ACS Publications. Most Trusted. Most Cited. Most Read
A Bifunctional Copper Catalyst Enables Ester Reduction with H2: Expanding the Reactivity Space of Nucleophilic Copper Hydrides
My Activity

Figure 1Loading Img
    Article

    A Bifunctional Copper Catalyst Enables Ester Reduction with H2: Expanding the Reactivity Space of Nucleophilic Copper Hydrides
    Click to copy article linkArticle link copied!

    • Birte M. Zimmermann
      Birte M. Zimmermann
      Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
    • Trung Tran Ngoc
      Trung Tran Ngoc
      Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
      Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
    • Dimitrios-Ioannis Tzaras
      Dimitrios-Ioannis Tzaras
      Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
      Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
    • Trinadh Kaicharla
      Trinadh Kaicharla
      Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
    • Johannes F. Teichert*
      Johannes F. Teichert
      Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
      Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
      *Email [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 40, 16865–16873
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c09626
    Published October 4, 2021
    Copyright © 2021 The Authors. Published by American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Employing a bifunctional catalyst based on a copper(I)/NHC complex and a guanidine organocatalyst, catalytic ester reductions to alcohols with H2 as terminal reducing agent are facilitated. The approach taken here enables the simultaneous activation of esters through hydrogen bonding and formation of nucleophilic copper(I) hydrides from H2, resulting in a catalytic hydride transfer to esters. The reduction step is further facilitated by a proton shuttle mediated by the guanidinium subunit. This bifunctional approach to ester reductions for the first time shifts the reactivity of generally considered “soft” copper(I) hydrides to previously unreactive “hard” ester electrophiles and paves the way for a replacement of stoichiometric reducing agents by a catalyst and H2.

    Copyright © 2021 The Authors. Published by American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c09626.

    • Detailed starting material synthesis, general procedures, characterization data, and NMR and IR spectra for all compounds (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 30 publications.

