ACS Publications. Most Trusted. Most Cited. Most Read
Exerting Control over the Helical Chirality in the Main Chain of Sergeants-and-Soldiers-Type Poly(quinoxaline-2,3-diyl)s by Changing from Random to Block Copolymerization Protocols
My Activity

Figure 1Loading Img
    Communication

    Exerting Control over the Helical Chirality in the Main Chain of Sergeants-and-Soldiers-Type Poly(quinoxaline-2,3-diyl)s by Changing from Random to Block Copolymerization Protocols
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
    CREST, Japan Science and Technology Agency (JST), Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 12, 4070–4073
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b01422
    Published March 20, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Chiral random poly(quinoxaline-2,3-diyl) polymers of the sergeants-and-soldiers-type (sergeant units bearing (S)-3-octyloxymethyl groups) adopt an M- or P-helical conformation in the presence of achiral units bearing propoxymethyl or butoxy groups (soldier units), respectively. Unusual bidirectional induction of the helical sense can be observed for a copolymer with butoxy soldier units upon changing the mole fraction of the sergeant units. In the presence of 16–20% of sergeant units, the selective induction of a P-helix was observed, while the selective induction of an M-helix was observed for a mole fraction of sergeant units of more than 60%. This phenomenon could be successfully employed to control the helical chirality of copolymers by applying either random or block copolymerization protocols. Random or block copolymerization of sergeant and soldier monomers in a 18:82 ratio resulted in the formation of 250mers with almost absolute P- or M-helical conformation, respectively (>99% ee). Incorporation of a small amount of coordination sites into the random and block copolymers resulted in chiral macromolecular ligands, which allowed the enantioselective synthesis of both enantiomers in the Pd-catalyzed asymmetric hydrosilylation of β-methylstyrene.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures and spectral data for the new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 80 publications.

    1. Jialei He, Mitsuo Hara, Ryosuke Ohnuki, Shinya Yoshioka, Tomoyuki Ikai, Yukikazu Takeoka. Circularly Polarized Luminescence Chirality Inversion and Dual Anticounterfeiting Labels Based on Fluorescent Cholesteric Liquid Crystal Particles. ACS Applied Materials & Interfaces 2024, 16 (33) , 43991-44003. https://doi.org/10.1021/acsami.4c08331
    2. Zhuoer Wang, Aiyou Hao, Pengyao Xing. Phosphorescent Thermal Chiroptical Switch Built through Highly Efficient Chiral Recognition and Amplification. Chemistry of Materials 2023, 35 (23) , 10178-10187. https://doi.org/10.1021/acs.chemmater.3c02390
    3. Tomoyuki Ikai, Yuki Morita, Tsuyoshi Majima, Shoki Takeda, Ryoma Ishidate, Kosuke Oki, Nozomu Suzuki, Hajime Ohtani, Hiromi Aoi, Katsuhiro Maeda, Kento Okoshi, Eiji Yashima. Control of One-Handed Helicity in Polyacetylenes: Impact of an Extremely Small Amount of Chiral Substituents. Journal of the American Chemical Society 2023, 145 (45) , 24862-24876. https://doi.org/10.1021/jacs.3c09308
    4. Xiaoxiao Cheng, Tengfei Miao, Gong Zhang, Jiaying Guo, Zhenyang Zhou, Wei Zhang. Switchable Phase Helicity Independent of the Absolute Configuration of the Stereocenter: Anomalous Induction between Sergeants and Soldiers in Chiral Liquid-Crystalline Polymers. Journal of the American Chemical Society 2023, 145 (30) , 16474-16487. https://doi.org/10.1021/jacs.3c02999
