ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI

View Author Information
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
§ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Cite this: J. Am. Chem. Soc. 2015, 137, 48, 15209–15216
Publication Date (Web):November 2, 2015
https://doi.org/10.1021/jacs.5b09385
Copyright © 2015 American Chemical Society

    Article Views

    6733

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (7)»

    Abstract

    Abstract Image

    Lithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ 7Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode. For this purpose, chemical shift (CS) imaging of the metal electrodes is a particularly sensitive diagnostic method, enabling a clear distinction to be made between different types of microstructural growth occurring at the electrode surface and the eventual dendrite growth between the electrodes. The CS imaging shows that mossy types of microstructure grow close to the surface of the anode from the beginning of charge in every cell studied, while dendritic growth is triggered much later. Simple metrics have been developed to interpret the MRI data sets and to compare results from a series of cells charged at different current densities. The results show that at high charge rates, there is a strong correlation between the onset time of dendrite growth and the local depletion of the electrolyte at the surface of the electrode observed both experimentally and predicted theoretical (via the Sand’s time model). A separate mechanism of dendrite growth is observed at low currents, which is not governed by salt depletion in the bulk liquid electrolyte. The MRI approach presented here allows the rate and nature of a process that occurs in the solid electrode to be correlated with the concentrations of components in the electrolyte.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b09385.

    • Pulse sequences, results for the cells charged at 0.16 and 1.26 mA cm–2, descriptions and examples of the CSI deconvolution and quantification of the electrolyte depletion, and the electrochemistry for all of the cells studied (PDF)

    • Movie showing MRI images acquired as a function of time for the cell charged at 0.16 mA cm–2 (MOV)

    • Movie showing MRI images acquired as a function of time for the cell charged at 0.32 mA cm–2 (MOV)

    • Movie showing MRI images acquired as a function of time for the cell charged at 0.51 mA cm–2 (MOV)

    • Movie showing MRI images acquired as a function of time for the cell charged at 0.76 mA cm–2 (MOV)

    • Movie showing MRI images acquired as a function of time for the cell charged at 1.01 mA cm–2 (MOV)

    • Movie showing MRI images acquired as a function of time for the cell charged at 1.26 mA cm–2 (MOV)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 220 publications.

