ACS Publications. Most Trusted. Most Cited. Most Read
Coordination of Co2+ Ions in the Interior of Poly(propylene amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery
My Activity

Figure 1Loading Img
    Article

    Coordination of Co2+ Ions in the Interior of Poly(propylene amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk Strasse 1, D-53121 Bonn, Germany, and Dipartimento di Chimica “G. Ciamician”, Università di Bologna, via Selmi 2, I-40126 Bologna, Italy
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2000, 122, 42, 10398–10404
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja993745h
    Published October 7, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We have investigated the interaction of Co2+ ions (as nitrate salt) with dendrimers of the poly(propylene amine) family functionalized in the periphery with fluorescent dansyl units. Each dendrimer nD, where the generation number n goes from 1 to 5, comprises 2(n+1) dansyl functions in the periphery and 2(n+1) − 2 tertiary amine units in the interior. For comparison purposes, the behavior of a monodansyl reference compound (I) has also been investigated. The results obtained have shown that:  (i) the absorption and fluorescence spectra of the reference compound I are not affected by addition of Co2+ ions; (ii) in the case of the dendrimers, the absorption spectra are unaffected, but a strong quenching of the fluorescence of the peripheral dansyl units is observed; (iii) the fluorescence quenching takes place by a static mechanism involving coordination of metal ions in the interior of the dendrimers; (iv) metal ion coordination by the dendrimers is a fully reversible process; (v) a strong amplification of the fluorescence quenching signal is observed with increasing dendrimer generation. For the larger dendrimers (n = 3, 4, and 5), at very low metal ion concentration 1:1 metal/dendrimer species are formed, in which the Co2+ ion guest quenches each one of the dansyl units that becomes excited after light absorption.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Universität Bonn.

     Università di Bologna.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 129 publications.

    1. Dhruba P. Chatterjee, Mahuya Pakhira, Arun K. Nandi. Fluorescence in “Nonfluorescent” Polymers. ACS Omega 2020, 5 (48) , 30747-30766. https://doi.org/10.1021/acsomega.0c04700
    2. Kimihisa Yamamoto, Takane Imaoka, Makoto Tanabe, Tetsuya Kambe. New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers. Chemical Reviews 2020, 120 (2) , 1397-1437. https://doi.org/10.1021/acs.chemrev.9b00188
    3. Hui-Qing Peng, Li-Ya Niu, Yu-Zhe Chen, Li-Zhu Wu, Chen-Ho Tung, and Qing-Zheng Yang . Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. Chemical Reviews 2015, 115 (15) , 7502-7542. https://doi.org/10.1021/cr5007057
    4. Didier Astruc, Elodie Boisselier and Cátia Ornelas. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chemical Reviews 2010, 110 (4) , 1857-1959. https://doi.org/10.1021/cr900327d
    5. Jukka Aumanen, Tero Kesti, Villy Sundström, Gilberto Teobaldi, Francesco Zerbetto, Nicole Werner, Gabriele Richardt, Jeroen van Heyst, Fritz Vögtle and Jouko Korppi-Tommola . Internal Dynamics and Energy Transfer in Dansylated POPAM Dendrimers and Their Eosin Complexes. The Journal of Physical Chemistry B 2010, 114 (4) , 1548-1558. https://doi.org/10.1021/jp902906q