    5. Xiao Xiao, Qian Cheng, Si Tong Bao, Zexin Jin, Shantao Sun, Haoyu Jiang, Michael L. Steigerwald, Colin Nuckolls. Single-Handed Helicene Nanoribbons via Transfer of Chiral Information. Journal of the American Chemical Society 2022, 144 (44) , 20214-20220. https://doi.org/10.1021/jacs.2c09288
    6. Feng Gao, Jupeng Chen, Qingbin Cao, Qiaozhen Li, Jie Zheng, Xiaofang Li. Three Different Types of Asymmetric Polymerization of Aryl Isocyanides by Using Simple Rare-Earth Metal Trialkyl Precursors. Macromolecules 2022, 55 (17) , 7488-7497. https://doi.org/10.1021/acs.macromol.2c00867
    7. Jan-Michael Menke, Oliver Trapp. Controlling the Enantioselectivity in an Adaptable Ligand by Biomimetic Intramolecular Interlocking. The Journal of Organic Chemistry 2022, 87 (16) , 11165-11171. https://doi.org/10.1021/acs.joc.2c01441
    8. Shogo Okuda, Naoki Ousaka, Takuya Iwata, Riku Ishida, Akio Urushima, Nozomu Suzuki, Shusaku Nagano, Tomoyuki Ikai, Eiji Yashima. Supramolecular Helical Assemblies of Dirhodium(II) Paddlewheels with 1,4-Diazabicyclo[2.2.2]octane: A Remarkable Substituent Effect on the Helical Sense Preference and Amplification of the Helical Handedness Excess of Metallo-Supramolecular Helical Polymers. Journal of the American Chemical Society 2022, 144 (6) , 2775-2792. https://doi.org/10.1021/jacs.1c12652
    9. Shixin Fa, Masayuki Mizobata, Shusaku Nagano, Kota Suetsugu, Takahiro Kakuta, Tada-aki Yamagishi, Tomoki Ogoshi. Reversible “On/Off” Chiral Amplification of Pillar[5]arene Assemblies by Dual External Stimuli. ACS Nano 2021, 15 (10) , 16794-16801. https://doi.org/10.1021/acsnano.1c06975
    10. Tomoyuki Ikai, Mitsuka Ando, Masaki Ito, Ryoma Ishidate, Nozomu Suzuki, Katsuhiro Maeda, Eiji Yashima. Emergence of Highly Enantioselective Catalytic Activity in a Helical Polymer Mediated by Deracemization of Racemic Pendants. Journal of the American Chemical Society 2021, 143 (32) , 12725-12735. https://doi.org/10.1021/jacs.1c05620
    11. Nathan J. Van Zee, Mathijs F. J. Mabesoone, Beatrice Adelizzi, Anja R. A. Palmans, E. W. Meijer. Biasing the Screw-Sense of Supramolecular Coassemblies Featuring Multiple Helical States. Journal of the American Chemical Society 2020, 142 (47) , 20191-20200. https://doi.org/10.1021/jacs.0c10456
    12. Yan Li, Ahmad Hammoud, Laurent Bouteiller, Matthieu Raynal. Emergence of Homochiral Benzene-1,3,5-tricarboxamide Helical Assemblies and Catalysts upon Addition of an Achiral Monomer. Journal of the American Chemical Society 2020, 142 (12) , 5676-5688. https://doi.org/10.1021/jacs.9b13157
    13. Tomoyuki Ikai, Mitsuhiro Okubo, Yuya Wada. Helical Assemblies of One-Dimensional Supramolecular Polymers Composed of Helical Macromolecules: Generation of Circularly Polarized Light Using an Infinitesimal Chiral Source. Journal of the American Chemical Society 2020, 142 (6) , 3254-3261. https://doi.org/10.1021/jacs.9b13584
    14. Yuya Wada, Ken-ichi Shinohara, Hitoshi Asakawa, Sayaka Matsui, Tetsuya Taima, Tomoyuki Ikai. One-Step Synthesis of One-Dimensional Supramolecular Assemblies Composed of Helical Macromolecular Building Blocks. Journal of the American Chemical Society 2019, 141 (35) , 13995-14002. https://doi.org/10.1021/jacs.9b07417
    15. Zijia Yan, Siliang Cai, Junyan Tan, Jie Zhang, Chao Yan, Tieqi Xu, Xinhua Wan. Induced Circular Dichroism of Isotactic Poly(2-vinylpyridine) with Diverse and Tunable “Sergeants-and-Soldiers” Type Chiral Amplification. ACS Macro Letters 2019, 8 (7) , 789-794. https://doi.org/10.1021/acsmacrolett.9b00216
    16. Timur I. Burganov, Antonio Monari, Sergey A. Katsyuba, Vakhid A. Mamedov, Nataliya A. Zhukova, Xavier Assfeld. 2,3-(Dibenzimidazol-2-yl)quinoxalines: Unexpected Dynamical Effect on Steady-State Electronic Absorption Spectra. The Journal of Physical Chemistry B 2019, 123 (26) , 5514-5523. https://doi.org/10.1021/acs.jpcb.9b00974