    1. Junyi Zhao, Ben Jagger, Lorenz F. Olbrich, Johannes Ihli, Shobhan Dhir, Maxim Zyskin, Xinyao Ma, Mauro Pasta. Transport and Thermodynamic Properties of KFSI in TEP by Operando Raman Gradient Analysis. ACS Energy Letters 2024, 9 (4) , 1537-1544. https://doi.org/10.1021/acsenergylett.4c00661
    2. Mark Aarts, Sai Gourang Patnaik, Toon Van Roy, Stefanie Sergeant, Maarten Debucquoy, Philippe M. Vereecken. Water as Additive Directing Lithium Electrodeposition. ACS Energy Letters 2024, 9 (2) , 513-519. https://doi.org/10.1021/acsenergylett.4c00051
    3. Runming Tao, Susheng Tan, Harry M. Meyer III, Xiao-Guang Sun, Bryan Steinhoff, Kahla Sardo, Amer Bishtawi, Tillman Gibbs, Jianlin Li. Insights into the Chemistry of the Cathodic Electrolyte Interphase for PTFE-Based Dry-Processed Cathodes. ACS Applied Materials & Interfaces 2023, 15 (34) , 40488-40495. https://doi.org/10.1021/acsami.3c07225
    4. Yasufumi Takahashi, Daiko Takamatsu, Yuri Korchev, Takeshi Fukuma. Correlative Analysis of Ion-Concentration Profile and Surface Nanoscale Topography Changes Using Operando Scanning Ion Conductance Microscopy. JACS Au 2023, 3 (4) , 1089-1099. https://doi.org/10.1021/jacsau.2c00677
    5. Yang Yang, Haiming Hua, Zeheng Lv, Weiwei Meng, Minghao Zhang, Hang Li, Pengxiang Lin, Jin Yang, Guanhong Chen, Yuanhong Kang, Zhipeng Wen, Jinbao Zhao, Cheng Chao Li. Diminishing Space-Charge Layer Effect of Zinc Anodes by an Anion-Immobilized Electrolyte Membrane. ACS Energy Letters 2023, 8 (4) , 1959-1968. https://doi.org/10.1021/acsenergylett.3c00385
    6. Qidi Wang, Chenglong Zhao, Shuwei Wang, Jianlin Wang, Ming Liu, Swapna Ganapathy, Xuedong Bai, Baohua Li, Marnix Wagemaker. Clarifying the Relationship between the Lithium Deposition Coverage and Microstructure in Lithium Metal Batteries. Journal of the American Chemical Society 2022, 144 (48) , 21961-21971. https://doi.org/10.1021/jacs.2c08849
    7. David T. Boyle, Yuzhang Li, Allen Pei, Rafael A. Vilá, Zewen Zhang, Philaphon Sayavong, Mun Sek Kim, William Huang, Hongxia Wang, Yunzhi Liu, Rong Xu, Robert Sinclair, Jian Qin, Zhenan Bao, Yi Cui. Resolving Current-Dependent Regimes of Electroplating Mechanisms for Fast Charging Lithium Metal Anodes. Nano Letters 2022, 22 (20) , 8224-8232. https://doi.org/10.1021/acs.nanolett.2c02792
    8. Zhenjiang Yu, Hongmei Shan, Yunlei Zhong, Xia Zhang, Guo Hong. Leveraging Advanced X-ray Imaging for Sustainable Battery Design. ACS Energy Letters 2022, 7 (9) , 3151-3176. https://doi.org/10.1021/acsenergylett.2c01297
    9. David Columbus, Vaishali Arunachalam, Felix Glang, Liat Avram, Shira Haber, Arava Zohar, Moritz Zaiss, Michal Leskes. Direct Detection of Lithium Exchange across the Solid Electrolyte Interphase by 7Li Chemical Exchange Saturation Transfer. Journal of the American Chemical Society 2022, 144 (22) , 9836-9844. https://doi.org/10.1021/jacs.2c02494
    10. Zhijin Ju, Gongxun Lu, Ouwei Sheng, Huadong Yuan, Shengqiang Zhou, Tiefeng Liu, Yujing Liu, Yao Wang, Jianwei Nai, Wenkui Zhang, Xinyong Tao. Soybean Protein Fiber Enabled Controllable Li Deposition and a LiF-Nanocrystal-Enriched Interface for Stable Li Metal Batteries. Nano Letters 2022, 22 (3) , 1374-1381. https://doi.org/10.1021/acs.nanolett.1c04775
    11. Yuxing Zhao, Xinxin Zhang, Jianhua Xiao, Haiyan Fan, Jifang Zhang, Haowen Liu, Yang Liu, Hua Yuan, Shoushan Fan, Yuegang Zhang. Effect of Mg Cation Diffusion Coefficient on Mg Dendrite Formation. ACS Applied Materials & Interfaces 2022, 14 (5) , 6499-6506. https://doi.org/10.1021/acsami.1c18543