    1. Mahadeb Gorai, Jonas H. Franzen, Philipp Rotering, Tobias Rüffer, Fabian Dielmann, Johannes F. Teichert. Broadly Applicable Copper(I)-Catalyzed Alkyne Semihydrogenation and Hydrogenation of α,β-Unsaturated Amides Enabled by Bifunctional Iminopyridine Ligands. Journal of the American Chemical Society 2025, 147 (17) , 14481-14490. https://doi.org/10.1021/jacs.5c01339
    2. Haobo Yang, Shihan Liu, Hao Dong, Hui Huang, Yujie Wang, Wei Hao, Yu Lan, Qiang Liu. Amplifying the Reactivity of Anionic Mn(I)–H Catalysts via the Cation Effect: Mechanistic Investigation and Application to the Hydrogenation of α-Trisubstituted Carboxylic Esters. Journal of the American Chemical Society 2025, 147 (16) , 13491-13501. https://doi.org/10.1021/jacs.5c00362
    3. Philip P. Lampkin, Samuel H. Gellman. Dual Activation Modes Enable Bifunctional Catalysis of Aldol Reactions by Flexible Dihydrazides. Journal of the American Chemical Society 2025, 147 (4) , 3731-3739. https://doi.org/10.1021/jacs.4c16143
    4. Dimitrios-Ioannis Tzaras, Mahadeb Gorai, Thomas Jacquemin, Thiemo Arndt, Birte M. Zimmermann, Martin Breugst, Johannes F. Teichert. Site-Selective Copper(I)-Catalyzed Hydrogenation of Amides. Journal of the American Chemical Society 2025, 147 (2) , 1867-1874. https://doi.org/10.1021/jacs.4c14174
    5. Vanessa R. G. Cacho, Luís F. Veiros, Clara S. B. Gomes, Mariana Sardo, Cláudia A. Figueira, Ana M. Martins, Maria João Ferreira. C–P Bond Cleavage Through Hydrogenation in Ruthenium Complexes Supported by P,N Ligands. Inorganic Chemistry 2024, 63 (49) , 23421-23430. https://doi.org/10.1021/acs.inorgchem.4c04275
    6. Lea T. Brechmann, Benyapa Kaewmee, Johannes F. Teichert. H2-Mediated Copper-Catalyzed C–C Coupling Reactions: Selective Formation of Skipped Dienes. ACS Catalysis 2023, 13 (19) , 12634-12642. https://doi.org/10.1021/acscatal.3c03141
    7. Samuel Redl, Daniel Timelthaler, Paul Sunzenauer, Kirill Faust, Christoph Topf. General Access to Acenaphthene-Fused N-Heterocyclic Carbene Ligands. Organometallics 2023, 42 (13) , 1639-1648. https://doi.org/10.1021/acs.organomet.3c00189
    8. Nadia Hirbawi, Patricia C. Lin, Elizabeth R. Jarvo. Halogenation Reactions of Alkyl Alcohols Employing Methyl Grignard Reagents. The Journal of Organic Chemistry 2022, 87 (18) , 12352-12369. https://doi.org/10.1021/acs.joc.2c01590
    9. Shichang Yan, Wenlong Xu, Haiming He, Jiecan Shen, Yu Shi, Songsong Xu, Boqing Liu, Yiming Ma, Qingbo Xiao, Zhiyang Zhang, Mi Hu, Jinhua Liang, Xiaoqian Ren. Efficient Synthesis of C4 Compound with Low Carbon Emission from Acetaldehyde: Aldol Condensation Catalyzed by Regulable Acidic–Alkaline Al/Mg Sites of CuMgAlO. Industrial & Engineering Chemistry Research 2022, 61 (27) , 9544-9551. https://doi.org/10.1021/acs.iecr.2c00456
    10. Dimitrios‐Ioannis Tzaras, Maximilian Voigtländer, Birte M. Zimmermann, Tobias Rüffer, Johannes F. Teichert. Synthesis of a Library of Bifunctional N‐Heterocyclic Carbene Ligand Precursors with Hydrogen Bond Donor Subunits. European Journal of Organic Chemistry 2025, 7 https://doi.org/10.1002/ejoc.202500389
    11. Lucia Trevisan, Andrew D. Bond, Christopher A. Hunter. Relationship between interaction geometry and cooperativity measured in H-bonded networks of hydroxyl groups. Chemical Science 2025, 16 (17) , 7418-7423. https://doi.org/10.1039/D5SC00784D
    12. Tianhao Zhang, Hanwen Yan, Chong Zhang, Yiqian Yang, Jie Li, Guoliang Zhang, Junping Zhang, Gang Wang, Chunshan Li. Proton shuttle mediated by ionic liquid promotes aldol condensation. Journal of Catalysis 2025, 444 , 116001. https://doi.org/10.1016/j.jcat.2025.116001
    13. Xurui Wei, Xiuju Cai, Ming Huang. Ruthenium‐Catalyzed α‐Alkylation of Arylacetonitriles with Primary Alcohols: N ‐heterocyclic Carbene‐Amine's Promotional Influence. ChemistrySelect 2025, 10 (7) https://doi.org/10.1002/slct.202405122
    14. Manas Kumar Sahu, Sandip Pattanaik, Chidambaram Gunanathan. Cobalt-catalyzed reduction of esters to alkanes. Chemical Communications 2025, 61 (8) , 1661-1664. https://doi.org/10.1039/D4CC05364H