    17. Ryoma Ishidate, Albert J. Markvoort, Katsuhiro Maeda, Eiji Yashima. Unexpectedly Strong Chiral Amplification of Chiral/Achiral and Chiral/Chiral Copolymers of Biphenylylacetylenes and Further Enhancement/Inversion and Memory of the Macromolecular Helicity. Journal of the American Chemical Society 2019, 141 (18) , 7605-7614. https://doi.org/10.1021/jacs.9b02904
    18. Shogo Kuriyama, Yuuya Nagata, Michinori Suginome. Telechelic Helical Poly(quinoxaline-2,3-diyl)s Containing a Structurally Defined, Circularly Polarized Luminescent Terquinoxaline Core: Synthesis by Core-Initiated Bidirectional Living Polymerization. ACS Macro Letters 2019, 8 (4) , 479-485. https://doi.org/10.1021/acsmacrolett.9b00165
    19. Ling Shen, Lei Xu, Xiao-Hua Hou, Na Liu, Zong-Quan Wu. Polymerization Amplified Stereoselectivity (PASS) of Asymmetric Michael Addition Reaction and Aldol Reaction Catalyzed by Helical Poly(phenyl isocyanide) Bearing Secondary Amine Pendants. Macromolecules 2018, 51 (23) , 9547-9554. https://doi.org/10.1021/acs.macromol.8b02088
    20. Jaeho Lee, Suyong Shin, Tae-Lim Choi. Fast Living Polymerization of Challenging Aryl Isocyanides Using an Air-Stable Bisphosphine-Chelated Nickel(II) Initiator. Macromolecules 2018, 51 (19) , 7800-7806. https://doi.org/10.1021/acs.macromol.8b01090
    21. Dario Pasini, Daisuke Takeuchi. Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chemical Reviews 2018, 118 (18) , 8983-9057. https://doi.org/10.1021/acs.chemrev.8b00286
    22. Katherine Cobos, Emilio Quiñoá, Ricardo Riguera, Félix Freire. Chiral-to-Chiral Communication in Polymers: A Unique Approach To Control Both Helical Sense and Chirality at the Periphery. Journal of the American Chemical Society 2018, 140 (38) , 12239-12246. https://doi.org/10.1021/jacs.8b07782
    23. Sandra Arias, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera, and Félix Freire . Chiral Coalition in Helical Sense Enhancement of Copolymers: The Role of the Absolute Configuration of Comonomers. Journal of the American Chemical Society 2018, 140 (2) , 667-674. https://doi.org/10.1021/jacs.7b09965
    24. Sheng Wang, Junxian Chen, Xuanyu Feng, Ge Shi, Jie Zhang, and Xinhua Wan . Conformation Shift Switches the Chiral Amplification of Helical Copoly(phenylacetylene)s from Abnormal to Normal “Sergeants-and-Soldiers” Effect. Macromolecules 2017, 50 (12) , 4610-4615. https://doi.org/10.1021/acs.macromol.7b01028
    25. Lu Zheng, Yulin Zhan, Chengyuan Yu, Fu Huang, Ying Wang, and Hua Jiang . Controlling Helix Sense at N- and C-Termini in Quinoline Oligoamide Foldamers by β-Pinene-Derived Pyridyl Moieties. Organic Letters 2017, 19 (6) , 1482-1485. https://doi.org/10.1021/acs.orglett.7b00510
    26. Eiji Yashima, Naoki Ousaka, Daisuke Taura, Kouhei Shimomura, Tomoyuki Ikai, and Katsuhiro Maeda . Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews 2016, 116 (22) , 13752-13990. https://doi.org/10.1021/acs.chemrev.6b00354
    27. Yuuya Nagata, Tsuyoshi Nishikawa, and Michinori Suginome . Solvent Effect on the Sergeants-and-Soldiers Effect Leading to Bidirectional Induction of Single-Handed Helical Sense of Poly(quinoxaline-2,3-diyl)s Copolymers in Aromatic Solvents. ACS Macro Letters 2016, 5 (4) , 519-522. https://doi.org/10.1021/acsmacrolett.6b00191
    28. Alaric Desmarchelier, Xavier Caumes, Matthieu Raynal, Anton Vidal-Ferran, Piet W. N. M. van Leeuwen, and Laurent Bouteiller . Correlation between the Selectivity and the Structure of an Asymmetric Catalyst Built on a Chirally Amplified Supramolecular Helical Scaffold. Journal of the American Chemical Society 2016, 138 (14) , 4908-4916. https://doi.org/10.1021/jacs.6b01306
