ACS Publications. Most Trusted. Most Cited. Most Read
Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts
My Activity

Figure 1Loading Img
    Communication

    Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
    Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
    § Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 17, 5666–5669
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b02579
    Published April 16, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Newly designed and prepared molybdenum–nitride complexes bearing a mer-tridentate triphosphine as a ligand have been found to work as the most effective catalysts toward the catalytic reduction of dinitrogen to ammonia under ambient conditions, where up to 63 equiv of ammonia based on the Mo atom of the catalyst were produced.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures, spectroscopic data, and X-ray data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 216 publications.

    1. Yasuomi Yamazaki, Kaito Nakaya, Yoshiaki Nishibayashi. Synthesis of Molybdenum Complexes Bearing Pyridine-Based PNP-Type Pincer Ligands with Pendent Pyridyl Unit and Their Catalytic Activity for Ammonia Formation. Organometallics 2024, 43 (21) , 2747-2754. https://doi.org/10.1021/acs.organomet.4c00290
    2. Shogo Kuriyama, Yuye Zhang, Hiromasa Tanaka, Asuka Konomi, Akihito Egi, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Synthesis and Reactivity of Iron-Oxocyclohexadienyl Complexes toward Proton-Coupled Electron Transfer. Organometallics 2024, 43 (21) , 2736-2746. https://doi.org/10.1021/acs.organomet.4c00286
    3. Taku Wakabayashi, Yohei Kametani, Eimi Tanahashi, Yoshihito Shiota, Kazunari Yoshizawa, Jieun Jung, Susumu Saito. Ferrocenyl PNNP Ligands-Controlled Chromium Complex-Catalyzed Photocatalytic Reduction of CO2 to Formic Acid. Journal of the American Chemical Society 2024, 146 (38) , 25963-25975. https://doi.org/10.1021/jacs.4c03683
    4. Nils Ostermann, Nils Rotthowe, A. Claudia Stückl, Inke Siewert. (Electro)chemical N2 Splitting by a Molybdenum Complex with an Anionic PNP Pincer-Type Ligand. ACS Organic & Inorganic Au 2024, 4 (3) , 329-337. https://doi.org/10.1021/acsorginorgau.3c00056
    5. Lukas Eberle, Sebastian Lindenthal, Joachim Ballmann. To Split or Not to Split: [AsCCAs]-Coordinated Mo, W, and Re Complexes and Their Reactivity toward Molecular Dinitrogen. Inorganic Chemistry 2024, 63 (8) , 3682-3691. https://doi.org/10.1021/acs.inorgchem.3c03244
    6. Avra Tzaguy, Albert Masip-Sánchez, Liat Avram, Albert Solé-Daura, Xavier López, Josep M. Poblet, Ronny Neumann. Electrocatalytic Reduction of Dinitrogen to Ammonia with Water as Proton and Electron Donor Catalyzed by a Combination of a Tri-ironoxotungstate and an Alkali Metal Cation. Journal of the American Chemical Society 2023, 145 (36) , 19912-19924. https://doi.org/10.1021/jacs.3c06167
    7. Chaoyue Zhao, Rongkai Wu, Shuoqing Zhang, Xin Hong. Benchmark Study of Density Functional Theory Methods in Geometry Optimization of Transition Metal–Dinitrogen Complexes. The Journal of Physical Chemistry A 2023, 127 (32) , 6791-6803. https://doi.org/10.1021/acs.jpca.3c04215
    8. Waad S. Alharbi, Thomas R. Cundari. Mapping the Basicity of Selected 3d and 4d Metal Nitrides: A DFT Study. Inorganic Chemistry 2022, 61 (48) , 19049-19057. https://doi.org/10.1021/acs.inorgchem.2c01812
    9. Xiaoyu Song, Junfang Li, Qinghong Kong, Hua Bai, Guangcheng Xi. Molybdenum Nitride Porous Prisms with a Strong Plasmon Resonance Effect in the Visible Region for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry Letters 2022, 13 (29) , 6777-6782. https://doi.org/10.1021/acs.jpclett.2c01558