    12. Andrew A. Wang, Anna B. Gunnarsdóttir, Jack Fawdon, Mauro Pasta, Clare P. Grey, Charles W. Monroe. Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach. ACS Energy Letters 2021, 6 (9) , 3086-3095. https://doi.org/10.1021/acsenergylett.1c01213
    13. Mengmeng Zhang, Peng Pan, Zhongling Cheng, Jieting Mao, Liyuan Jiang, Changke Ni, Soyeon Park, Kaiyue Deng, Yi Hu, Kun Kelvin Fu. Flexible, Mechanically Robust, Solid-State Electrolyte Membrane with Conducting Oxide-Enhanced 3D Nanofiber Networks for Lithium Batteries. Nano Letters 2021, 21 (16) , 7070-7078. https://doi.org/10.1021/acs.nanolett.1c01704
    14. Yumin Zhang, Venkatasubramanian Viswanathan. Design Rules for Selecting Fluorinated Linear Organic Solvents for Li Metal Batteries. The Journal of Physical Chemistry Letters 2021, 12 (24) , 5821-5828. https://doi.org/10.1021/acs.jpclett.1c01522
    15. Peichao Zou, Yiming Sui, Houchao Zhan, Chunyang Wang, Huolin L. Xin, Hui-Ming Cheng, Feiyu Kang, Cheng Yang. Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. Chemical Reviews 2021, 121 (10) , 5986-6056. https://doi.org/10.1021/acs.chemrev.0c01100
    16. Yi-Chen Hsieh, Johannes Helmut Thienenkamp, Chen-Jui Huang, Hsien-Chu Tao, Uta Rodehorst, Bing Joe Hwang, Martin Winter, Gunther Brunklaus. Revealing the Impact of Film-Forming Electrolyte Additives on Lithium Metal Batteries via Solid-State NMR/MRI Analysis. The Journal of Physical Chemistry C 2021, 125 (1) , 252-265. https://doi.org/10.1021/acs.jpcc.0c09771
    17. Wei Deng, Wenhui Dai, Xufeng Zhou, Qigao Han, Wei Fang, Ning Dong, Bangyi He, Zhaoping Liu. Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg–1 Lithium Metal Battery. ACS Energy Letters 2021, 6 (1) , 115-123. https://doi.org/10.1021/acsenergylett.0c02351
    18. Tao Liu, J. Padmanabhan Vivek, Evan Wenbo Zhao, Jiang Lei, Nuria Garcia-Araez, Clare P. Grey. Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews 2020, 120 (14) , 6558-6625. https://doi.org/10.1021/acs.chemrev.9b00545
    19. Konstantin Romanenko, Philip W. Kuchel, Alexej Jerschow. Accurate Visualization of Operating Commercial Batteries Using Specialized Magnetic Resonance Imaging with Magnetic Field Sensing. Chemistry of Materials 2020, 32 (5) , 2107-2113. https://doi.org/10.1021/acs.chemmater.9b05246
    20. Sufu Liu, Xiao Ji, Jie Yue, Singyuk Hou, Pengfei Wang, Chunyu Cui, Ji Chen, Bowen Shao, Jingru Li, Fudong Han, Jiangping Tu, Chunsheng Wang. High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. Journal of the American Chemical Society 2020, 142 (5) , 2438-2447. https://doi.org/10.1021/jacs.9b11750
    21. Bohang Song, Indu Dhiman, John C. Carothers, Gabriel M. Veith, Jue Liu, Hassina Z. Bilheux, Ashfia Huq. Dynamic Lithium Distribution upon Dendrite Growth and Shorting Revealed by Operando Neutron Imaging. ACS Energy Letters 2019, 4 (10) , 2402-2408. https://doi.org/10.1021/acsenergylett.9b01652
    22. Lauren E. Marbella, Stefanie Zekoll, Jitti Kasemchainan, Steffen P. Emge, Peter G. Bruce, Clare P. Grey. 7Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries. Chemistry of Materials 2019, 31 (8) , 2762-2769. https://doi.org/10.1021/acs.chemmater.8b04875
    23. S. Chandra Shekar, Daniel T. Hallinan, Jr., Deanne M. Taylor, Eduard Y. Chekmenev. Limits of Spatial Resolution of Phase Encoding Dimensions in MRI of Metals. The Journal of Physical Chemistry Letters 2019, 10 (3) , 375-379. https://doi.org/10.1021/acs.jpclett.8b03758
    24. Bohang Song, Gabriel M. Veith, Jinseon Park, Mina Yoon, Pamela S. Whitfield, Melanie J. Kirkham, Jue Liu, Ashfia Huq. Metastable Li1+δMn2O4 (0 ≤ δ ≤ 1) Spinel Phases Revealed by in Operando Neutron Diffraction and First-Principles Calculations. Chemistry of Materials 2019, 31 (1) , 124-134. https://doi.org/10.1021/acs.chemmater.8b03199