    29. Ran Chen, Ahmad Hammoud, Paméla Aoun, Mayte A. Martínez-Aguirre, Nicolas Vanthuyne, Régina Maruchenko, Patrick Brocorens, Laurent Bouteiller, Matthieu Raynal. Switchable supramolecular helices for asymmetric stereodivergent catalysis. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-48412-z
    30. Zhihong Yu, Rui Tan, Xiaoxiao Cheng, Wei Zhang, Yong Wang, Jiandong Zhang, Nianchen Zhou, Zhengbiao Zhang, Xiulin Zhu. Activation and Deactivation of Chirality Transfer in the Superbundles of Sequence‐defined Stereoisomers. Angewandte Chemie International Edition 2024, https://doi.org/10.1002/anie.202416853
    31. Zhihong Yu, Rui Tan, Xiaoxiao Cheng, Wei Zhang, Yong Wang, Jiandong Zhang, Nianchen Zhou, Zhengbiao Zhang, Xiulin Zhu. Activation and Deactivation of Chirality Transfer in the Superbundles of Sequence‐defined Stereoisomers. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202416853
    32. Xiaoxiao Cheng, Wei Zhang. Polymerization‐induced Chiral Self‐assembly for the In situ Construction, Modulation, Amplification and Applications of Asymmetric Suprastructures. Angewandte Chemie International Edition 2024, 13 https://doi.org/10.1002/anie.202414332
    33. Xiaoxiao Cheng, Wei Zhang. Polymerization‐induced Chiral Self‐assembly for the In situ Construction, Modulation, Amplification and Applications of Asymmetric Suprastructures. Angewandte Chemie 2024, 13 https://doi.org/10.1002/ange.202414332
    34. Chonglong Li, Murong Zhan, Zixuan Wang, Hua Gao, Yu Yang, Hongqian Gou. Novel Chiral Helical Polyisocyanides Containing Cyclohexanediamine Pendants for Asymmetric Michael Addition Reaction and Aldol Reaction. Catalysis Letters 2024, 154 (4) , 1420-1430. https://doi.org/10.1007/s10562-023-04423-x
    35. Jin Young Seo, Hyeon Ji Oh, Youngjong Kang, Kyung-Youl Baek. Bottle brush star block copolymer nanoreactors for efficient photooxidation catalysis: effects of chain softness. Materials Chemistry Frontiers 2024, 8 (5) , 1373-1381. https://doi.org/10.1039/D3QM01186K
    36. María Lago-Silva, Manuel Fernández-Míguez, Rafael Rodríguez, Emilio Quiñoá, Félix Freire. Stimuli-responsive synthetic helical polymers. Chemical Society Reviews 2024, 53 (2) , 793-852. https://doi.org/10.1039/D3CS00952A
    37. David P. Tilly, Jean-Paul Heeb, Simon J. Webb, Jonathan Clayden. Switching imidazole reactivity by dynamic control of tautomer state in an allosteric foldamer. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38339-2
    38. Jing Zhang, Chengyan Niu, Xuekang Yang, Jiaqi Liu, Qiulan Wu, Jingjing Tan, Xuehong Wei, Zhiyong Tang. Redox‐Modulated Circularly Polarized Luminescence in Chiral Photonic Films Derived from Cellulose Nanocrystals and Polyoxometalate. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202300618
    39. Guofeng Liu, Mark G. Humphrey, Chi Zhang, Yanli Zhao. Self-assembled stereomutation with supramolecular chirality inversion. Chemical Society Reviews 2023, 52 (13) , 4443-4487. https://doi.org/10.1039/D2CS00476C
    40. Xiaoxiao Cheng, Yijing Gan, Gong Zhang, Qingping Song, Zhengbiao Zhang, Wei Zhang. Conformationally supramolecular chirality prevails over configurational point chirality in side-chain liquid crystalline polymers. Chemical Science 2023, 14 (19) , 5116-5124. https://doi.org/10.1039/D3SC00975K
    41. Tomoyuki Ikai, Shun Anzai, Kosuke Oki, Eiji Yashima. Amplification of macromolecular helicity of poly(biphenylylacetylene)s composed of a small amount of chiral [5]helicene units. Journal of Polymer Science 2023, 61 (10) , 912-919. https://doi.org/10.1002/pol.20220658
