelts. Inorganic Chemistry 2002, 41 (20) , 4996-4998. https://doi.org/10.1021/ic0257827
    68. Michael Brorson,, Thomas W. Hansen, and, Claus J. H. Jacobsen. Rhenium(IV) Sulfide Nanotubes. Journal of the American Chemical Society 2002, 124 (39) , 11582-11583. https://doi.org/10.1021/ja027084r
    69. Eduardo L. Crepaldi,, David Grosso,, Galo J. de A. A. Soler-Illia,, Pierre-Antoine Albouy,, Heinz Amenitsch, and, Clément Sanchez. Formation and Stabilization of Mesostructured Vanadium-Oxo-Based Hybrid Thin Films. Chemistry of Materials 2002, 14 (8) , 3316-3325. https://doi.org/10.1021/cm021151z
    70. Xing Chen,, Xiaoming Sun, and, Yadong Li. Self-Assembling Vanadium Oxide Nanotubes by Organic Molecular Templates. Inorganic Chemistry 2002, 41 (17) , 4524-4530. https://doi.org/10.1021/ic020092o
    71. Zu Rong Dai,, Zheng Wei Pan, and, Zhong L. Wang. Growth and Structure Evolution of Novel Tin Oxide Diskettes. Journal of the American Chemical Society 2002, 124 (29) , 8673-8680. https://doi.org/10.1021/ja026262d
    72. Xiangyang Shi,, Shubo Han,, Raymond J. Sanedrin,, Feimeng Zhou, and, Matthias Selke. Synthesis of Cobalt Oxide Nanotubes from Colloidal Particles Modified with a Co(III)−Cysteinato Precursor. Chemistry of Materials 2002, 14 (4) , 1897-1902. https://doi.org/10.1021/cm011630i
    73. Xiangyang Shi,, Shubo Han,, Raymond J. Sanedrin,, Cesar Galvez,, David G. Ho,, Billy Hernandez,, Feimeng Zhou, and, Matthias Selke. Formation of Cobalt Oxide Nanotubes:  Effect of Intermolecular Hydrogen Bonding between Co(III) Complex Precursors Incorporated onto Colloidal Templates. Nano Letters 2002, 2 (4) , 289-293. https://doi.org/10.1021/nl0156944
    74. J. Choi and, J. L. Musfeldt, , Y. J. Wang, , H.-J. Koo and, M.-H. Whangbo, , J. Galy and, P. Millet. Optical Investigation of Na2V3O7 Nanotubes. Chemistry of Materials 2002, 14 (2) , 924-930. https://doi.org/10.1021/cm010965x
    75. Xiuwen Zheng,, Yi Xie,, Liying Zhu,, Xuchuan Jiang,, Yunbo Jia,, Wenhai Song, and, Yuping Sun. Growth of Sb2E3 (E = S, Se) Polygonal Tubular Crystals via a Novel Solvent-Relief-Self-Seeding Process. Inorganic Chemistry 2002, 41 (3) , 455-461. https://doi.org/10.1021/ic0107072
    76. Yadong D. Li,, Xiaolin L. Li,, Rongrui R. He,, Jing Zhu, and, Zhaoxiang X. Deng. Artificial Lamellar Mesostructures to WS2 Nanotubes. Journal of the American Chemical Society 2002, 124 (7) , 1411-1416. https://doi.org/10.1021/ja012055m
    77. Renzhi Ma,, Yoshio Bando,, Tadao Sato, and, Keiji Kurashima. Growth, Morphology, and Structure of Boron Nitride Nanotubes. Chemistry of Materials 2001, 13 (9) , 2965-2971. https://doi.org/10.1021/cm0102741
    78. A. Rothschild,, R. Popovitz-Biro,, O. Lourie, and, R. Tenne. Morphology of Multiwall WS2 Nanotubes. The Journal of Physical Chemistry B 2000, 104 (38) , 8976-8981. https://doi.org/10.1021/jp001783d
    79. Markus Niederberger,, Hans-Joachim Muhr,, Frank Krumeich,, Fabian Bieri,, Detlef Günther, and, Reinhard Nesper. Low-Cost Synthesis of Vanadium Oxide Nanotubes via Two Novel Non-Alkoxide Routes. Chemistry of Materials 2000, 12 (7) , 1995-2000. https://doi.org/10.1021/cm001028c
    80. Yan Qiu Zhu,, Wen Kuang Hsu,, Nicole Grobert,, Bao He Chang,, Mauricio Terrones,, Humberto Terrones,, Harold W. Kroto, and, David R. M. Walton, , Bing Qing Wei. Production of WS2 Nanotubes. Chemistry of Materials 2000, 12 (5) , 1190-1194. https://doi.org/10.1021/cm991189k
    81. Daniel Navas. Hydrothermal Synthesis of Vanadium Oxide Microstructures with Mixed Oxidation States. Reactions 2023, 4 (1) , 1-25. https://doi.org/10.3390/reactions4010001
    82. Lucas Warmuth, Patrick Lott, Olaf Deutschmann, Claus Feldmann. MO x @VO x ‐Pd‐type Nanorods and Nanotubes as Catalysts for Selective Reduction of NO. ChemCatChem 2023, 15 (3) https://doi.org/10.1002/cctc.202201354
    83. Abhaya Datye, Andrew DeLaRiva. Scanning Electron Microscopy (SEM). 2023, 359-380. https://doi.org/10.1007/978-3-031-07125-6_18
    84. F. Yu. Gorobtsov, M. K. Grigoryeva, T. L. Simonenko, N. P. Simonenko, E. P. Simonenko, N. T. Kuznetsov. Synthesis of Vanadium-Doped Nano-Sized WO3 by a Combination of Sol–Gel Process and Hydrothermal Treatment. Russian Journal of Inorganic Chemistry 2022, 67 (11) , 1706-1710. https://doi.org/10.1134/S0036023622601131