    6. Alejandra Sornosa Ten, Nicolas Humbert, Begoña Verdejo, José M. Llinares, Mourad Elhabiri, Julia Jezierska, Conxa Soriano, Henryk Kozlowski, Anne-Marie Albrecht-Gary and Enrique García-España . Cu2+ Coordination Properties of a 2-Pyridine Heptaamine Tripod: Characterization and Binding Mechanism. Inorganic Chemistry 2009, 48 (18) , 8985-8997. https://doi.org/10.1021/ic9010955
    7. Sabine Fuchs, Anna Pla-Quintana, Serge Mazères, Anne-Marie Caminade and Jean-Pierre Majoral. Cationic and Fluorescent “Janus” Dendrimers. Organic Letters 2008, 10 (21) , 4751-4754. https://doi.org/10.1021/ol801698k
    8. Sara Bonacchi, Enrico Rampazzo, Marco Montalti, Luca Prodi, Nelsi Zaccheroni, Fabrizio Mancin and Pierluigi Teolato . Amplified Fluorescence Response of Chemosensors Grafted onto Silica Nanoparticles. Langmuir 2008, 24 (15) , 8387-8392. https://doi.org/10.1021/la800753f
    9. Lixuan Mu,, Wensheng Shi,, Jack C. Chang, and, Shuit-Tong Lee. Silicon Nanowires-Based Fluorescence Sensor for Cu(II). Nano Letters 2008, 8 (1) , 104-109. https://doi.org/10.1021/nl072164k
    10. Grégory Franc,, Serge Mazères,, Cédric-Olivier Turrin,, Laure Vendier,, Carine Duhayon,, Anne-Marie Caminade, and, Jean-Pierre Majoral. Synthesis and Properties of Dendrimers Possessing the Same Fluorophore(s) Located Either Peripherally or Off-Center. The Journal of Organic Chemistry 2007, 72 (23) , 8707-8715. https://doi.org/10.1021/jo701462f
    11. Jane Larsen,, Ben Brüggemann,, Tony Khoury,, Joseph Sly,, Maxwell J. Crossley,, Villy Sundström, and, Eva Åkesson. Structural Induced Control of Energy Transfer within Zn(II)−Porphyrin Dendrimers. The Journal of Physical Chemistry A 2007, 111 (42) , 10589-10597. https://doi.org/10.1021/jp070545g
    12. Takane Imaoka,, Reiko Tanaka,, Sachiko Arimoto,, Makoto Sakai,, Masaaki Fujii, and, Kimihisa Yamamoto. Probing Stepwise Complexation in Phenylazomethine Dendrimers by a Metallo-Porphyrin Core. Journal of the American Chemical Society 2005, 127 (40) , 13896-13905. https://doi.org/10.1021/ja0524797
    13. N. Vijayalakshmi and, Uday Maitra. A Simple Construction of a Bile Acid Based Dendritic Light Harvesting System. Organic Letters 2005, 7 (13) , 2727-2730. https://doi.org/10.1021/ol050809m
    14. Robert W. J. Scott,, Orla M. Wilson, and, Richard M. Crooks. Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles. The Journal of Physical Chemistry B 2005, 109 (2) , 692-704. https://doi.org/10.1021/jp0469665
    15. Bing-Bing Wang,, Xin Zhang,, Xin-Ru Jia,, Zi-Chen Li,, Yan Ji,, Ling Yang, and, Yen Wei. Fluorescence and Aggregation Behavior of Poly(amidoamine) Dendrimers Peripherally Modified with Aromatic Chromophores:  the Effect of Dendritic Architectures. Journal of the American Chemical Society 2004, 126 (46) , 15180-15194. https://doi.org/10.1021/ja048219r
    16. Paul D. Beer,, Fridrich Szemes,, Paolo Passaniti, and, Mauro Maestri. Luminescent Ruthenium(II) Bipyridine−Calix[4]arene Complexes as Receptors for Lanthanide Cations. Inorganic Chemistry 2004, 43 (13) , 3965-3975. https://doi.org/10.1021/ic0499401
    17. Seiichi Uchiyama,, Narumi Kawai,, A. Prasanna de Silva, and, Kaoru Iwai. Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs. Journal of the American Chemical Society 2004, 126 (10) , 3032-3033. https://doi.org/10.1021/ja039697p