    10. Niklas F. Both, Anke Spannenberg, Kathrin Junge, Matthias Beller. Low-Valent Molybdenum PNP Pincer Complexes as Catalysts for the Semihydrogenation of Alkynes. Organometallics 2022, 41 (14) , 1797-1805. https://doi.org/10.1021/acs.organomet.1c00709
    11. Joseph Kfoury, Zsolt Benedek, Tibor Szilvási, Julianna Oláh. H2 and N2 Binding Affinities Are Coupled in Synthetic Fe Nitrogenases Limiting N2 Fixation. Organometallics 2022, 41 (10) , 1134-1146. https://doi.org/10.1021/acs.organomet.1c00681
    12. Yuan Tian, Yanrong Liu, Hao Wang, Lei Liu, Wenping Hu. Electrocatalytic Reduction of Nitrogen to Ammonia in Ionic Liquids. ACS Sustainable Chemistry & Engineering 2022, 10 (14) , 4345-4358. https://doi.org/10.1021/acssuschemeng.2c00018
    13. Takayuki Itabashi, Kazuya Arashiba, Hiromasa Tanaka, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Hydroboration and Hydrosilylation of a Molybdenum–Nitride Complex Bearing a PNP-Type Pincer Ligand. Organometallics 2022, 41 (4) , 366-373. https://doi.org/10.1021/acs.organomet.1c00597
    14. Nicholas M. Hein, Gregory A. MacNeil, Tim Storr. Elaboration on the Electronics of Salen Manganese Nitrides: Investigations into Alkoxy-Substituted Ligand Scaffolds. Inorganic Chemistry 2021, 60 (22) , 16895-16905. https://doi.org/10.1021/acs.inorgchem.1c02668
    15. Dae Young Bae, Gunhee Lee, Eunsung Lee. Fixation of Dinitrogen at an Asymmetric Binuclear Titanium Complex. Inorganic Chemistry 2021, 60 (17) , 12813-12822. https://doi.org/10.1021/acs.inorgchem.1c01050
    16. Jiawei Xu, Pu Yang, Like Deng, Na Shu, Yunlong Shang, Wanjie Zhou, Jianchun Bao, Min Fang, Yong Wu. Theoretical Investigation into Thermodynamics and Electronic Structure of an Ammonia-productive Molybdenum-centered Catalyst. Inorganic Chemistry 2021, 60 (16) , 11878-11882. https://doi.org/10.1021/acs.inorgchem.1c00975
    17. Jie Wu, Jia-Hui Li, Yang-Xin Yu. Single Nb or W Atom-Embedded BP Monolayers as Highly Selective and Stable Electrocatalysts for Nitrogen Fixation with Low-Onset Potentials. ACS Applied Materials & Interfaces 2021, 13 (8) , 10026-10036. https://doi.org/10.1021/acsami.0c21429
    18. Javier Fajardo, Jr., Jonas C. Peters. Tripodal P3XFe–N2 Complexes (X = B, Al, Ga): Effect of the Apical Atom on Bonding, Electronic Structure, and Catalytic N2-to-NH3 Conversion. Inorganic Chemistry 2021, 60 (2) , 1220-1227. https://doi.org/10.1021/acs.inorgchem.0c03354
    19. Quinton J. Bruch, Gannon P. Connor, Noah D. McMillion, Alan S. Goldman, Faraj Hasanayn, Patrick L. Holland, Alexander J. M. Miller. Considering Electrocatalytic Ammonia Synthesis via Bimetallic Dinitrogen Cleavage. ACS Catalysis 2020, 10 (19) , 10826-10846. https://doi.org/10.1021/acscatal.0c02606
    20. Devender Singh, William R. Buratto, Juan F. Torres, Leslie J. Murray. Activation of Dinitrogen by Polynuclear Metal Complexes. Chemical Reviews 2020, 120 (12) , 5517-5581. https://doi.org/10.1021/acs.chemrev.0c00042
    21. Oren Elishav, Bar Mosevitzky Lis, Elisa M. Miller, Douglas J. Arent, Agustin Valera-Medina, Alon Grinberg Dana, Gennady E. Shter, Gideon S. Grader. Progress and Prospective of Nitrogen-Based Alternative Fuels. Chemical Reviews 2020, 120 (12) , 5352-5436. https://doi.org/10.1021/acs.chemrev.9b00538
    22. Matthew J. Chalkley, Marcus W. Drover, Jonas C. Peters. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. Chemical Reviews 2020, 120 (12) , 5582-5636. https://doi.org/10.1021/acs.chemrev.9b00638