    42. Tomoyuki Ikai, Koshi Nakamura, Kosuke Mizumoto, Kosuke Oki, Eiji Yashima. Remote Control of One‐Handed Helicity in Polyacetylenes through Flexible Spacers in Water: Impact of the Spacer Length. Angewandte Chemie 2023, 135 (20) https://doi.org/10.1002/ange.202301127
    43. Tomoyuki Ikai, Koshi Nakamura, Kosuke Mizumoto, Kosuke Oki, Eiji Yashima. Remote Control of One‐Handed Helicity in Polyacetylenes through Flexible Spacers in Water: Impact of the Spacer Length. Angewandte Chemie International Edition 2023, 62 (20) https://doi.org/10.1002/anie.202301127
    44. Takeshi Yamamoto, Yukako Yoshinaga, Michinori Suginome. Development of Dynamically Chiral Helical Polymer Catalysts Based on Post-Polymerization Modification of Boronyl Pendants. Journal of Synthetic Organic Chemistry, Japan 2023, 81 (4) , 324-332. https://doi.org/10.5059/yukigoseikyokaishi.81.324
    45. Shixin Fa, Tan-hao Shi, Suzu Akama, Keisuke Adachi, Keisuke Wada, Seigo Tanaka, Naoki Oyama, Kenichi Kato, Shunsuke Ohtani, Yuuya Nagata, Shigehisa Akine, Tomoki Ogoshi. Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34827-z
    46. Paméla Aoun, Ahmad Hammoud, Mayte A. Martínez-Aguirre, Laurent Bouteiller, Matthieu Raynal. Asymmetric hydroamination with far fewer chiral species than copper centers achieved by tuning the structure of supramolecular helical catalysts. Catalysis Science & Technology 2022, 12 (3) , 834-842. https://doi.org/10.1039/D1CY02168K
    47. Salahudeen Shamna, Jaleel Fairoosa, C M A Afsina, Gopinathan Anilkumar. Palladium-catalysed hydrosilylation of unsaturated compounds. Journal of Organometallic Chemistry 2022, 960 , 122236. https://doi.org/10.1016/j.jorganchem.2021.122236
    48. Lu Yin, Meng Liu, Haotian Ma, Xiaoxiao Cheng, Tengfei Miao, Wei Zhang, Xiulin Zhu. Induction and modulation of supramolecular chirality in side-chain azobenzene polymers through the covalent chiral domino effect. Science China Chemistry 2021, 64 (12) , 2105-2110. https://doi.org/10.1007/s11426-021-1132-y
    49. Shoma Ikeda, Ryohei Takeda, Takaya Fujie, Naoto Ariki, Yuuya Nagata, Michinori Suginome. Protected amino acids as a nonbonding source of chirality in induction of single-handed screw-sense to helical macromolecular catalysts. Chemical Science 2021, 12 (25) , 8811-8816. https://doi.org/10.1039/D1SC01764K
    50. Chonglong Li, Jihai Wang, Huiyun Ding. Recyclable Helical Poly(phenyl isocyanide)-Supported l-Proline Catalyst for Direct Asymmetric Aldol Reaction in Brine. Catalysis Letters 2021, 151 (4) , 1180-1190. https://doi.org/10.1007/s10562-020-03369-8
    51. Shixin Fa, Keisuke Adachi, Yuuya Nagata, Kouichi Egami, Kenichi Kato, Tomoki Ogoshi. Pre-regulation of the planar chirality of pillar[5]arenes for preparing discrete chiral nanotubes. Chemical Science 2021, 12 (10) , 3483-3488. https://doi.org/10.1039/D1SC00074H
    52. Li Zhou, Xun‐Hui Xu, Zhi‐Qiang Jiang, Lei Xu, Ben‐Fa Chu, Na Liu, Zong‐Quan Wu. Selective Synthesis of Single‐Handed Helical Polymers from Achiral Monomer and a Mechanism Study on Helix‐Sense‐Selective Polymerization. Angewandte Chemie 2021, 133 (2) , 819-825. https://doi.org/10.1002/ange.202011661
    53. Li Zhou, Xun‐Hui Xu, Zhi‐Qiang Jiang, Lei Xu, Ben‐Fa Chu, Na Liu, Zong‐Quan Wu. Selective Synthesis of Single‐Handed Helical Polymers from Achiral Monomer and a Mechanism Study on Helix‐Sense‐Selective Polymerization. Angewandte Chemie International Edition 2021, 60 (2) , 806-812. https://doi.org/10.1002/anie.202011661
    54. Katherine Cobos, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera, Félix Freire. From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angewandte Chemie 2020, 132 (52) , 23932-23938. https://doi.org/10.1002/ange.202009215