    18. Marco Montalti,, Luca Prodi,, Nelsi Zaccheroni,, Andrea Zattoni,, Pierluigi Reschiglian, and, Giuseppe Falini. Energy Transfer in Fluorescent Silica Nanoparticles. Langmuir 2004, 20 (7) , 2989-2991. https://doi.org/10.1021/la0361868
    19. Filippo Marchioni,, Margherita Venturi,, Alberto Credi,, Vincenzo Balzani,, Martin Belohradsky,, Arkadij M. Elizarov,, Hsian-Rong Tseng, and, J. Fraser Stoddart. Polyvalent Scaffolds. Counting the Number of Seats Available for Eosin Guest Molecules in Viologen-Based Host Dendrimers. Journal of the American Chemical Society 2004, 126 (2) , 568-573. https://doi.org/10.1021/ja037318m
    20. Seiichi Uchiyama,, Yuriko Matsumura,, A. Prasanna de Silva, and, Kaoru Iwai. Fluorescent Molecular Thermometers Based on Polymers Showing Temperature-Induced Phase Transitions and Labeled with Polarity-Responsive Benzofurazans. Analytical Chemistry 2003, 75 (21) , 5926-5935. https://doi.org/10.1021/ac0346914
    21. Raymond Ziessel and, Christophe Stroh. Syntheses of Pyridine and Bipyridine Frameworks Combining Dual Fluorescent and Magnetic Probes. Organic Letters 2003, 5 (14) , 2397-2400. https://doi.org/10.1021/ol034474p
    22. R. West,, Y. Wang, and, T. Goodson III. Nonlinear Absorption Properties in Novel Gold Nanostructured Topologies. The Journal of Physical Chemistry B 2003, 107 (15) , 3419-3426. https://doi.org/10.1021/jp027762w
    23. Takane Imaoka,, Hironori Horiguchi, and, Kimihisa Yamamoto. Metal Assembly in Novel Dendrimers with Porphyrin Cores. Journal of the American Chemical Society 2003, 125 (2) , 340-341. https://doi.org/10.1021/ja0285060
    24. Marco Montalti,, Luca Prodi,, Nelsi Zaccheroni, and, Giuseppe Falini. Solvent-Induced Modulation of Collective Photophysical Processes in Fluorescent Silica Nanoparticles. Journal of the American Chemical Society 2002, 124 (45) , 13540-13546. https://doi.org/10.1021/ja027270x
    25. Tarek H. Ghaddar,, James F. Wishart,, David W. Thompson,, James K. Whitesell, and, Marye Anne Fox. A Dendrimer-Based Electron Antenna:  Paired Electron-Transfer Reactions in Dendrimers with a 4,4‘-Bipyridine Core and Naphthalene Peripheral Groups. Journal of the American Chemical Society 2002, 124 (28) , 8285-8289. https://doi.org/10.1021/ja020103c
    26. Veronica Vicinelli,, Paola Ceroni,, Mauro Maestri,, Vincenzo Balzani,, Marius Gorka, and, Fritz Vögtle. Luminescent Lanthanide Ions Hosted in a Fluorescent Polylysin Dendrimer. Antenna-Like Sensitization of Visible and Near-Infrared Emission. Journal of the American Chemical Society 2002, 124 (22) , 6461-6468. https://doi.org/10.1021/ja017672p
    27. Igor A. Levitsky and, Sergei G. Krivoshlykov, , Jay W. Grate. Signal Amplification in Multichromophore Luminescence-Based Sensors. The Journal of Physical Chemistry B 2001, 105 (35) , 8468-8473. https://doi.org/10.1021/jp011376h
    28. A. Kuzume, K. Yamamoto. Introduction to Polymer Complexes. 2024, 1-29. https://doi.org/10.1039/9781837675142-00001
    29. T. Imaoka, K. Yamamoto. Dendrimer Metal Complexes. 2024, 129-153. https://doi.org/10.1039/9781837675142-00129
    30. Takane Imaoka, Akiyoshi Kuzume, Makoto Tanabe, Takamasa Tsukamoto, Tetsuya Kambe, Kimihisa Yamamoto. Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coordination Chemistry Reviews 2023, 474 , 214826. https://doi.org/10.1016/j.ccr.2022.214826