    23. Jimin Yang, Gen Luo, Yang Yu, Jingping Qu, Zhaomin Hou, Yi Luo. Theoretical Mechanistic Insights into Dinitrogen Activation by a Diniobium Tetrahydride: Two-State Reactivity and the Role of Potassium Cation Promoter. Inorganic Chemistry 2020, 59 (7) , 4626-4633. https://doi.org/10.1021/acs.inorgchem.9b03733
    24. Shengyong Li, Yajie Wang, Wenjing Yang, Kai Li, Hongjian Sun, Xiaoyan Li, Olaf Fuhr, Dieter Fenske. N2 Silylation Catalyzed by a Bis(silylene)-Based [SiCSi] Pincer Hydrido Iron(II) Dinitrogen Complex. Organometallics 2020, 39 (5) , 757-766. https://doi.org/10.1021/acs.organomet.0c00025
    25. Zhe Xing, Wenhan Kong, Tongwei Wu, Hongtao Xie, Ting Wang, Yonglan Luo, Xifeng Shi, Abdullah M. Asiri, Yanning Zhang, Xuping Sun. Hollow Bi2MoO6 Sphere Effectively Catalyzes the Ambient Electroreduction of N2 to NH3. ACS Sustainable Chemistry & Engineering 2019, 7 (15) , 12692-12696. https://doi.org/10.1021/acssuschemeng.9b03141
    26. Takayuki Itabashi, Kazuya Arashiba, Hiromasa Tanaka, Asuka Konomi, Aya Eizawa, Kazunari Nakajima, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Synthesis and Catalytic Reactivity of Bis(molybdenum-trihalide) Complexes Bridged by Ferrocene Skeleton toward Catalytic Nitrogen Fixation. Organometallics 2019, 38 (14) , 2863-2872. https://doi.org/10.1021/acs.organomet.9b00263
    27. Yuya Ashida, Kazuya Arashiba, Hiromasa Tanaka, Akihito Egi, Kazunari Nakajima, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Molybdenum-Catalyzed Ammonia Formation Using Simple Monodentate and Bidentate Phosphines as Auxiliary Ligands. Inorganic Chemistry 2019, 58 (14) , 8927-8932. https://doi.org/10.1021/acs.inorgchem.9b01340
    28. Anne K. Hickey, Lasantha A. Wickramasinghe, Richard R. Schrock, Charlene Tsay, Peter Müller. Protonation Studies of Molybdenum(VI) Nitride Complexes That Contain the [2,6-(ArNCH2)2NC5H3]2– Ligand (Ar = 2,6-Diisopropylphenyl). Inorganic Chemistry 2019, 58 (6) , 3724-3731. https://doi.org/10.1021/acs.inorgchem.8b03346
    29. Jianhao Yin, Jiapeng Li, Gao-Xiang Wang, Zhu-Bao Yin, Wen-Xiong Zhang, Zhenfeng Xi. Dinitrogen Functionalization Affording Chromium Hydrazido Complex. Journal of the American Chemical Society 2019, 141 (10) , 4241-4247. https://doi.org/10.1021/jacs.9b00822
    30. Leslie D. Field, Hsiu L. Li, P. Manohari Abeysinghe, Mohan Bhadbhade, Scott J. Dalgarno, Ruaraidh D. McIntosh. Reduction of Dinitrogen to Ammonia and Hydrazine on Low-Valent Ruthenium Complexes. Inorganic Chemistry 2019, 58 (3) , 1929-1934. https://doi.org/10.1021/acs.inorgchem.8b02850
    31. Qinye Li, Siyao Qiu, Chuangwei Liu, Mingguo Liu, Lizhong He, Xiwang Zhang, Chenghua Sun. Computational Design of Single-Molybdenum Catalysts for the Nitrogen Reduction Reaction. The Journal of Physical Chemistry C 2019, 123 (4) , 2347-2352. https://doi.org/10.1021/acs.jpcc.8b11509
    32. Xiang Ren, Jinxiu Zhao, Qin Wei, Yongjun Ma, Haoran Guo, Qian Liu, Yuan Wang, Guanwei Cui, Abdullah M. Asiri, Baihai Li, Bo Tang, Xuping Sun. High-Performance N2-to-NH3 Conversion Electrocatalyzed by Mo2C Nanorod. ACS Central Science 2019, 5 (1) , 116-121. https://doi.org/10.1021/acscentsci.8b00734
    33. Lasantha A. Wickramasinghe, Richard R. Schrock, Charlene Tsay, Peter Müller. Molybdenum Complexes that Contain a Calix[6]azacryptand Ligand as Catalysts for Reduction of N2 to Ammonia. Inorganic Chemistry 2018, 57 (24) , 15566-15574. https://doi.org/10.1021/acs.inorgchem.8b02903
    34. Zi-Xuan Wang, Jia-Chen Xiang, Yan Cheng, Jin-Tian Ma, Yan-Dong Wu, An-Xin Wu. Direct Biomimetic Synthesis of β-Carboline Alkaloids from Two Amino Acids. The Journal of Organic Chemistry 2018, 83 (19) , 12247-12254. https://doi.org/10.1021/acs.joc.8b01668