    55. Katherine Cobos, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera, Félix Freire. From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angewandte Chemie International Edition 2020, 59 (52) , 23724-23730. https://doi.org/10.1002/anie.202009215
    56. Hao Liu, Shaowen Zhang, Xiangqian Yan, Chuang Song, Jupeng Chen, Yuping Dong, Xiaofang Li. Silylium cation initiated sergeants-and-soldiers type chiral amplification of helical aryl isocyanide copolymers. Polymer Chemistry 2020, 11 (37) , 6017-6028. https://doi.org/10.1039/D0PY00808G
    57. Yan Li, Laurent Bouteiller, Matthieu Raynal. Catalysts Supported by Homochiral Molecular Helices: A New Concept to Implement Asymmetric Amplification in Catalytic Science. ChemCatChem 2019, 11 (21) , 5212-5226. https://doi.org/10.1002/cctc.201901246
    58. Mohammad Alzubi, Sandra Arias, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera, Félix Freire. Chiral Conflict as a Method to Create Stimuli‐Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie 2019, 131 (38) , 13499-13503. https://doi.org/10.1002/ange.201907069
    59. Mohammad Alzubi, Sandra Arias, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera, Félix Freire. Chiral Conflict as a Method to Create Stimuli‐Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie International Edition 2019, 58 (38) , 13365-13369. https://doi.org/10.1002/anie.201907069
    60. Michinori Suginome. Molecular Technology for Switch and Amplification of Chirality in Asymmetric Catalysis Using a Helically Dynamic Macromolecular Scaffold as a Source of Chirality. 2019, 77-94. https://doi.org/10.1002/9783527823987.vol4_c4
    61. Nozomu Suzuki, Yutaka Itabashi. Possible Roles of Amphiphilic Molecules in the Origin of Biological Homochirality. Symmetry 2019, 11 (8) , 966. https://doi.org/10.3390/sym11080966
    62. Moisey I. Belinsky. The in-plane spin helicity of coplanar helical spin configurations of frustrated single trimer V3 and Cu3 nanomagnets, inversion (switching) of spin helicity. Chemical Physics 2019, 522 , 267-278. https://doi.org/10.1016/j.chemphys.2019.01.014
    63. Yuuya Nagata, Tsuyoshi Nishikawa, Ken Terao, Hirokazu Hasegawa, Michinori Suginome. A bidirectional screw‐sense induction of poly(quinoxaline‐2,3‐diyl)s that depends on the degree of polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2019, 57 (3) , 260-263. https://doi.org/10.1002/pola.29224
    64. Sandeep Kumar Dey, Mohammad Al Kobaisi, Sheshanath V. Bhosale. Functionalized Quinoxaline for Chromogenic and Fluorogenic Anion Sensing. ChemistryOpen 2018, 7 (12) , 934-952. https://doi.org/10.1002/open.201800163
    65. Kazuto Takaishi, Ryosuke Takehana, Tadashi Ema. Intense excimer CPL of pyrenes linked to a quaternaphthyl. Chemical Communications 2018, 54 (12) , 1449-1452. https://doi.org/10.1039/C7CC09187G
    66. Yuuya Nagata, Tsuyoshi Nishikawa, Michinori Suginome. Abnormal sergeants-and-soldiers effects of poly(quinoxaline-2,3-diyl)s enabling discrimination of one-carbon homologous n -alkanes through a highly sensitive solvent-dependent helix inversion. Chemical Communications 2018, 54 (50) , 6867-6870. https://doi.org/10.1039/C8CC02836B
    67. Jeremy M. Zimbron, Xavier Caumes, Yan Li, Christophe M. Thomas, Matthieu Raynal, Laurent Bouteiller. Real‐Time Control of the Enantioselectivity of a Supramolecular Catalyst Allows Selecting the Configuration of Consecutively Formed Stereogenic Centers. Angewandte Chemie 2017, 129 (45) , 14204-14207. https://doi.org/10.1002/ange.201706757
    68. Jeremy M. Zimbron, Xavier Caumes, Yan Li, Christophe M. Thomas, Matthieu Raynal, Laurent Bouteiller. Real‐Time Control of the Enantioselectivity of a Supramolecular Catalyst Allows Selecting the Configuration of Consecutively Formed Stereogenic Centers. Angewandte Chemie International Edition 2017, 56 (45) , 14016-14019. https://doi.org/10.1002/anie.201706757
