ACS Publications. Most Trusted. Most Cited. Most Read
Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst
My Activity

Figure 1Loading Img
    Communication

    Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
    Laboratory for Nanoscale Materials Science, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf CH-8600, Switzerland
    § Photovoltaics and Thin-Film Electronics Laboratory, Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel CH-2000, Switzerland
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 22, 7035–7038
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b03417
    Published May 25, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Coupling of Earth-abundant hydrogen evolution catalysts to photoabsorbers is crucial for the production of hydrogen fuel using sunlight. In this work, we demonstrate the use of magnetron sputtering to deposit Mo2C as an efficient hydrogen evolution reaction catalyst onto surface-protected amorphous silicon (a-Si) photoabsorbers. The a-Si/Mo2C photocathode evolves hydrogen under simulated solar illumination in strongly acidic and alkaline electrolytes. Onsets of photocurrents are observed at potentials as positive as 0.85 V vs RHE. Under AM 1.5G (1 sun) illumination, the photocathodes reach current densities of −11.2 mA cm–2 at the reversible hydrogen potential in 0.1 M H2SO4 and 1.0 M KOH. The high photovoltage and low-cost of the Mo2C/a-Si assembly make it a promising photocathode for solar hydrogen production.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details and supporting data. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b03417.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 80 publications.

    1. Sijie Li, Huiwen Lin, Shunqin Luo, Qi Wang, Jinhua Ye. Surface/Interface Engineering of Si-Based Photocathodes for Efficient Hydrogen Evolution. ACS Photonics 2022, 9 (12) , 3786-3806. https://doi.org/10.1021/acsphotonics.2c00708
    2. Sergio I. Perez Bakovic, Prashant Acharya, Lauren F. Greenlee. Electrochemical Activation of Silicon: Enhancing Hydrogen Production from FeNi Electrocatalysts. Energy & Fuels 2022, 36 (13) , 7158-7165. https://doi.org/10.1021/acs.energyfuels.2c01061
    3. Xiaolu Chen, Ke Ye, Shunru Jin, Xiyu Li, Guozhen Zhang, Xin Li, Shenlong Jiang, Qun Zhang, Qing Zhu, Jun Jiang. Hydrogenated Oxide as Novel Quasi-metallic Cocatalyst for Efficient Visible-Light Driven Photocatalytic Water Splitting. The Journal of Physical Chemistry C 2021, 125 (23) , 12672-12681. https://doi.org/10.1021/acs.jpcc.1c02991
    4. Doudou Zhang, Yuexian Cao, Siva Krishna Karuturi, Minyong Du, Mingyao Liu, Chaowei Xue, Ruotian Chen, Pengpeng Wang, Jian Zhang, Jingying Shi, Shengzhong Frank Liu. Enabling Unassisted Solar Water Splitting by Single-Junction Amorphous Silicon Photoelectrodes. ACS Applied Energy Materials 2020, 3 (5) , 4629-4637. https://doi.org/10.1021/acsaem.0c00296
    5. Muhammad Ali Ehsan, Abbas Saeed Hakeem, Muhammad Sharif, Abdul Rehman. Direct Deposition of Amorphous Cobalt–Vanadium Mixed Oxide Films for Electrocatalytic Water Oxidation. ACS Omega 2019, 4 (7) , 12671-12679. https://doi.org/10.1021/acsomega.9b01385
    6. Xuran Sun, Jian Jiang, Yong Yang, Yu Shan, Lunlun Gong, Mei Wang. Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and TiO2. ACS Applied Materials & Interfaces 2019, 11 (21) , 19132-19140. https://doi.org/10.1021/acsami.9b03757