    15. Samuel Redl, Christoph Topf. (Semi)hydrogenation of enoates and alkynes effected by a versatile, particulate copper catalyst. Tetrahedron Chem 2024, 12 , 100089. https://doi.org/10.1016/j.tchem.2024.100089
    16. Hayoung Song, Nathaniel K. Szymczak. Lewis Acid‐Tethered (cAAC)—Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO 2 Hydrogenation. Angewandte Chemie 2024, 136 (43) https://doi.org/10.1002/ange.202411099
    17. Hayoung Song, Nathaniel K. Szymczak. Lewis Acid‐Tethered (cAAC)—Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO 2 Hydrogenation. Angewandte Chemie International Edition 2024, 55 https://doi.org/10.1002/anie.202411099
    18. Mahadeb Gorai, Johannes F. Teichert. Chiral Bifunctional NHC–Guanidine Ligands for Asymmetric Hydrogenation. Synlett 2024, 35 (09) , 989-992. https://doi.org/10.1055/s-0043-1763652
    19. Pamela Podchorodecka, Błażej Dziuk, Roman Szostak, Michal Szostak, Elwira Bisz. IPr* Oxa – a new class of sterically-hindered, wingtip-flexible N,C-chelating oxazole-donor N-heterocyclic carbene ligands. Dalton Transactions 2023, 52 (38) , 13608-13617. https://doi.org/10.1039/D3DT02255B
    20. Hui Xu, Yanfeng Dang. Unveiling the mechanism and origin of stereocontrol in dinuclear-zinc-catalyzed reductive desymmetrization of malonic esters. Organic Chemistry Frontiers 2023, 10 (18) , 4529-4541. https://doi.org/10.1039/D3QO00846K
    21. Niklas F. Both, Anke Spannenberg, Haijun Jiao, Kathrin Junge, Matthias Beller. Bis(N‐Heterocyclic Carbene) Manganese(I) Complexes: Efficient and Simple Hydrogenation Catalysts. Angewandte Chemie 2023, 135 (35) https://doi.org/10.1002/ange.202307987
    22. Niklas F. Both, Anke Spannenberg, Haijun Jiao, Kathrin Junge, Matthias Beller. Bis(N‐Heterocyclic Carbene) Manganese(I) Complexes: Efficient and Simple Hydrogenation Catalysts. Angewandte Chemie International Edition 2023, 62 (35) https://doi.org/10.1002/anie.202307987
    23. Fangfang Lu, Bai Shi, Wei Cao, Huiping Yin, Tianjiao Huang, Kai Zhang, Changsheng Yao. NHC-catalyzed regiodivergent transformations of Ynones with trifluoromethyl ketones: Aldol reaction or [3+2] annulation. Tetrahedron Chem 2023, 7 , 100044. https://doi.org/10.1016/j.tchem.2023.100044
    24. Lionel Saudan, Julie Quintaine. Homogeneous Ruthenium catalyzed Hydrogenation of Furanoate Esters and Ether‐containing aliphatic Esters into primary Alcohols. ChemCatChem 2023, 15 (13) https://doi.org/10.1002/cctc.202300508
    25. H. Li, Y. Wang, Q. Liu. 2.13 Base-Metal-Catalyzed Hydrogenation of Polar Unsaturated Bonds. 2023https://doi.org/10.1055/sos-SD-239-00329
    26. Olga S. Tsiftsoglou, Rafaela Stagiopoulou, Nikos Krigas, Diamanto Lazari. Exploring the Ecological Preferences and Essential Oil Variability in Wild-Growing Populations of the Endangered Local Greek Endemic Thymus holosericeus (Lamiaceae). Plants 2023, 12 (2) , 348. https://doi.org/10.3390/plants12020348
    27. Ina Remy-Speckmann, Birte M Zimmermann, Mahadeb Gorai, Martin Lerch, Johannes F Teichert. Mechanochemical solid state synthesis of copper(I)/NHC complexes with K 3 PO 4. Beilstein Journal of Organic Chemistry 2023, 19 , 440-447. https://doi.org/10.3762/bjoc.19.34
    28. Thomas Vielhaber, Kirill Faust, Thomas Bögl, Wolfgang Schöfberger, Christoph Topf. A triphos-modified tungsten piano-stool complex for the homogeneous (conjugate) hydrogenation of ketones and esters. Journal of Catalysis 2022, 416 , 352-363. https://doi.org/10.1016/j.jcat.2022.11.021
    29. Binxiong Guang, Wei Zhang, Yiwei Zhang, Yahui Xiao, Yong Liu. Mild and highly selective hydrogenation of cyclohexyl acetate to cyclohexanol over Cu( i ) coordinated amino-functionalized poly(ionic liquid)s. Catalysis Science & Technology 2022, 12 (21) , 6416-6426. https://doi.org/10.1039/D2CY01383E
    30. . Esters in a Squeeze: A Bifunctional Copper Catalyst Effects the Hydrogenation of Esters to Alcohols. Synfacts 2022, 0050. https://doi.org/10.1055/s-0041-1737210

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 40, 16865–16873
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c09626
    Published October 4, 2021
    Copyright © 2021 The Authors. Published by American Chemical Society

    Article Views

    11k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.