    69. Jijun Yan, Chuanqing Kang, Zheng Bian, Rizhe Jin, Xiaoye Ma, Zhijun Du, Haibo Yao, Lianxun Gao. Sequence‐Dependent Self‐Assembly of Chiral Polyimides. Chemistry – An Asian Journal 2017, 12 (8) , 841-845. https://doi.org/10.1002/asia.201700284
    70. Jun Yin, Lei Xu, Xin Han, Li Zhou, Chonglong Li, Zong-Quan Wu. A facile synthetic route to stereoregular helical poly(phenyl isocyanide)s with defined pendants and controlled helicity. Polymer Chemistry 2017, 8 (3) , 545-556. https://doi.org/10.1039/C6PY01881E
    71. Anupama Ekbote, Thaksen Jadhav, Rajneesh Misra. T-Shaped donor–acceptor–donor type tetraphenylethylene substituted quinoxaline derivatives: aggregation-induced emission and mechanochromism. New Journal of Chemistry 2017, 41 (17) , 9346-9353. https://doi.org/10.1039/C7NJ01531C
    72. Jijun Yan, Chuanqing Kang, Zheng Bian, Rizhe Jin, Xiaoye Ma, Lianxun Gao. Supramolecular self-assembly of chiral polyimides driven by repeat units and end groups. New Journal of Chemistry 2017, 41 (23) , 14723-14729. https://doi.org/10.1039/C7NJ02451G
    73. Michinori Suginome, Yuuya Nagata, Takeshi Yamamoto. New Chiral Functions Based on the Dynamic Induction of Macromolecular Helical Chirality by Chiral Side Chains. Journal of Synthetic Organic Chemistry, Japan 2017, 75 (5) , 476-490. https://doi.org/10.5059/yukigoseikyokaishi.75.476
    74. Katsuhiro Maeda, Miyuki Maruta, Yuki Sakai, Tomoyuki Ikai, Shigeyoshi Kanoh. Synthesis of Optically Active Poly(diphenylacetylene)s Using Polymer Reactions and an Evaluation of Their Chiral Recognition Abilities as Chiral Stationary Phases for HPLC. Molecules 2016, 21 (11) , 1487. https://doi.org/10.3390/molecules21111487
    75. Ziyu Lv, Zhonghui Chen, Kenan Shao, Guangyan Qing, Taolei Sun. Stimuli-Directed Helical Chirality Inversion and Bio-Applications. Polymers 2016, 8 (8) , 310. https://doi.org/10.3390/polym8080310
    76. Shingo Ito. Chain-growth polymerization enabling formation/introduction of arylene groups into polymer main chains. Polymer Journal 2016, 48 (6) , 667-677. https://doi.org/10.1038/pj.2016.18
    77. Haiyang Zhang, Jianping Deng. Helical Polymers Showing Inverse Helicity and Synergistic Effect in Chiral Catalysis: Catalytic Functionality Determining Enantioconfiguration and Helical Frameworks Providing Asymmetric Microenvironment. Macromolecular Chemistry and Physics 2016, 217 (7) , 880-888. https://doi.org/10.1002/macp.201500522
    78. Yijing Chen, Yuan Ling, Lu Ding, Chunlan Xiang, Gang Zhou. Quinoxaline-based cross-conjugated luminophores: charge transfer, piezofluorochromic, and sensing properties. Journal of Materials Chemistry C 2016, 4 (36) , 8496-8505. https://doi.org/10.1039/C6TC02945K
    79. Mohit Kumar, Madugula Drona Reddy, Ananya Mishra, Subi J. George. The molecular recognition controlled stereomutation cycle in a dynamic helical assembly. Organic & Biomolecular Chemistry 2015, 13 (39) , 9938-9942. https://doi.org/10.1039/C5OB01448D
    80. Michinori Suginome, Takeshi Yamamoto, Yuuya Nagata. Poly(quinoxaline-2,3-diyl)s: A Fascinating Helical Macromolecular Scaffold for New Chiral Functions. Journal of Synthetic Organic Chemistry, Japan 2015, 73 (11) , 1141-1155. https://doi.org/10.5059/yukigoseikyokaishi.73.1141

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 12, 4070–4073
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b01422
    Published March 20, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2964

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.