    7. Kristian E. Dalle, Julien Warnan, Jane J. Leung, Bertrand Reuillard, Isabell S. Karmel, Erwin Reisner. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews 2019, 119 (4) , 2752-2875. https://doi.org/10.1021/acs.chemrev.8b00392
    8. Bastian Mei, Kai Han, Guido Mul. Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The Active State of Illuminated Semiconductor-Supported Nanoparticles during Overall Water-Splitting. ACS Catalysis 2018, 8 (10) , 9154-9164. https://doi.org/10.1021/acscatal.8b02215
    9. Heng Zhao, Zhengyi Dai, Xiaoyong Xu, Jing Pan, Jingguo Hu. Integrating Semiconducting Catalyst of ReS2 Nanosheets into P-Silicon Photocathode for Enhanced Solar Water Reduction. ACS Applied Materials & Interfaces 2018, 10 (27) , 23074-23080. https://doi.org/10.1021/acsami.8b04740
    10. Ronglei Fan, Jie Mao, Zhihao Yin, Jiansheng Jie, Wen Dong, Liang Fang, Fengang Zheng, and Mingrong Shen . Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production. ACS Applied Materials & Interfaces 2017, 9 (7) , 6123-6129. https://doi.org/10.1021/acsami.6b15854
    11. Chunmei Ding, Jingying Shi, Zhiliang Wang, and Can Li . Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis 2017, 7 (1) , 675-688. https://doi.org/10.1021/acscatal.6b03107
    12. Yong Yang, Mei Wang, Peili Zhang, Weihan Wang, Hongxian Han, and Licheng Sun . Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays. ACS Applied Materials & Interfaces 2016, 8 (44) , 30143-30151. https://doi.org/10.1021/acsami.6b09600
    13. Mrinmoyee Basu, Zhi-Wei Zhang, Chih-Jung Chen, Tzu-Hsiang Lu, Shu-Fen Hu, and Ru-Shi Liu . CoSe2 Embedded in C3N4: An Efficient Photocathode for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2016, 8 (40) , 26690-26696. https://doi.org/10.1021/acsami.6b06520
    14. Donghyeon Kang, Tae Woo Kim, Stephen R. Kubota, Allison C. Cardiel, Hyun Gil Cha, and Kyoung-Shin Choi . Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chemical Reviews 2015, 115 (23) , 12839-12887. https://doi.org/10.1021/acs.chemrev.5b00498
    15. Courtney A. Downes and Smaranda C. Marinescu . Efficient Electrochemical and Photoelectrochemical H2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal–Organic Surface. Journal of the American Chemical Society 2015, 137 (43) , 13740-13743. https://doi.org/10.1021/jacs.5b07020
    16. Gong Zhang, Yongqi Li, Chenxuan Zhao, Jiabao Gu, Gang Zhou, Yanfeng Shi, Qi Zhou, Feng Xiao, Wen-jie Fu, Qingbai Chen, Qinghua Ji, Jiuhui Qu, Huijuan Liu. Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. Nature Nanotechnology 2024, 19 (8) , 1130-1140. https://doi.org/10.1038/s41565-024-01669-3
    17. Celine Wing See Yeung, Virgil Andrei, Tack Ho Lee, James Robert Durrant, Erwin Reisner. Organic Semiconductor‐BiVO 4 Tandem Devices for Solar‐Driven H 2 O and CO 2 Splitting. Advanced Materials 2024, 15 https://doi.org/10.1002/adma.202404110
    18. Francesco Colangelo, Davide Scarpa, Carla Cirillo, Mariagrazia Iuliano, Claudia Cirillo, Serghej L. Prischepa, Luca Gallucci, Vitaly P. Bondarenko, Carmine Attanasio, Maria Sarno. High-performance HER on magnetron-sputtered nanometric Nb films on porous silicon substrates. International Journal of Hydrogen Energy 2024, 73 , 86-94. https://doi.org/10.1016/j.ijhydene.2024.05.474