    35. Chongyi Ling, Xiaowan Bai, Yixin Ouyang, Aijun Du, Jinlan Wang. Single Molybdenum Atom Anchored on N-Doped Carbon as a Promising Electrocatalyst for Nitrogen Reduction into Ammonia at Ambient Conditions. The Journal of Physical Chemistry C 2018, 122 (29) , 16842-16847. https://doi.org/10.1021/acs.jpcc.8b05257
    36. Zsolt Benedek, Marcell Papp, Julianna Oláh, Tibor Szilvási. Identifying the Rate-Limiting Elementary Steps of Nitrogen Fixation with Single-Site Fe Model Complexes. Inorganic Chemistry 2018, 57 (14) , 8499-8508. https://doi.org/10.1021/acs.inorgchem.8b01183
    37. Sean F. McWilliams, Eckhard Bill, Gudrun Lukat-Rodgers, Kenton R. Rodgers, Brandon Q. Mercado, Patrick L. Holland. Effects of N2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. Journal of the American Chemical Society 2018, 140 (27) , 8586-8598. https://doi.org/10.1021/jacs.8b04828
    38. Tatsuya Suzuki, Keisuke Fujimoto, Yoshiyuki Takemoto, Yuko Wasada-Tsutsui, Tomohiro Ozawa, Tomohiko Inomata, Michael D. Fryzuk, Hideki Masuda. Efficient Catalytic Conversion of Dinitrogen to N(SiMe3)3 Using a Homogeneous Mononuclear Cobalt Complex. ACS Catalysis 2018, 8 (4) , 3011-3015. https://doi.org/10.1021/acscatal.7b04351
    39. Alexander J. Kendall, Samantha I. Johnson, R. Morris Bullock, and Michael T. Mock . Catalytic Silylation of N2 and Synthesis of NH3 and N2H4 by Net Hydrogen Atom Transfer Reactions Using a Chromium P4 Macrocycle. Journal of the American Chemical Society 2018, 140 (7) , 2528-2536. https://doi.org/10.1021/jacs.7b11132
    40. Benjamin D. Matson and Jonas C. Peters . Fe-Mediated HER vs N2RR: Exploring Factors That Contribute to Selectivity in P3EFe(N2) (E = B, Si, C) Catalyst Model Systems. ACS Catalysis 2018, 8 (2) , 1448-1455. https://doi.org/10.1021/acscatal.7b03068
    41. Yong-Hui Tian, Shuangli Hu, Xiaolan Sheng, Yixiang Duan, Jacek Jakowski, Bobby G. Sumpter, and Jingsong Huang . Non-Transition-Metal Catalytic System for N2 Reduction to NH3: A Density Functional Theory Study of Al-Doped Graphene. The Journal of Physical Chemistry Letters 2018, 9 (3) , 570-576. https://doi.org/10.1021/acs.jpclett.7b03094
    42. Javier Fajardo, Jr. and Jonas C. Peters . Catalytic Nitrogen-to-Ammonia Conversion by Osmium and Ruthenium Complexes. Journal of the American Chemical Society 2017, 139 (45) , 16105-16108. https://doi.org/10.1021/jacs.7b10204
    43. Tamara Husch and Markus Reiher . Mechanistic Consequences of Chelate Ligand Stabilization on Nitrogen Fixation by Yandulov–Schrock-Type Complexes. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10527-10537. https://doi.org/10.1021/acssuschemeng.7b02518
    44. Masakazu Iwamoto, Mao Akiyama, Keigo Aihara, and Takashi Deguchi . Ammonia Synthesis on Wool-Like Au, Pt, Pd, Ag, or Cu Electrode Catalysts in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. ACS Catalysis 2017, 7 (10) , 6924-6929. https://doi.org/10.1021/acscatal.7b01624
    45. Jingxiang Zhao and Zhongfang Chen . Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. Journal of the American Chemical Society 2017, 139 (36) , 12480-12487. https://doi.org/10.1021/jacs.7b05213
    46. Demyan E. Prokopchuk, Eric S. Wiedner, Eric D. Walter, Codrina V. Popescu, Nicholas A. Piro, W. Scott Kassel, R. Morris Bullock, and Michael T. Mock . Catalytic N2 Reduction to Silylamines and Thermodynamics of N2 Binding at Square Planar Fe. Journal of the American Chemical Society 2017, 139 (27) , 9291-9301. https://doi.org/10.1021/jacs.7b04552
    47. Lasantha A. Wickramasinghe, Takaya Ogawa, Richard R. Schrock, and Peter Müller . Reduction of Dinitrogen to Ammonia Catalyzed by Molybdenum Diamido Complexes. Journal of the American Chemical Society 2017, 139 (27) , 9132-9135. https://doi.org/10.1021/jacs.7b04800