    31. Aylin Uslu, Süreyya Oğuz Tümay, Serkan Yeşilot. Fluorescent materials based on phosphazene derivatives and their applications: Sensors and optoelectronic devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2022, 53 , 100553. https://doi.org/10.1016/j.jphotochemrev.2022.100553
    32. Marco Villa, Paola Ceroni, Andrea Fermi. Tetrachromophoric Systems Based On Rigid Tetraphenylmethane (TPM) and Tetraphenylethylene (TPE) Scaffolds. ChemPlusChem 2022, 87 (4) https://doi.org/10.1002/cplu.202100558
    33. Keshireddy AnjiReddy, S. Karpagam Subramanian. A New Mode of Thinfilm and Nanofiber for Burst Release of the Drug for Alzheimer Disease; A Complete Scenario from Dispersible Polymer to Formulation Methodology. Mini-Reviews in Medicinal Chemistry 2022, 22 (6) , 949-966. https://doi.org/10.2174/1389557521666211008152446
    34. Tetsuya Kambe, Kimihisa Yamamoto. Functionalization of phenylazomethine dendrimers. Polymer Journal 2022, 54 (2) , 97-105. https://doi.org/10.1038/s41428-021-00524-9
    35. M. Uygun, E. Doganci, M. A. Tasdelen, A. G. Gurek. One‐pot photoinduced synthesis of dansyl containing acrylamide hydrogels and their chemosensing properties. Journal of Applied Polymer Science 2019, 136 (8) https://doi.org/10.1002/app.47096
    36. Pingru Su, Zhanwu Zhu, Juan Wang, Bo Cheng, Wenyu Wu, Kanwal Iqbal, Yu Tang. A biomolecule-based fluorescence chemosensor for sequential detection of Ag+ and H2S in 100% aqueous solution and living cells. Sensors and Actuators B: Chemical 2018, 273 , 93-100. https://doi.org/10.1016/j.snb.2018.06.037
    37. Gulzhian I. Dzhardimalieva, Igor E. Uflyand. Metal Chelate Dendrimers. 2018, 503-631. https://doi.org/10.1007/978-3-319-56024-3_5
    38. Andreea L. Chibac, Mihaela Simionescu, Gabriela Sacarescu, Emil C. Buruiana, Liviu Sacarescu. New dansyl labeled polysilane: Synthesis, characterization and sensor application. European Polymer Journal 2017, 95 , 82-92. https://doi.org/10.1016/j.eurpolymj.2017.08.013
    39. Francesco Romano, Yixuan Yu, Brian A. Korgel, Giacomo Bergamini, Paola Ceroni. Light-Harvesting Antennae Based on Silicon Nanocrystals. Topics in Current Chemistry 2016, 374 (4) https://doi.org/10.1007/s41061-016-0056-9
    40. Mauro Carraro, Giacomo Bergamini, Michele Di Lauro, Gloria Modugno, Massimo Baroncini, Paola Ceroni, Marcella Bonchio. Photophysical Characterization and Recognition Behaviour of a Bis(dansylated) Polyoxometalate. European Journal of Inorganic Chemistry 2016, 2016 (21) , 3405-3410. https://doi.org/10.1002/ejic.201600636
    41. Mioara Murariu, Emil C. Buruiana. Synthesis and characterization of new optically active poly(acrylamide/methacrylurea-co-vinyl acetate) copolymers with dansyl units. Designed Monomers and Polymers 2015, 18 (2) , 118-128. https://doi.org/10.1080/15685551.2014.971391
    42. Mohamed Y. El-Sayed, Moamen S. Refat. Structural and spectroscopic characterizations on the charge-transfer interactions of the second generation poly(propylene amine) dendrimers with iodine and picric acid acceptors. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 137 , 1270-1279. https://doi.org/10.1016/j.saa.2014.09.032
    43. Andrea Fermi, Mirko Locritani, Gabriele Di Carlo, Maddalena Pizzotti, Stefano Caramori, Yixuan Yu, Brian A. Korgel, Giacomo Bergamini, Paola Ceroni. Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin chromophores. Faraday Discussions 2015, 185 , 481-495. https://doi.org/10.1039/C5FD00098J