    19. Mariagrazia Iuliano, Claudia Cirillo, Davide Scarpa, Eleonora Ponticorvo, Carla Cirillo, Renata Adami, Carmine Attanasio, Maria Sarno. NbRe thin film by magnetron sputtering for selective H2, C1 and C3 chemicals synthesis from H2O and CO2. International Journal of Hydrogen Energy 2024, 69 , 1366-1376. https://doi.org/10.1016/j.ijhydene.2024.05.149
    20. Joonhee Ma, Sang Hyun Ahn, Soo Young Kim. Integration of earth-abundant cocatalysts for high-performance photoelectrochemical energy conversion. Journal of Energy Chemistry 2024, 88 , 336-355. https://doi.org/10.1016/j.jechem.2023.09.021
    21. Yibo Zhao, Zhenjie Niu, Jiwu Zhao, Lan Xue, Xianzhi Fu, Jinlin Long. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. Electrochemical Energy Reviews 2023, 6 (1) https://doi.org/10.1007/s41918-022-00153-7
    22. Shuo Wang, Yiwei Li, Jin Song, Jinheng Zhang, Yaohong Ma. Recent progress in the electrochemical quantification of nitrophenols. Journal of Electroanalytical Chemistry 2023, 938 , 117375. https://doi.org/10.1016/j.jelechem.2023.117375
    23. Mohit Kumar, Bhagatram Meena, Palyam Subramanyam, Duvvuri Suryakala, Challapalli Subrahmanyam. Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Materials 2022, 14 (1) https://doi.org/10.1038/s41427-022-00436-x
    24. Xiu Cao, Jianhui Zhang, Lu Ru, Simin Tao, Jianrong Xiao, Aihua Jiang. Effects of gas flow ratio and annealing on the structure and optical band gap of Mo2C thin films. Vacuum 2022, 206 , 111490. https://doi.org/10.1016/j.vacuum.2022.111490
    25. Malkeshkumar Patel, Vinayak Vitthal Satale, Sangho Kim, Kibum Lee, Joondong Kim. Transparent photovoltaic-based photocathodes for see-through energy systems. Journal of Power Sources 2022, 548 , 232009. https://doi.org/10.1016/j.jpowsour.2022.232009
    26. Shaobo Zhang, Huiting Huang, Zhijie Zhang, Jianyong Feng, Zongguang Liu, Junzhuan Wang, Jun Xu, Zhaosheng Li, Linwei Yu, Kunji Chen, Zhigang Zou. Ultrathin 3D radial tandem-junction photocathode with a high onset potential of 1.15 V for solar hydrogen production. Chinese Journal of Catalysis 2022, 43 (7) , 1842-1850. https://doi.org/10.1016/S1872-2067(21)64046-9
    27. Meysam Maleki, Alireza Sabour Rouhaghdam, Ghasem Barati Darband, Dabin Han, Morteza Chehelamirani, Sangaraju Shanmugam. Binder-free P-doped Ni-Se nanostructure electrode toward highly active and stable hydrogen production in wide pH range and seawater. Journal of Electroanalytical Chemistry 2022, 916 , 116379. https://doi.org/10.1016/j.jelechem.2022.116379
    28. Feng Sha, Xinyi Liu, Shan Tang, Jijie Wang, Can Li. Hydrogenation of CO 2 to Chemicals with Green Hydrogen. 2022, 1073-1184. https://doi.org/10.1002/9783527831883.ch25
    29. Manjing Wang, Biao Shi, Qixing Zhang, Xingliang Li, Sanjing Pan, Ying Zhao, Xiaodan Zhang. Integrated and Unassisted Solar Water‐Splitting System by Monolithic Perovskite/Silicon Tandem Solar Cell. Solar RRL 2022, 6 (2) https://doi.org/10.1002/solr.202100748
    30. Yuanlu Tsai, Zhiteng Li, Shaojie Hu. Recent Progress of Atomic Layer Technology in Spintronics: Mechanism, Materials and Prospects. Nanomaterials 2022, 12 (4) , 661. https://doi.org/10.3390/nano12040661
    31. Shu Hu. Solid-Solid Interfaces in Photoelectrochemistry: Co-catalysts, Surface Passivation, and Corrosion Protection. 2022, 879-921. https://doi.org/10.1007/978-3-030-63713-2_30