    48. Brian M. Lindley, Quinton J. Bruch, Peter S. White, Faraj Hasanayn, and Alexander J. M. Miller . Ammonia Synthesis from a Pincer Ruthenium Nitride via Metal–Ligand Cooperative Proton-Coupled Electron Transfer. Journal of the American Chemical Society 2017, 139 (15) , 5305-5308. https://doi.org/10.1021/jacs.7b01323
    49. Matthew J. Chalkley, Trevor J. Del Castillo, Benjamin D. Matson, Joseph P. Roddy, and Jonas C. Peters . Catalytic N2-to-NH3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET. ACS Central Science 2017, 3 (3) , 217-223. https://doi.org/10.1021/acscentsci.7b00014
    50. Jonathan Rittle and Jonas C. Peters . N–H Bond Dissociation Enthalpies and Facile H Atom Transfers for Early Intermediates of Fe–N2 and Fe–CN Reductions. Journal of the American Chemical Society 2017, 139 (8) , 3161-3170. https://doi.org/10.1021/jacs.6b12861
    51. Papri Bhattacharya, Zachariah M. Heiden, Eric S. Wiedner, Simone Raugei, Nicholas A. Piro, W. Scott Kassel, R. Morris Bullock, and Michael T. Mock . Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH3 Complex. Journal of the American Chemical Society 2017, 139 (8) , 2916-2919. https://doi.org/10.1021/jacs.7b00002
    52. Ryan M. Clarke and Tim Storr . Tuning Electronic Structure To Control Manganese Nitride Activation. Journal of the American Chemical Society 2016, 138 (47) , 15299-15302. https://doi.org/10.1021/jacs.6b09576
    53. Svea Hinrichsen, Andrei Kindjajev, Sven Adomeit, Jan Krahmer, Christian Näther, and Felix Tuczek . Molybdenum(0) Dinitrogen Complexes Supported by Pentadentate Tetrapodal Phosphine Ligands: Structure, Synthesis, and Reactivity toward Acids. Inorganic Chemistry 2016, 55 (17) , 8712-8722. https://doi.org/10.1021/acs.inorgchem.6b01255
    54. Hiromasa Tanaka, Yoshiaki Nishibayashi, and Kazunari Yoshizawa . Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes. Accounts of Chemical Research 2016, 49 (5) , 987-995. https://doi.org/10.1021/acs.accounts.6b00033
    55. Trevor J. Del Castillo, Niklas B. Thompson, and Jonas C. Peters . A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench 57Fe Mössbauer Data, and a Hydride Resting State. Journal of the American Chemical Society 2016, 138 (16) , 5341-5350. https://doi.org/10.1021/jacs.6b01706
    56. Jonathan Rittle and Jonas C. Peters . An Fe-N2 Complex That Generates Hydrazine and Ammonia via Fe═NNH2: Demonstrating a Hybrid Distal-to-Alternating Pathway for N2 Reduction. Journal of the American Chemical Society 2016, 138 (12) , 4243-4248. https://doi.org/10.1021/jacs.6b01230
    57. Máté J. Bezdek, Sheng Guo, and Paul J. Chirik . Terpyridine Molybdenum Dinitrogen Chemistry: Synthesis of Dinitrogen Complexes That Vary by Five Oxidation States. Inorganic Chemistry 2016, 55 (6) , 3117-3127. https://doi.org/10.1021/acs.inorgchem.6b00053
    58. Qian Liao, Nathalie Saffon-Merceron, and Nicolas Mézailles . N2 Reduction into Silylamine at Tridentate Phosphine/Mo Center: Catalysis and Mechanistic Study. ACS Catalysis 2015, 5 (11) , 6902-6906. https://doi.org/10.1021/acscatal.5b01626
    59. Yoshiaki Nishibayashi . Recent Progress in Transition-Metal-Catalyzed Reduction of Molecular Dinitrogen under Ambient Reaction Conditions. Inorganic Chemistry 2015, 54 (19) , 9234-9247. https://doi.org/10.1021/acs.inorgchem.5b00881
    60. Michael T. Mock, Aaron W. Pierpont, Jonathan D. Egbert, Molly O’Hagan, Shentan Chen, R. Morris Bullock, William G. Dougherty, W. Scott Kassel, and Roger Rousseau . Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines. Inorganic Chemistry 2015, 54 (10) , 4827-4839. https://doi.org/10.1021/acs.inorgchem.5b00351