    44. Mohamed Y. El-Sayed, Moamen S. Refat. The Intermolecular Charge-Transfer Complexes of the First Generation of poly(propylene amine) Dendrimers with g and n Acceptors. International Journal of Electrochemical Science 2014, 9 (11) , 6608-6626. https://doi.org/10.1016/S1452-3981(23)10914-X
    45. Cong FU, Jian-Ping LI. Application of Dendrimers in Analytical Chemistry. Chinese Journal of Analytical Chemistry 2013, 41 (11) , 1762-1772. https://doi.org/10.1016/S1872-2040(13)60692-1
    46. Baozhong Zhang, Hao Yu, A Dieter Schlüter, Avraham Halperin, Martin Kröger. Synthetic regimes due to packing constraints in dendritic molecules confirmed by labelling experiments. Nature Communications 2013, 4 (1) https://doi.org/10.1038/ncomms2993
    47. Paola Ceroni, Giacomo Bergamini. Antenna Effect in Dendrimers. 2013, 1-7. https://doi.org/10.1007/978-3-642-36199-9_16-3
    48. Sandip Das, Dhruba P. Chatterjee, Sanjoy Samanta, Arun K. Nandi. Thermo and pH responsive water soluble polythiophene graft copolymer showing logic operation and nitroaromatic sensing. RSC Advances 2013, 3 (38) , 17540. https://doi.org/10.1039/c3ra42479k
    49. Nakorn Niamnont, Nattaporn Kimpitak, Gamolwan Tumcharern, Paitoon Rashatasakhon, Mongkol Sukwattanasinitt. Highly sensitive salicylic fluorophore for visual detection of picomole amounts of Cu2+. RSC Advances 2013, 3 (47) , 25215. https://doi.org/10.1039/c3ra44239j
    50. Joydev Hatai, Suman Pal, Subhajit Bandyopadhyay. An inorganic phosphate (Pi) sensor triggers ‘turn-on’ fluorescence response by removal of a Cu2+ ion from a Cu2+-ligand sensor: determination of Pi in biological samples. Tetrahedron Letters 2012, 53 (33) , 4357-4360. https://doi.org/10.1016/j.tetlet.2012.06.014
    51. Takeharu Haino, Toshiaki Ikeda. Fullerene‐Containing Supramolecular Polymers and Dendrimers. 2012, 173-202. https://doi.org/10.1002/9783527650125.ch8
    52. Chuda Raj Lohani, Lok Nath Neupane, Joung-min Kim, Keun-Hyeung Lee. Selectively and sensitively monitoring Hg2+ in aqueous buffer solutions with fluorescent sensors based on unnatural amino acids. Sensors and Actuators B: Chemical 2012, 161 (1) , 1088-1096. https://doi.org/10.1016/j.snb.2011.12.023
    53. Liyan Yin, Chunsheng He, Chusen Huang, Weiping Zhu, Xin Wang, Yufang Xu, Xuhong Qian. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells. Chemical Communications 2012, 48 (37) , 4486. https://doi.org/10.1039/c2cc30404j
    54. Lok Nath Neupane, Joung Min Kim, Chuda Raj Lohani, Keun-Hyeung Lee. Selective and sensitive ratiometric detection of Hg2+ in 100% aqueous solution with triazole-based dansyl probe. Journal of Materials Chemistry 2012, 22 (9) , 4003. https://doi.org/10.1039/c2jm15664d
    55. Knut Rurack, Ramón Martínez‐Máñez. Functional Supramolecular Hybrid Materials. 2011https://doi.org/10.1002/9781119951438.eibc0346
    56. Anne‐Marie Caminade. Dendrimers as Chemical Sensors. 2011, 361-374. https://doi.org/10.1002/9781119976530.ch14
    57. Anne‐Marie Caminade. Luminescent Dendrimers. 2011, 67-98. https://doi.org/10.1002/9781119976530.ch3
    58. Lok Nath Neupane, Ponnaboina Thirupathi, Sujung Jang, Min Jung Jang, Jung Hwa Kim, Keun-Hyeung Lee. Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide. Talanta 2011, 85 (3) , 1566-1574. https://doi.org/10.1016/j.talanta.2011.06.052
    59. Lin Pu. Dendrimer‐Based Sensors. 2011, 121-162. https://doi.org/10.1002/9781118019580.ch8