    32. Bashir Adegbemiga Yusuf, Meng Xie, Waleed Yaseen, Chidinma Judith Oluigbo, Jimin Xie, Yuanguo Xu. Ni nanoparticles oriented on MoO2@BC nanosheets with an outstanding long-term stability for hydrogen evolution reaction. Chemical Engineering Science 2021, 246 , 116868. https://doi.org/10.1016/j.ces.2021.116868
    33. Yukun Lu, Changle Yue, Yaping Li, Wenjing Bao, Xinxin Guo, Wenfeng Yang, Zhi Liu, Ping Jiang, Wenfu Yan, Shoujie Liu, Yuan Pan, Yunqi Liu. Atomically dispersed Ni on Mo2C embedded in N, P co-doped carbon derived from polyoxometalate supramolecule for high-efficiency hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental 2021, 296 , 120336. https://doi.org/10.1016/j.apcatb.2021.120336
    34. Fan Zhang, Xuegong Yu, Jiajun Hu, Lecheng Lei, Yi He, Xingwang Zhang. Coupling Ru-MoS2 heterostructure with silicon for efficient photoelectrocatalytic water splitting. Chemical Engineering Journal 2021, 423 , 130231. https://doi.org/10.1016/j.cej.2021.130231
    35. Yubin Chen, Ya Liu, Feng Wang, Xiangjiu Guan, Liejin Guo. Toward practical photoelectrochemical water splitting and CO2 reduction using earth-abundant materials. Journal of Energy Chemistry 2021, 61 , 469-488. https://doi.org/10.1016/j.jechem.2021.02.003
    36. Liuqing Yang, Ce Zhang, Xiwen Yu, Yingfang Yao, Zhaosheng Li, Congping Wu, Wei Yao, Zhigang Zou. Extraterrestrial artificial photosynthetic materials for in-situ resource utilization. National Science Review 2021, 8 (8) https://doi.org/10.1093/nsr/nwab104
    37. Zhe Chen, Yuting Gao, Feng Chen, Hongfei Shi. Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity. Chemical Engineering Journal 2021, 413 , 127474. https://doi.org/10.1016/j.cej.2020.127474
    38. Seo Yun Kim, Ramesh Sivasankaran, Maheswari Arunachalam, Geon Hee Lee, Duck Hyun Youn, Soon Hyung Kang. Mo 2 C Cocatalysts Supported Si Nanowire Photoanode for Solar Water Oxidation. Journal of The Electrochemical Society 2021, 168 (6) , 066519. https://doi.org/10.1149/1945-7111/ac0aa6
    39. Doudou Zhang, Minyong Du, Pengpeng Wang, Hui Wang, Wenwen Shi, Yuying Gao, Siva Karuturi, Kylie Catchpole, Jian Zhang, Fengtao Fan, Jingying Shi, Shengzhong Liu. Hole‐Storage Enhanced a‐Si Photocathodes for Efficient Hydrogen Production. Angewandte Chemie 2021, 133 (21) , 12073-12079. https://doi.org/10.1002/ange.202100078
    40. Doudou Zhang, Minyong Du, Pengpeng Wang, Hui Wang, Wenwen Shi, Yuying Gao, Siva Karuturi, Kylie Catchpole, Jian Zhang, Fengtao Fan, Jingying Shi, Shengzhong Liu. Hole‐Storage Enhanced a‐Si Photocathodes for Efficient Hydrogen Production. Angewandte Chemie International Edition 2021, 60 (21) , 11966-11972. https://doi.org/10.1002/anie.202100078
    41. Jie Liang, Qian Liu, Tingshuai Li, Yonglan Luo, Siyu Lu, Xifeng Shi, Fang Zhang, Abdullah M. Asiri, Xuping Sun. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry 2021, 23 (8) , 2834-2867. https://doi.org/10.1039/D0GC03994B
    42. Xuran Sun, Chang Liu, Peili Zhang, Lunlun Gong, Mei Wang. Interface-engineered silicon photocathodes with a NiCoP catalyst-modified TiO2 nanorod array outlayer for photoelectrochemical hydrogen production in alkaline solution. Journal of Power Sources 2021, 484 , 229272. https://doi.org/10.1016/j.jpowsour.2020.229272
    43. Hui-Chun Fu, Purushothaman Varadhan, Chun-Ho Lin, Jr-Hau He. Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17660-0
    44. Yongfang Zhou, Tingting Lin, Xuanli Luo, Zhibin Yan, Jin Wu, Jianshe Wang, Yi Shen. Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction. Journal of Catalysis 2020, 388 , 122-129. https://doi.org/10.1016/j.jcat.2020.05.011