    61. Qingqing Fan, Qingshuang Li, Hongjian Sun, Xiaoyan Li. Dinitrogen silylation catalyzed by silylene cobalt( i ) and silylene iron( i ) chlorides. Dalton Transactions 2024, 53 (39) , 16261-16270. https://doi.org/10.1039/D4DT02057J
    62. Yoshiaki Tanabe, Yoshiaki Nishibayashi. Catalytic Nitrogen Fixation Using Well‐Defined Molecular Catalysts under Ambient or Mild Reaction Conditions. Angewandte Chemie International Edition 2024, 63 (33) https://doi.org/10.1002/anie.202406404
    63. Yoshiaki Tanabe, Yoshiaki Nishibayashi. Catalytic Nitrogen Fixation Using Well‐Defined Molecular Catalysts under Ambient or Mild Reaction Conditions. Angewandte Chemie 2024, 136 (33) https://doi.org/10.1002/ange.202406404
    64. Delong Han, Li Yang, Hao Huang, Priyanka Chakraborty, Shashikant U. Dighe, Kuo-Wei Huang. Combinations of electron and proton donors in transition-metal complex mediated nitrogen reduction reactions. Science China Chemistry 2024, 67 (7) , 2136-2154. https://doi.org/10.1007/s11426-023-1991-1
    65. Min Zhang, Yanhong Dong, Qingshuang Li, Xiaoyan Li, Hongjian Sun. Effects of silylene ligands on the catalytic activity of [PSiP] pincer cobalt( ii ) chloride for N 2 silylation. New Journal of Chemistry 2024, 48 (16) , 7334-7339. https://doi.org/10.1039/D4NJ00883A
    66. Anthony Wong, Francis Y.T. Lam, Matthew Hernandez, Jaden Lara, T. Michael Trinh, Rory P. Kelly, Tatsumi Ochiai, Guodong Rao, R. David Britt, Nikolas Kaltsoyannis, Polly L. Arnold. Catalytic reduction of dinitrogen to silylamines by earth-abundant lanthanide and group 4 complexes. Chem Catalysis 2024, 83 , 100964. https://doi.org/10.1016/j.checat.2024.100964
    67. Samyadeb Mahato, Warren VandeVen, Gregory A. MacNeil, Jason M. Pulfer, Tim Storr. Untangling ancillary ligand donation versus locus of oxidation effects on metal nitride reactivity. Chemical Science 2024, 15 (6) , 2211-2220. https://doi.org/10.1039/D3SC05403A
    68. Tayebe Roostaie, Maryam Meshksar, Mohammad Reza Rahimpour. Catalysts for nitrogen reduction to ammonia. 2024, 155-172. https://doi.org/10.1016/B978-0-323-88516-4.00010-X
    69. Aya Eizawa, Kazuya Arashiba, Hiromasa Tanaka, Asuka Konomi, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Design, synthesis and reactivity of dimolybdenum complex bearing quaterphenylene-bridged pyridine-based PNP-type pincer ligand. Dalton Transactions 2023, 52 (39) , 14012-14016. https://doi.org/10.1039/D3DT02887A
    70. Andrew VanderWeide, Demyan E. Prokopchuk. Cyclopentadienyl ring activation in organometallic chemistry and catalysis. Nature Reviews Chemistry 2023, 7 (8) , 561-572. https://doi.org/10.1038/s41570-023-00501-1
    71. Anna Rovaletti, Luca De Gioia, Claudio Greco, Federica Arrigoni. Activation of the N 2 molecule by means of low-valence complexes of calcium and magnesium. Dalton Transactions 2023, 52 (23) , 7966-7974. https://doi.org/10.1039/D3DT00945A
    72. Jannik Junge, Tobias A. Engesser, Felix Tuczek. N 2 Reduction versus H 2 Evolution in a Molybdenum‐ or Tungsten‐Based Small‐Molecule Model System of Nitrogenase. Chemistry – A European Journal 2023, 29 (13) https://doi.org/10.1002/chem.202202629
    73. Oliver Einsle, Tobias A. Engesser, Felix Tuczek. Biological and synthetic nitrogen fixation. 2023, 302-346. https://doi.org/10.1016/B978-0-12-823144-9.00178-3
    74. Yoshiaki Tanabe, Yoshiaki Nishibayashi. Recent advances in catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Coordination Chemistry Reviews 2022, 472 , 214783. https://doi.org/10.1016/j.ccr.2022.214783