    60. Chuda Raj Lohani, Joung Min Kim, Keun-Hyeung Lee. Two dansyl fluorophores bearing amino acid for monitoring Hg2+ in aqueous solution and live cells. Tetrahedron 2011, 67 (22) , 4130-4136. https://doi.org/10.1016/j.tet.2011.03.106
    61. Wusong LI, Mingjun TENG, Xinru JIA, Yen WEI. ENERGY TRANSFER PROPERTY OF THE AGGREGATES FROM NAPHTHYL AND DANSYL MODIFIED POLY(AMIDOAMINE) DENDRONS. Acta Polymerica Sinica 2011, 011 (2) , 210-216. https://doi.org/10.3724/SP.J.1105.2011.10033
    62. Vincenzo Balzani, Giacomo Bergamini, Paola Ceroni. Photochemistry and photophysics of metal complexes with dendritic ligands. 2011, 105-135. https://doi.org/10.1016/B978-0-12-385904-4.00008-1
    63. Mi-Hwa Yang, Chuda Raj Lohani, Hyeongjin Cho, Keun-Hyeung Lee. A methionine-based turn-on chemical sensor for selectively monitoring Hg2+ ions in 100% aqueous solution. Organic & Biomolecular Chemistry 2011, 9 (7) , 2350. https://doi.org/10.1039/c0ob00780c
    64. Jukka Aumanen, Gilberto Teobaldi, Francesco Zerbetto, Jouko Korppi-Tommola. The effect of temperature on the internal dynamics of dansylated POPAM dendrimers. RSC Advances 2011, 1 (9) , 1778. https://doi.org/10.1039/c1ra00625h
    65. Aurélien Hameau, Sabine Fuchs, Régis Laurent, Jean-Pierre Majoral, Anne-Marie Caminade. Synthesis of dye/fluorescent functionalized dendrons based on cyclotriphosphazene. Beilstein Journal of Organic Chemistry 2011, 7 , 1577-1583. https://doi.org/10.3762/bjoc.7.186
    66. Zhenhui Qi, Christoph A. Schalley. Host–guest chemistry of dendrimers in the gas phase. Supramolecular Chemistry 2010, 22 (11-12) , 672-682. https://doi.org/10.1080/10610278.2010.486438
    67. Joung-Min Kim, Bishnu Prasad Joshi, Keun-Hyeung Lee. Design and Synthesis of Metallopeptide Sensors: Tuning Selectivity with Ligand Variation. Bulletin of the Korean Chemical Society 2010, 31 (9) , 2537-2541. https://doi.org/10.5012/bkcs.2010.31.9.2537
    68. Rami Hourani, Ashok Kakkar. Advances in the Elegance of Chemistry in Designing Dendrimers. Macromolecular Rapid Communications 2010, 31 (11) , 947-974. https://doi.org/10.1002/marc.200900712
    69. Emil C. Buruiana, Andreea L. Chibac, Tinca Buruiana. Polyacrylates containing dansyl semicarbazide units sensitive for some structures in solution and film. Journal of Photochemistry and Photobiology A: Chemistry 2010, 213 (2-3) , 107-113. https://doi.org/10.1016/j.jphotochem.2010.05.008
    70. Chun-Fang Li, Xian-Zi Dong, Dong-Xiang Li, Wei-Qiang Chen, Zhen-Sheng Zhao, Wan-Guo Hou, Xuan-Ming Duan. Optical-gain enhancement of carbosilane dendrimer containing fluorescein groups in the periphery. Journal of Luminescence 2010, 130 (4) , 544-548. https://doi.org/10.1016/j.jlumin.2009.10.028
    71. Grégory Franc, Ashok K. Kakkar. Metallodendrimers: Photophysical Properties and Related Applications. 2010, 185-207. https://doi.org/10.1002/9780470594179.ch5
    72. Shengchao Zhu, Tobias Fischer, Wei Wan, Ana B. Descalzo, Knut Rurack. Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms. 2010, 51-91. https://doi.org/10.1007/128_2010_99
    73. Ana B. Descalzo, Shengchao Zhu, Tobias Fischer, Knut Rurack. Optimization of the Coupling of Target Recognition and Signal Generation. 2010, 41-106. https://doi.org/10.1007/978-3-642-04701-5_2
    74. Bishnu Prasad Joshi, Chuda Raj Lohani, Keun-Hyeung Lee. A highly sensitive and selective detection of Hg(ii) in 100% aqueous solution with fluorescent labeled dimerized Cys residues. Organic & Biomolecular Chemistry 2010, 8 (14) , 3220. https://doi.org/10.1039/b925744f