    25. Yuki Kanzaki, Satoshi Mitani, Daisuke Shiomi, Yasushi Morita, Takeji Takui, Kazunobu Sato. Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements. ACS Applied Materials & Interfaces 2018, 10 (50) , 43631-43640. https://doi.org/10.1021/acsami.8b14967
    26. Sergey A. Krachkovskiy, Jamie M. Foster, J. David Bazak, Bruce J. Balcom, Gillian R. Goward. Operando Mapping of Li Concentration Profiles and Phase Transformations in Graphite Electrodes by Magnetic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (38) , 21784-21791. https://doi.org/10.1021/acs.jpcc.8b06563
    27. Feng Hao, Ankit Verma, Partha P. Mukherjee. Mesoscale Complexations in Lithium Electrodeposition. ACS Applied Materials & Interfaces 2018, 10 (31) , 26320-26327. https://doi.org/10.1021/acsami.8b08796
    28. Andrew J. Ilott, Alexej Jerschow. Probing Solid-Electrolyte Interphase (SEI) Growth and Ion Permeability at Undriven Electrolyte–Metal Interfaces Using 7Li NMR. The Journal of Physical Chemistry C 2018, 122 (24) , 12598-12604. https://doi.org/10.1021/acs.jpcc.8b01958
    29. Po-Hsiu Chien, Xuyong Feng, Mingxue Tang, Jens T. Rosenberg, Sean O’Neill, Jin Zheng, Samuel C. Grant, Yan-Yan Hu. Li Distribution Heterogeneity in Solid Electrolyte Li10GeP2S12 upon Electrochemical Cycling Probed by 7Li MRI. The Journal of Physical Chemistry Letters 2018, 9 (8) , 1990-1998. https://doi.org/10.1021/acs.jpclett.8b00240
    30. Fu Sun, Markus Osenberg, Kang Dong, Dong Zhou, André Hilger, Charl J. Jafta, Sebastian Risse, Yan Lu, Henning Markötter, and Ingo Manke . Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO2 and Li/S Battery Systems: Investigated by Synchrotron X-ray Phase Contrast Tomography. ACS Energy Letters 2018, 3 (2) , 356-365. https://doi.org/10.1021/acsenergylett.7b01254
    31. Daiko Takamatsu, Akio Yoneyama, Yusuke Asari, and Tatsumi Hirano . Quantitative Visualization of Salt Concentration Distributions in Lithium-Ion Battery Electrolytes during Battery Operation Using X-ray Phase Imaging. Journal of the American Chemical Society 2018, 140 (5) , 1608-1611. https://doi.org/10.1021/jacs.7b13357
    32. Sipei Li, Alexander I. Mohamed, Vikram Pande, Han Wang, Julia Cuthbert, Xiangcheng Pan, Hongkun He, Zongyu Wang, Venkatasubramanian Viswanathan, Jay F. Whitacre, Krzysztof Matyjaszewski. Single-Ion Homopolymer Electrolytes with High Transference Number Prepared by Click Chemistry and Photoinduced Metal-Free Atom-Transfer Radical Polymerization. ACS Energy Letters 2018, 3 (1) , 20-27. https://doi.org/10.1021/acsenergylett.7b00999
    33. Xiang Li, Mingxue Tang, Xuyong Feng, Ivan Hung, Alyssa Rose, Po-Hsiu Chien, Zhehong Gan, and Yan-Yan Hu . Lithiation and Delithiation Dynamics of Different Li Sites in Li-Rich Battery Cathodes Studied by Operando Nuclear Magnetic Resonance. Chemistry of Materials 2017, 29 (19) , 8282-8291. https://doi.org/10.1021/acs.chemmater.7b02589
    34. J. David Bazak, Sergey A. Krachkovskiy, and Gillian R. Goward . Multi-Temperature in Situ Magnetic Resonance Imaging of Polarization and Salt Precipitation in Lithium-Ion Battery Electrolytes. The Journal of Physical Chemistry C 2017, 121 (38) , 20704-20713. https://doi.org/10.1021/acs.jpcc.7b07218
    35. Xin-Bing Cheng, Rui Zhang, Chen-Zi Zhao, and Qiang Zhang . Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 2017, 117 (15) , 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115