    75. Takayuki Itabashi, Kazuya Arashiba, Akihito Egi, Hiromasa Tanaka, Keita Sugiyama, Shun Suginome, Shogo Kuriyama, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Direct synthesis of cyanate anion from dinitrogen catalysed by molybdenum complexes bearing pincer-type ligand. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33809-5
    76. Moumita Mukherjee, Sayan Dutta, Madhusudan Ghosh, Partha Basuchowdhuri, Ayan Datta. Performance of the nitrogen reduction reaction on metal bound g-C 6 N 6 : a combined approach of machine learning and DFT. Physical Chemistry Chemical Physics 2022, 24 (28) , 17050-17058. https://doi.org/10.1039/D2CP01901A
    77. Gannon P. Connor, Daniel Delony, Jeremy E. Weber, Brandon Q. Mercado, Julia B. Curley, Sven Schneider, James M. Mayer, Patrick L. Holland. Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chemical Science 2022, 13 (14) , 4010-4018. https://doi.org/10.1039/D1SC04503B
    78. Dang B. Tran, Tung H. To, Phong D. Tran. Mo- and W-molecular catalysts for the H2 evolution, CO2 reduction and N2 fixation. Coordination Chemistry Reviews 2022, 457 , 214400. https://doi.org/10.1016/j.ccr.2021.214400
    79. Liang Xu, Miao Xie, Hao Yang, Peiping Yu, Bingyun Ma, Tao Cheng, William A. Goddard. In-Silico Screening the Nitrogen Reduction Reaction on Single-Atom Electrocatalysts Anchored on MoS2. Topics in Catalysis 2022, 65 (1-4) , 234-241. https://doi.org/10.1007/s11244-021-01546-6
    80. Ruoqi Liu, Ting Guo, Hao Fei, Zhuangzhi Wu, Dezhi Wang, Fangyang Liu. Highly Efficient Electrocatalytic N 2 Reduction to Ammonia over Metallic 1T Phase of MoS 2 Enabled by Active Sites Separation Mechanism. Advanced Science 2022, 9 (2) https://doi.org/10.1002/advs.202103583
    81. Scott Grzybowski, Scott R. Daly. Organometallic Pincer Complexes With Group 6 Metals. 2022, 648-694. https://doi.org/10.1016/B978-0-12-820206-7.00081-0
    82. Olivia L. Duletski, Roark D. O’Neill, Charles Beasley, Molly O’Hagan, Michael T. Mock. Complexes of Groups 5–7 with N2, NO, and Other N-Containing Small Molecules. 2022, 772-841. https://doi.org/10.1016/B978-0-12-820206-7.00165-7
    83. Aisa Mohanty, Raju Sharma, Prosenjit Daw. Application of pincer metal complexes in catalytic transformations. 2022, 1-68. https://doi.org/10.1016/B978-0-12-822091-7.00003-8
    84. Takaya Ogawa. Ammonia as a carrier of renewable energy: Recent progress of ammonia synthesis by homogeneous catalysts, heterogeneous catalysts, and electrochemical method. 2022, 265-291. https://doi.org/10.1016/B978-0-323-85403-0.00010-4
    85. Dan-dan Zhai, Si-jun Xie, Yi Xia, Hua-yi Fang, Zhang-jie Shi. Silylamido supported dinitrogen heterobimetallic complexes: syntheses and their catalytic ability. National Science Review 2021, 8 (12) https://doi.org/10.1093/nsr/nwaa290
    86. Hannah K. Wagner, Hubert Wadepohl, Joachim Ballmann. Molybdän‐vermittelte N 2 ‐Spaltung und Funktionalisierung in Gegenwart eines koordinierten Alkins. Angewandte Chemie 2021, 133 (49) , 26008-26012. https://doi.org/10.1002/ange.202111325
    87. Hannah K. Wagner, Hubert Wadepohl, Joachim Ballmann. Molybdenum‐Mediated N 2 ‐Splitting and Functionalization in the Presence of a Coordinated Alkyne. Angewandte Chemie International Edition 2021, 60 (49) , 25804-25808. https://doi.org/10.1002/anie.202111325
    88. Akihito Egi, Hiromasa Tanaka, Kazunari Yoshizawa. Theoretical Views on Catalytic Reaction Pathways for Nitrogen Fixation by Dinitrogen-Bridging Dimolybdenum Complexes. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (11) , 1041-1049. https://doi.org/10.5059/yukigoseikyokaishi.79.1041