    45. Min-Kyu Son, Hyunwoong Seo, Motonori Watanabe, Masaharu Shiratani, Tatsumi Ishihara. Characteristics of crystalline sputtered LaFeO 3 thin films as photoelectrochemical water splitting photocathodes. Nanoscale 2020, 12 (17) , 9653-9660. https://doi.org/10.1039/D0NR01762K
    46. Zhong-Jie Jiang, Guiting Xie, Liping Guo, Jianlin Huang, Zhongqing Jiang. Co nanoparticles coupling induced high catalytic activity of nitrogen doped carbon towards hydrogen evolution reaction in acidic/alkaline solutions. Electrochimica Acta 2020, 342 , 136076. https://doi.org/10.1016/j.electacta.2020.136076
    47. Wenzhu Liu, Liping Zhang, Xinbo Yang, Jianhua Shi, Lingling Yan, Lujia Xu, Zhuopeng Wu, Renfang Chen, Jun Peng, Jingxuan Kang, Kai Wang, Fanying Meng, Stefaan De Wolf, Zhengxin Liu. Damp-Heat-Stable, High-Efficiency, Industrial-Size Silicon Heterojunction Solar Cells. Joule 2020, 4 (4) , 913-927. https://doi.org/10.1016/j.joule.2020.03.003
    48. Hui-Chun Fu, Purushothaman Varadhan, Meng-Lin Tsai, Wenjie Li, Qi Ding, Chun-Ho Lin, Marcella Bonifazi, Andrea Fratalocchi, Song Jin, Jr-Hau He. Improved performance and stability of photoelectrochemical water-splitting Si system using a bifacial design to decouple light harvesting and electrocatalysis. Nano Energy 2020, 70 , 104478. https://doi.org/10.1016/j.nanoen.2020.104478
    49. Sitaramanjaneya Mouli Thalluri, Lichen Bai, Cuncai Lv, Zhipeng Huang, Xile Hu, Lifeng Liu. Strategies for Semiconductor/Electrocatalyst Coupling toward Solar‐Driven Water Splitting. Advanced Science 2020, 7 (6) https://doi.org/10.1002/advs.201902102
    50. Mohit Prasad, Vidhika Sharma, Sandesh Jadkar. Role of Earth-Abundant/Carbonaceous Electrocatalysts as Cocatalyst for Solar Water Splitting. 2020, 201-220. https://doi.org/10.1007/978-3-030-27161-9_8
    51. Sergi Grau, Sergio Giraldo, Edgardo Saucedo, Joan Ramón Morante, Antoni Llobet, Carolina Gimbert-Suriñach. Multi-layered photocathodes based on Cu 2 ZnSnSe 4 absorber and MoS 2 catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A 2019, 7 (42) , 24320-24327. https://doi.org/10.1039/C9TA08818K
    52. Keorock Choi, Kyunghwan Kim, In Kyu Moon, Jangwon Bang, Jungwoo Oh. Subwavelength photocathodes via metal-assisted chemical etching of GaAs for solar hydrogen generation. Nanoscale 2019, 11 (32) , 15367-15373. https://doi.org/10.1039/C9NR03870A
    53. Jianyun Zheng, Huaijuan Zhou, Yuqin Zou, Ruilun Wang, Yanhong Lyu, San Ping Jiang, Shuangyin Wang. Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy & Environmental Science 2019, 12 (8) , 2345-2374. https://doi.org/10.1039/C9EE00524B
    54. Sehun Seo, Seungkyu Kim, Hojoong Choi, Jongmin Lee, Hongji Yoon, Guangxia Piao, Jun‐Cheol Park, Yoonsung Jung, Jaesun Song, Sang Yun Jeong, Hyunwoong Park, Sanghan Lee. Direct In Situ Growth of Centimeter‐Scale Multi‐Heterojunction MoS 2 /WS 2 /WSe 2 Thin‐Film Catalyst for Photo‐Electrochemical Hydrogen Evolution. Advanced Science 2019, 6 (13) https://doi.org/10.1002/advs.201900301
    55. Kaiqi Xu, Athanasios Chatzitakis, Ingvild Julie Thue Jensen, Mathieu Grandcolas, Truls Norby. Ta3N5/Co(OH)x composites as photocatalysts for photoelectrochemical water splitting. Photochemical & Photobiological Sciences 2019, 18 (4) , 837-844. https://doi.org/10.1039/c8pp00312b