    36. Alexander C. Kozen, Chuan-Fu Lin, Oliver Zhao, Sang Bok Lee, Gary W. Rubloff, and Malachi Noked . Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase. Chemistry of Materials 2017, 29 (15) , 6298-6307. https://doi.org/10.1021/acs.chemmater.7b01496
    37. Sen Xin, Ya You, Shaofei Wang, Hong-Cai Gao, Ya-Xia Yin, and Yu-Guo Guo . Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters 2017, 2 (6) , 1385-1394. https://doi.org/10.1021/acsenergylett.7b00175
    38. Ju-Hsiang Cheng, Addisu Alemayehu Assegie, Chen-Jui Huang, Ming-Hsien Lin, Alok Mani Tripathi, Chun-Chieh Wang, Mau-Tsu Tang, Yen-Fang Song, Wei-Nien Su, and Bing Joe Hwang . Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy. The Journal of Physical Chemistry C 2017, 121 (14) , 7761-7766. https://doi.org/10.1021/acs.jpcc.7b01414
    39. Kevin N. Wood, Malachi Noked, and Neil P. Dasgupta . Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior. ACS Energy Letters 2017, 2 (3) , 664-672. https://doi.org/10.1021/acsenergylett.6b00650
    40. Allen Pei, Guangyuan Zheng, Feifei Shi, Yuzhang Li, and Yi Cui . Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Letters 2017, 17 (2) , 1132-1139. https://doi.org/10.1021/acs.nanolett.6b04755
    41. Wei Liu, Dingchang Lin, Allen Pei, and Yi Cui . Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. Journal of the American Chemical Society 2016, 138 (47) , 15443-15450. https://doi.org/10.1021/jacs.6b08730
    42. Wei Luo, Yunhui Gong, Yizhou Zhu, Kun Kelvin Fu, Jiaqi Dai, Steven D. Lacey, Chengwei Wang, Boyang Liu, Xiaogang Han, Yifei Mo, Eric D. Wachsman, and Liangbing Hu . Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. Journal of the American Chemical Society 2016, 138 (37) , 12258-12262. https://doi.org/10.1021/jacs.6b06777
    43. Sergey A. Krachkovskiy, J. David Bazak, Peter Werhun, Bruce J. Balcom, Ion C. Halalay, and Gillian R. Goward . Visualization of Steady-State Ionic Concentration Profiles Formed in Electrolytes during Li-Ion Battery Operation and Determination of Mass-Transport Properties by in Situ Magnetic Resonance Imaging. Journal of the American Chemical Society 2016, 138 (25) , 7992-7999. https://doi.org/10.1021/jacs.6b04226
    44. Konstantin Romanenko, Liyu Jin, Patrick Howlett, and Maria Forsyth . In Situ MRI of Operating Solid-State Lithium Metal Cells Based on Ionic Plastic Crystal Electrolytes. Chemistry of Materials 2016, 28 (8) , 2844-2851. https://doi.org/10.1021/acs.chemmater.6b00797
    45. Paul M. Bayley, Nicole M. Trease, and Clare P. Grey . Insights into Electrochemical Sodium Metal Deposition as Probed with in Situ 23Na NMR. Journal of the American Chemical Society 2016, 138 (6) , 1955-1961. https://doi.org/10.1021/jacs.5b12423
    46. Xile Han, Hai Zhong, Kaiwei Li, Xiaobin Xue, Wen Wu, Nan Hu, Xihong Lu, Jiaqiang Huang, Gaozhi Xiao, Yaohua Mai, Tuan Guo. Operando monitoring of dendrite formation in lithium metal batteries via ultrasensitive tilted fiber Bragg grating sensors. Light: Science & Applications 2024, 13 (1) https://doi.org/10.1038/s41377-023-01346-5
    47. Nicole Leifer, Doron Aurbach, Steve G. Greenbaum. NMR studies of lithium and sodium battery electrolytes. Progress in Nuclear Magnetic Resonance Spectroscopy 2024, 142-143 , 1-54. https://doi.org/10.1016/j.pnmrs.2024.02.001
    48. Chuanxin Zong, Bo Hong, Furong Qin. Online cell pressure tracking analysis and sulfur species depositing/stripping behavior study of lithium sulfur batteries. Journal of Electroanalytical Chemistry 2024, 961 , 118229. https://doi.org/10.1016/j.jelechem.2024.118229