    89. Dae Young Bae, Gunhee Lee, Eunsung Lee. Reduction of highly bulky triphenolamine molybdenum nitrido and chloride complexes. Dalton Transactions 2021, 50 (40) , 14139-14143. https://doi.org/10.1039/D1DT02375F
    90. Megan Keener, Rosario Scopelliti, Marinella Mazzanti. Nitride protonation and NH 3 binding versus N–H bond cleavage in uranium nitrides. Chemical Science 2021, 12 (38) , 12610-12618. https://doi.org/10.1039/D1SC03957A
    91. Mareike Pfeil, Tobias A. Engesser, Jan Krahmer, Christian Näther, Felix Tuczek. Bonding and Activation of N 2 in Molybdenum(0) Complexes Supported by Tripod Ligands with Phospholane End Groups. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (18) , 1778-1788. https://doi.org/10.1002/zaac.202100166
    92. Soukaina Bennaamane, Maria F. Espada, Andrea Mulas, Théo Personeni, Nathalie Saffon‐Merceron, Marie Fustier‐Boutignon, Christophe Bucher, Nicolas Mézailles. Catalytic Reduction of N 2 to Borylamine at a Molybdenum Complex. Angewandte Chemie 2021, 133 (37) , 20372-20376. https://doi.org/10.1002/ange.202106025
    93. Soukaina Bennaamane, Maria F. Espada, Andrea Mulas, Théo Personeni, Nathalie Saffon‐Merceron, Marie Fustier‐Boutignon, Christophe Bucher, Nicolas Mézailles. Catalytic Reduction of N 2 to Borylamine at a Molybdenum Complex. Angewandte Chemie International Edition 2021, 60 (37) , 20210-20214. https://doi.org/10.1002/anie.202106025
    94. Shogo Kuriyama, Wenhao Zhao, Yoshiaki Nishibayashi. Synthesis and Characterization of Rhodium Complex Bearing Anionic CNC‐Type Pincer Ligand with Pyrrolide and Imidazo[1,5‐ a ]pyridin‐3‐ylidene Moieties. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (14) , 1408-1414. https://doi.org/10.1002/zaac.202100065
    95. Fanqiang Meng, Shogo Kuriyama, Hiromasa Tanaka, Akihito Egi, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Ammonia Formation Catalyzed by a Dinitrogen‐Bridged Dirhenium Complex Bearing PNP‐Pincer Ligands under Mild Reaction Conditions**. Angewandte Chemie 2021, 133 (25) , 14025-14031. https://doi.org/10.1002/ange.202102175
    96. Fanqiang Meng, Shogo Kuriyama, Hiromasa Tanaka, Akihito Egi, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Ammonia Formation Catalyzed by a Dinitrogen‐Bridged Dirhenium Complex Bearing PNP‐Pincer Ligands under Mild Reaction Conditions**. Angewandte Chemie International Edition 2021, 60 (25) , 13906-13912. https://doi.org/10.1002/anie.202102175
    97. Xiaoyun Lin, Lulu Li, Xin Chang, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Black phosphorus-hosted single-atom catalyst for electrocatalytic nitrogen reduction. Science China Materials 2021, 64 (5) , 1173-1181. https://doi.org/10.1007/s40843-020-1522-y
    98. Yoshiaki Tanabe, Yoshiaki Nishibayashi. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chemical Society Reviews 2021, 50 (8) , 5201-5242. https://doi.org/10.1039/D0CS01341B
    99. Laura M. Thierer, Qiuran Wang, Sam H. Brooks, Peng Cui, Jia Qi, Michael R. Gau, Brian C. Manor, Patrick J. Carroll, Neil C. Tomson. Pyridyldiimine macrocyclic ligands: Influences of template ion, linker length and imine substitution on ligand synthesis, structure and redox properties. Polyhedron 2021, 198 , 115044. https://doi.org/10.1016/j.poly.2021.115044
    100. Shogo Kuriyama, Yoshiaki Nishibayashi. Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron 2021, 83 , 131986. https://doi.org/10.1016/j.tet.2021.131986
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 17, 5666–5669
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b02579
    Published April 16, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    9367

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.