    56. Chengcheng Li, Tuo Wang, Bin Liu, Mengxin Chen, Ang Li, Gong Zhang, Minyong Du, Hui Wang, Shengzhong Frank Liu, Jinlong Gong. Photoelectrochemical CO 2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO 2 /Au photocathodes with low onset potentials. Energy & Environmental Science 2019, 12 (3) , 923-928. https://doi.org/10.1039/C8EE02768D
    57. Chunlin Yu, Qing Jia, Hongxiu Zhang, Wei Liu, Xuegong Yu, Xingwang Zhang. Enhancing photoelectrochemical hydrogen production of a n + p-Si hetero-junction photocathode with amorphous Ni and Ti layers. Inorganic Chemistry Frontiers 2019, 6 (2) , 527-532. https://doi.org/10.1039/C8QI01269E
    58. Lun Wang, Youkun Tao, Zhen Zhang, Yajun Wang, Qi Feng, Haijiang Wang, Hui Li. Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells. International Journal of Hydrogen Energy 2019, 44 (10) , 4940-4950. https://doi.org/10.1016/j.ijhydene.2018.12.184
    59. V. Smirnov, K. Welter, F. Finger, F. Urbain, J.R. Morante, B. Kaiser, W. Jaegermann. Implementation of Multijunction Solar Cells in Integrated Devices for the Generation of Solar Fuels. 2018, 349-384. https://doi.org/10.1002/9781119460008.ch9
    60. Muhammad Zahir Iqbal, Saman Siddique. Recent progress in efficiency of hydrogen evolution process based photoelectrochemical cell. International Journal of Hydrogen Energy 2018, 43 (46) , 21502-21523. https://doi.org/10.1016/j.ijhydene.2018.09.157
    61. Tianyi Kou, Tyler Smart, Bin Yao, Irwin Chen, David Thota, Yuan Ping, Yat Li. Theoretical and Experimental Insight into the Effect of Nitrogen Doping on Hydrogen Evolution Activity of Ni 3 S 2 in Alkaline Medium. Advanced Energy Materials 2018, 8 (19) https://doi.org/10.1002/aenm.201703538
    62. Deng Li, Jingying Shi, Can Li. Transition‐Metal‐Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small 2018, 14 (23) https://doi.org/10.1002/smll.201704179
    63. Hoang V Le, Thi Ly Le, Ung Thi Dieu Thuy, Phong D Tran. Current perspectives in engineering of viable hybrid photocathodes for solar hydrogen generation. Advances in Natural Sciences: Nanoscience and Nanotechnology 2018, 9 (2) , 023001. https://doi.org/10.1088/2043-6254/aac93e
    64. Jin Soo Kang, Jin Kim, Myeong Jae Lee, Yoon Jun Son, Dong Young Chung, Subin Park, Juwon Jeong, Ji Mun Yoo, Heejong Shin, Heeman Choe, Hyun S. Park, Yung‐Eun Sung. Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction. Advanced Science 2018, 5 (1) https://doi.org/10.1002/advs.201700601
    65. Kelin He, Jun Xie, Zhao-Qing Liu, Neng Li, Xiaobo Chen, Jun Hu, Xin Li. Multi-functional Ni 3 C cocatalyst/g-C 3 N 4 nanoheterojunctions for robust photocatalytic H 2 evolution under visible light. Journal of Materials Chemistry A 2018, 6 (27) , 13110-13122. https://doi.org/10.1039/C8TA03048K
    66. Doudou Zhang, Jingying Shi, Wei Zi, Pengpeng Wang, Shengzhong (Frank) Liu. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar‐to‐Chemicals Conversion. ChemSusChem 2017, 10 (22) , 4324-4341. https://doi.org/10.1002/cssc.201701674
    67. Yang Hou, Xiaodong Zhuang, Xinliang Feng. Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods 2017, 1 (6) , 1700090. https://doi.org/10.1002/smtd.201700090
    68. Wilman Septina, S. David Tilley. Emerging Earth-abundant materials for scalable solar water splitting. Current Opinion in Electrochemistry 2017, 2 (1) , 120-127. https://doi.org/10.1016/j.coelec.2017.03.010