    49. Junhao Wang, Jing Luo, Haichuan Wu, Xiaoyu Yu, Xiaohong Wu, Zhengang Li, Haiyan Luo, Haitang Zhang, Yuhao Hong, Yeguo Zou, Shuohui Cao, Yu Qiao, Shi‐Gang Sun. Visualizing and Regulating Dynamic Evolution of Interfacial Electrolyte Configuration during De‐solvation Process on Lithium‐Metal Anode. Angewandte Chemie 2024, 136 (17) https://doi.org/10.1002/ange.202400254
    50. Junhao Wang, Jing Luo, Haichuan Wu, Xiaoyu Yu, Xiaohong Wu, Zhengang Li, Haiyan Luo, Haitang Zhang, Yuhao Hong, Yeguo Zou, Shuohui Cao, Yu Qiao, Shi‐Gang Sun. Visualizing and Regulating Dynamic Evolution of Interfacial Electrolyte Configuration during De‐solvation Process on Lithium‐Metal Anode. Angewandte Chemie International Edition 2024, 63 (17) https://doi.org/10.1002/anie.202400254
    51. Hongxin Lin, Yanting Jin, Mingming Tao, Yingao Zhou, Peizhao Shan, Danhui Zhao, Yong Yang. Magnetic resonance imaging techniques for lithium-ion batteries: Principles and applications. Magnetic Resonance Letters 2024, 135 , 200113. https://doi.org/10.1016/j.mrl.2024.200113
    52. Jiaxin Mao, Guopeng Li, Dongwei Xu, Rui Hao. Direct imaging of dynamic heterogeneous lithium–gold interaction at the electrochemical interface during the charging/discharging processes. Chemical Science 2024, 15 (9) , 3192-3202. https://doi.org/10.1039/D3SC05021A
    53. De-Tao Pan, Hui-Long Wei, Zheng-Hong Luo. Phase-Field Modeling of Dendrite Growth in Lithium Electrodeposition Process in Lithium Metal Batteries. Journal of Energy Engineering 2024, 150 (1) https://doi.org/10.1061/JLEED9.EYENG-5182
    54. Irshad Mohammad, Musa Ali Cambaz, Ago Samoson, Maximilian Fichtner, Raiker Witter. Development of in situ high resolution NMR: Proof-of-principle for a new (spinning) cylindrical mini-pellet approach applied to a Lithium ion battery. Solid State Nuclear Magnetic Resonance 2024, 129 , 101914. https://doi.org/10.1016/j.ssnmr.2023.101914
    55. Jana B. Fritzke, James H. J. Ellison, Laurence Brazel, Gabriela Horwitz, Svetlana Menkin, Clare P. Grey. Spiers Memorial Lecture: Lithium air batteries – tracking function and failure. Faraday Discussions 2024, 248 , 9-28. https://doi.org/10.1039/D3FD00154G
    56. Svetlana Menkin, Jana B. Fritzke, Rebecca Larner, Cas de Leeuw, Yoonseong Choi, Anna B. Gunnarsdóttir, Clare P. Grey. Insights into soft short circuit-based degradation of lithium metal batteries. Faraday Discussions 2024, 248 , 277-297. https://doi.org/10.1039/D3FD00101F
    57. Huaihu Sun, Axel Celadon, Sylvain G. Cloutier, Kamal Al‐Haddad, Shuhui Sun, Gaixia Zhang. Lithium dendrites in all‐solid‐state batteries: From formation to suppression. Battery Energy 2024, 6 https://doi.org/10.1002/bte2.20230062
    58. Hyun‐Wook Lee, Youngoh Kim, Joo‐Eun Kim, Ja‐Yeong Kim, Jae‐Yeon Jang, Joonmyung Choi, Won‐Jin Kwak. Diluents Effect on Inhibiting Dissolution of Organic Electrode for Highly Reversible Li‐Ion Batteries. Advanced Energy Materials 2024, 14 (3) https://doi.org/10.1002/aenm.202303033
    59. Yong Jiang, Mengmeng Zhao, Zhangquan Peng, Guiming Zhong. Progress in in-situ electrochemical nuclear magnetic resonance for battery research. Magnetic Resonance Letters 2024, 89 , 200099. https://doi.org/10.1016/j.mrl.2024.200099
    60. Xuanhong Wan, Xijun Xu, Fangkun Li, Xin Song, Chenxi Peng, Jun Liu. Application of Nondestructive Testing Technology in Device‐Scale for Lithium‐Ion Batteries. Small Structures 2023, 12 https://doi.org/10.1002/sstr.202300196