    75. Christopher B. Gorman. Dendritic Encapsulation of Redox‐Active Units. 2009, 87-120. https://doi.org/10.1002/9780470583463.ch4
    76. Claire Hartmann‐Thompson, Douglas L. Keeley, Joseph R. Rousseau, Petar R. Dvornic. Fluorescent dendritic polymers and nanostructured coatings for the detection of chemical warfare agents and other analytes. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (19) , 5101-5115. https://doi.org/10.1002/pola.23562
    77. Fabrizio Mancin, Paolo Scrimin, Paolo Tecilla, Umberto Tonellato. Amphiphilic metalloaggregates: Catalysis, transport, and sensing. Coordination Chemistry Reviews 2009, 253 (17-18) , 2150-2165. https://doi.org/10.1016/j.ccr.2009.03.015
    78. Moamen S. Refat, Ibrahim M. El-Deen, Ivo Grabchev, Zeinab M. Anwer, Samir El-Ghol. Spectroscopic characterizations and biological studies on newly synthesized Cu2+ and Zn2+ complexes of first and second generation dendrimers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009, 72 (4) , 772-782. https://doi.org/10.1016/j.saa.2008.11.024
    79. Emil C. Buruiana, Mirela Zamfir, Tinca Buruiana. Dansylated acrylic copolymer with potential for sensor applications: Synthesis and properties. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (11) , 3774-3782. https://doi.org/10.1002/pola.22725
    80. Chantal Larpent, Caroline Cannizzo, Anne Delgado, Fabrice Gouanvé, Paresh Sanghvi, Cédric Gaillard, Gérard Bacquet. Convenient Synthesis and Properties of Polypropyleneimine Dendrimer‐Functionalized Polymer Nanoparticles. Small 2008, 4 (6) , 833-840. https://doi.org/10.1002/smll.200701200
    81. Vincenzo Balzani, Alberto Credi, Margherita Venturi. Photochemical Conversion of Solar Energy. ChemSusChem 2008, 1 (1-2) , 26-58. https://doi.org/10.1002/cssc.200700087
    82. . Light‐Harvesting Antennae. 2008, 135-169. https://doi.org/10.1002/9783527621682.ch6
    83. George R. Newkome, Carol D. Shreiner. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. Polymer 2008, 49 (1) , 1-173. https://doi.org/10.1016/j.polymer.2007.10.021
    84. Shi-Ping Yang, Lin Lin, Liang-Zhun Yang, Jia-Min Chen, Qiong-Qiong Chen, Di Cao, Xi-Bin Yu. The fluorescence of polyamidoamine dendrimers peripherally modified with 1,8-naphthalimide groups: Effect of the rare earth ions and protons. Journal of Luminescence 2007, 126 (2) , 515-530. https://doi.org/10.1016/j.jlumin.2006.10.013
    85. Ivo Grabchev, Jean-Marc Chovelon. Photodegradation of poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimide units. Polymer Degradation and Stability 2007, 92 (10) , 1911-1915. https://doi.org/10.1016/j.polymdegradstab.2007.06.018
    86. Adrian Trinchi, Tim H. Muster. A Review of Surface Functionalized Amine Terminated Dendrimers for Application in Biological and Molecular Sensing. Supramolecular Chemistry 2007, 19 (7) , 431-445. https://doi.org/10.1080/10610270601120363
    87. N. Jayaraman. Dendrimers and Their Use as Nanoscale Sensors. 2007, 249-297. https://doi.org/10.1002/9783527611362.ch8
    88. Paolo Passaniti, Mauro Maestri, Paola Ceroni, Giacomo Bergamini, Fritz Vögtle, Hassan Fakhrnabavi, Oleg Lukin. First generation TREN dendrimers functionalized with naphthyl and/or dansyl units. Ground and excited state electronic interactions and protonation effects. Photochemical & Photobiological Sciences 2007, 6 (4) , 471-479. https://doi.org/10.1039/b613944b