    69. Isolda Roger, Michael A. Shipman, Mark D. Symes. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry 2017, 1 (1) https://doi.org/10.1038/s41570-016-0003
    70. Zi-You Yu, Yu Duan, Min-Rui Gao, Chao-Chao Lang, Ya-Rong Zheng, Shu-Hong Yu. A one-dimensional porous carbon-supported Ni/Mo 2 C dual catalyst for efficient water splitting. Chemical Science 2017, 8 (2) , 968-973. https://doi.org/10.1039/C6SC03356C
    71. Mei Wang, Yong Yang, Junyu Shen, Jian Jiang, Licheng Sun. Visible-light-absorbing semiconductor/molecular catalyst hybrid photoelectrodes for H 2 or O 2 evolution: recent advances and challenges. Sustainable Energy & Fuels 2017, 1 (8) , 1641-1663. https://doi.org/10.1039/C7SE00222J
    72. Sha-Sha Yi, Jun-Min Yan, Ba-Ri Wulan, Qing Jiang. Efficient visible-light-driven hydrogen generation from water splitting catalyzed by highly stable CdS@Mo 2 C–C core–shell nanorods. Journal of Materials Chemistry A 2017, 5 (30) , 15862-15868. https://doi.org/10.1039/C7TA03191B
    73. Ruoyu Zhang, Hehe Wei, Wenjie Si, Gang Ou, Chunsong Zhao, Mingjun Song, Cheng Zhang, Hui Wu. Enhanced Electrocatalytic Activity for Water Splitting on NiO/Ni/Carbon Fiber Paper. Materials 2017, 10 (1) , 15. https://doi.org/10.3390/ma10010015
    74. Qiufang Gong, Yu Wang, Qi Hu, Jigang Zhou, Renfei Feng, Paul N. Duchesne, Peng Zhang, Fengjiao Chen, Na Han, Yafei Li, Chuanhong Jin, Yanguang Li, Shuit-Tong Lee. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13216
    75. Jinxin Liu, Hui Cao, Bei Jiang, Yinghui Xue, Lei Fu. Newborn 2D materials for flexible energy conversion and storage. Science China Materials 2016, 59 (6) , 459-474. https://doi.org/10.1007/s40843-016-5055-5
    76. Ibadillah A. Digdaya, Paula Perez Rodriguez, Ming Ma, Gede W. P. Adhyaksa, Erik C. Garnett, Arno H. M. Smets, Wilson A. Smith. Engineering the kinetics and interfacial energetics of Ni/Ni–Mo catalyzed amorphous silicon carbide photocathodes in alkaline media. Journal of Materials Chemistry A 2016, 4 (18) , 6842-6852. https://doi.org/10.1039/C5TA09435F
    77. Hongxiu Zhang, Qi Ding, Denghong He, Hu Liu, Wei Liu, Zhongjian Li, Bin Yang, Xingwang Zhang, Lecheng Lei, Song Jin. A p-Si/NiCoSe x core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy & Environmental Science 2016, 9 (10) , 3113-3119. https://doi.org/10.1039/C6EE02215D
    78. Jie Chen, Haifeng Zhou, Yongjun Huang, Huiwu Yu, Fuying Huang, Fengying Zheng, Shunxing Li. A 3D Co–CN framework as a high performance electrocatalyst for the hydrogen evolution reaction. RSC Advances 2016, 6 (48) , 42014-42018. https://doi.org/10.1039/C6RA05632F
    79. Carlos G. Morales‐Guio, Kerstin Thorwarth, Bjoern Niesen, Laurent Liardet, Joerg Patscheider, Christophe Ballif, Xile Hu. ChemInform Abstract: Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo 2 C Catalyst.. ChemInform 2015, 46 (39) https://doi.org/10.1002/chin.201539011
    80. David A. Vermaas, Mark Sassenburg, Wilson A. Smith. Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices. Journal of Materials Chemistry A 2015, 3 (38) , 19556-19562. https://doi.org/10.1039/C5TA06315A

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 22, 7035–7038
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b03417
    Published May 25, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    3947

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.