    85. Aparna Puthiyedath Narayanan, Kuzhichalil Peethambharan Surendran. Outstanding electromagnetic interference shielding performance in hydrothermally derived vanadium pentoxide–polyaniline aerogels. Journal of Materials Chemistry C 2022, 10 (39) , 14754-14769. https://doi.org/10.1039/D2TC03168J
    86. Minkyu Kang, Minjun Bae, Sumin Park, Hwichan Hong, Taehyun Yoo, Yonghwan Kim, Myeongseok Jang, Young-Seok Kim, Yuanzhe Piao. Facile and scaleable transformation of Cu nanoparticles into high aspect ratio Cu oxide nanowires in methanol. RSC Advances 2022, 12 (18) , 11526-11533. https://doi.org/10.1039/D2RA00510G
    87. Top Khac Le, Phuong V. Pham, Chung-Li Dong, Naoufal Bahlawane, Dimitra Vernardou, Issam Mjejri, Aline Rougier, Sok Won Kim. Recent advances in vanadium pentoxide (V 2 O 5 ) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives. Journal of Materials Chemistry C 2022, 10 (11) , 4019-4071. https://doi.org/10.1039/D1TC04872D
    88. Shrushti S. Shetty, A. Jayarama, Shashidhara Bhat, Satyanarayan, Iddya Karunasagar, Richard Pinto. A review on metal-oxide based trace ammonia sensor for detection of renal disease by exhaled breath analysis. Materials Today: Proceedings 2022, 55 , 113-117. https://doi.org/10.1016/j.matpr.2021.12.411
    89. . Inorganic Nanotubes. 2021, 240-356. https://doi.org/10.1039/9781788019637-00240
    90. Delhia Alby, Fabrice Salles, Jerzy Zajac, Clarence Charnay. Influence of the Nanotube Morphology and Intercalated Species on the Sorption Properties of Hybrid Layered Vanadium Oxides: Application for Cesium Removal from Aqueous Streams. Nanomaterials 2021, 11 (9) , 2349. https://doi.org/10.3390/nano11092349
    91. E. Benavente, J. Aliaga, G. González. Vanadium Oxides in Photocatalysis, Including Bare Oxides and VOx-based Organic–Inorganic Nanocomposites. 2020, 340-373. https://doi.org/10.1039/9781839160882-00340
    92. Fei Yang, Yuanmin Zhu, Yu Xia, Shuhuai Xiang, Shaobo Han, Chao Cai, Qi Wang, Yian Wang, Meng Gu. Fast Zn2+ kinetics of vanadium oxide nanotubes in high-performance rechargeable zinc-ion batteries. Journal of Power Sources 2020, 451 , 227767. https://doi.org/10.1016/j.jpowsour.2020.227767
    93. Martín E Saleta, Dina Tobia, Santiago J A Figueroa, Carlos A López, Mara Granada, Rodolfo D Sánchez, Marcos Malta, Roberto M Torresi. Aging effect on vanadium oxide hybrid nanotubes. Journal of Physics: Condensed Matter 2019, 31 (50) , 505701. https://doi.org/10.1088/1361-648X/ab3ed3
    94. Daniel Navas, José Pedro Donoso, Claudio Magon, Clivia M. Sotomayor-Torres, Mabel Moreno, Harold Lozano, Eglantina Benavente, Guillermo González. Ammonium hexadeca-oxo-heptavanadate microsquares. A new member in the family of the V 7 O 16 mixed-valence nanostructures. New Journal of Chemistry 2019, 43 (45) , 17548-17556. https://doi.org/10.1039/C9NJ02188D
    95. Delhia Alby, Fabrice Salles, Amine Geneste, Bénédicte Prélot, Jerzy Zajac, Clarence Charnay. Microwave-assisted hydrothermal synthesis of manganate nanoflowers for selective retention of strontium. Journal of Hazardous Materials 2019, 368 , 661-669. https://doi.org/10.1016/j.jhazmat.2019.01.064
    96. Ehsan Kianfar. Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchemical Journal 2019, 145 , 966-978. https://doi.org/10.1016/j.microc.2018.12.008
    97. Andrey N. Enyashin. Recent Advances in the Theory of Non-carbon Nanotubes. 2018, 352-391. https://doi.org/10.1039/9781788010122-00352
    98. Demet Yılmaz, Betül Güzeldir, Tuba Akkuş, Tuba Öznülüer. X- and gamma-ray irradiation effects on vanadium pentoxide thin films. Spectroscopy Letters 2018, 51 (6) , 297-301. https://doi.org/10.1080/00387010.2018.1475397
    99. Azat Khadiev, Zufar Khalitov. Quantitative theory of diffraction by cylindrical scroll nanotubes. Acta Crystallographica Section A Foundations and Advances 2018, 74 (3) , 233-244. https://doi.org/10.1107/S2053273318003169
    100. Galina S. Zakharova, Yueli Liu, Andrey N. Enyashin, Xue Yang, Jing Zhou, Wei Jin, Wen Chen. Metal cations doped vanadium oxide nanotubes: Synthesis, electronic structure, and gas sensing properties. Sensors and Actuators B: Chemical 2018, 256 , 1021-1029. https://doi.org/10.1016/j.snb.2017.10.042
    Load more citations