    89. Giacomo Bergamini, Paola Ceroni, Mauro Maestri, Sang-Kyu Lee, Jeroen van Heyst, Fritz Vögtle. Cyclam cored luminescent dendrimers as ligands for Co(II), Ni(II) and Cu(II) ions. Inorganica Chimica Acta 2007, 360 (3) , 1043-1051. https://doi.org/10.1016/j.ica.2006.07.084
    90. Gemma D. D'Ambruoso, Dominic V. McGrath. Energy Harvesting in Synthetic Dendrimer Materials. 2007, 87-147. https://doi.org/10.1007/12_2007_119
    91. . Dendrimer-Typen und -Synthesen. 2007, 92-184. https://doi.org/10.1007/978-3-8351-9116-7_4
    92. Lourdes Basabe-Desmonts, David N. Reinhoudt, Mercedes Crego-Calama. Design of fluorescent materials for chemical sensing. Chemical Society Reviews 2007, 36 (6) , 993. https://doi.org/10.1039/b609548h
    93. Barbara Branchi, Paola Ceroni, Giacomo Bergamini, Vincenzo Balzani, Mauro Maestri, Jeroen van Heyst, Sang‐Kyu Lee, Friedhelm Luppertz, Fritz Vögtle. A Cyclam Core Dendrimer Containing Dansyl and Oligoethylene Glycol Chains in the Branches: Protonation and Metal Coordination. Chemistry – A European Journal 2006, 12 (35) , 8926-8934. https://doi.org/10.1002/chem.200601129
    94. Ivo Grabchev, Desislava Staneva, Rositza Betcheva. Sensor activity, photodegradation and photostabilisation of a PAMAM dendrimer comprising 1,8-naphthalimide functional groups in its periphery. Polymer Degradation and Stability 2006, 91 (10) , 2257-2264. https://doi.org/10.1016/j.polymdegradstab.2006.04.022
    95. Takane Imaoka, Reiko Tanaka, Kimihisa Yamamoto. Investigation of a Molecular Morphology Effect on Polyphenylazomethine Dendrimers; Physical Properties and Metal‐Assembling Processes. Chemistry – A European Journal 2006, 12 (28) , 7328-7336. https://doi.org/10.1002/chem.200600511
    96. Ana B. Descalzo, Ramón Martínez‐Máñez, Félix Sancenón, Katrin Hoffmann, Knut Rurack. Die supramolekulare Chemie organisch‐anorganischer Hybrid‐Nanomaterialien. Angewandte Chemie 2006, 118 (36) , 6068-6093. https://doi.org/10.1002/ange.200600734
    97. Ana B. Descalzo, Ramón Martínez‐Máñez, Félix Sancenón, Katrin Hoffmann, Knut Rurack. The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (36) , 5924-5948. https://doi.org/10.1002/anie.200600734
    98. Ivo Grabchev, Sylvie Guittonneau. Sensors for detecting metal ions and protons based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides. Journal of Photochemistry and Photobiology A: Chemistry 2006, 179 (1-2) , 28-34. https://doi.org/10.1016/j.jphotochem.2005.07.008
    99. Soo-Gyun Roh, Yong Hee Kim, Nam Seob Beak, Kyong-Soo Hong, Hwan Kyu Kim. Synthesis and Photophysical Properties of Luminescent Lanthanide Complexes Based on Dansyl- N -Methyl-Aminobenzoic Acid for Advanced Photonics Applications. Molecular Crystals and Liquid Crystals 2006, 446 (1) , 295-304. https://doi.org/10.1080/15421400500379962
    100. Kimihisa Yamamoto, Takane Imaoka. Dendrimer Complexes Based on Fine-Controlled Metal Assembling. Bulletin of the Chemical Society of Japan 2006, 79 (4) , 511-526. https://doi.org/10.1246/bcsj.79.511
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2000, 122, 42, 10398–10404
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja993745h
    Published October 7, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    783

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.