    61. Minji Kim, Wontae Lee, Eunkang Lee, Jaeyoung Kim, Jae‐Uk Kim, Seongeun Lee, Sunhyun Hwang, Dohyung Park, Kwanghwan Cho, Won‐Sub Yoon. Decoupling the Capacity Fading in Ni‐Rich Layered Materials during High‐Temperature Cycling in the Full‐Cell System. Advanced Energy Materials 2023, 13 (41) https://doi.org/10.1002/aenm.202302209
    62. Mingyu Lee, Yewon Shin, Hongjun Chang, Dahee Jin, Hyuntae Lee, Minhong Lim, Jiyeon Seo, Tino Band, Kai Kaufmann, Janghyuk Moon, Yong Min Lee, Hongkyung Lee. Diagnosis of Current Flow Patterns Inside Fault‐Simulated Li‐Ion Batteries via Non‐Invasive, In Operando Magnetic Field Imaging. Small Methods 2023, 7 (11) https://doi.org/10.1002/smtd.202300748
    63. Mingyu Lee, Jiwon Lee, Yewon Shin, Hongkyung Lee. Multiscale Imaging Techniques for Real‐Time, Noninvasive Diagnosis of Li‐Ion Battery Failures. Small Science 2023, 3 (11) https://doi.org/10.1002/smsc.202300063
    64. Zhijia Du, Zhenzhen Yang, Runming Tao, Vadim Shipitsyn, Xianyang Wu, David C. Robertson, Kelsey M. Livingston, Shae Hagler, James Kwon, Lin Ma, Ira D. Bloom, Brian J. Ingram. A Novel High‐Performance Electrolyte for Extreme Fast Charging in Pilot Scale Lithium‐Ion Pouch Cells. Batteries & Supercaps 2023, 6 (10) https://doi.org/10.1002/batt.202300292
    65. Mengyuan Zhou, Yaqi Liao, Longhui Li, Ruoyu Xiong, Guancheng Shen, Yifu Chen, Tianlun Huang, Maoyuan Li, Huamin Zhou, Yun Zhang. Unraveling the heterogeneity of solid electrolyte interphase kinetically affecting lithium electrodeposition on lithium metal anode. Journal of Energy Chemistry 2023, 85 , 181-190. https://doi.org/10.1016/j.jechem.2023.06.008
    66. Ahmed Abd El Baset Abd El Halim, Ehab Hassan Eid Bayoumi, Walid El-Khattam, Amr Mohamed Ibrahim. Effect of Fast Charging on Lithium-Ion Batteries: A Review. SAE International Journal of Electrified Vehicles 2023, 12 (3) https://doi.org/10.4271/14-12-03-0018
    67. Yubin He, Chunyang Wang, Peichao Zou, Ruoqian Lin, Enyuan Hu, Huolin L. Xin. Anion‐tethered Single Lithium‐ion Conducting Polyelectrolytes through UV‐induced Free Radical Polymerization for Improved Morphological Stability of Lithium Metal Anodes. Angewandte Chemie 2023, 135 (38) https://doi.org/10.1002/ange.202308309
    68. Yubin He, Chunyang Wang, Peichao Zou, Ruoqian Lin, Enyuan Hu, Huolin L. Xin. Anion‐tethered Single Lithium‐ion Conducting Polyelectrolytes through UV‐induced Free Radical Polymerization for Improved Morphological Stability of Lithium Metal Anodes. Angewandte Chemie International Edition 2023, 62 (38) https://doi.org/10.1002/anie.202308309
    69. Linjian Song, De Ning, Yan Chai, Muyu Ma, Gaoyuan Zhang, Anzhe Wang, Hai Su, Dingbang Hao, Mingdong Zhu, Jie Zhang, Dong Zhou, Jun Wang, Yongli Li. Correlating Solid Electrolyte Interphase Composition with Dendrite‐Free and Long Life‐Span Lithium Metal Batteries via Advanced Characterizations and Simulations. Small Methods 2023, 7 (7) https://doi.org/10.1002/smtd.202300168
    70. Miao Bai, Chao Lyu, Dazhi Yang, Gareth Hinds. Quantification of Lithium Plating in Lithium-Ion Batteries Based on Impedance Spectrum and Artificial Neural Network. Batteries 2023, 9 (7) , 350. https://doi.org/10.3390/batteries9070350
    71. Ralf F. Ziesche, Thomas M. M. Heenan, Pooja Kumari, Jarrod Williams, Weiqun Li, Matthew E. Curd, Timothy L. Burnett, Ian Robinson, Dan J. L. Brett, Matthias J. Ehrhardt, Paul D. Quinn, Layla B. Mehdi, Philip J. Withers, Melanie M. Britton, Nigel D. Browning, Paul R. Shearing. Multi‐Dimensional Characterization of Battery Materials. Advanced Energy Materials 2023, 13 (23) https://doi.org/10.1002/aenm.202300103
    72. Qinjun Shao, Shengdong Zhu, Jian Chen. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Research 2023, 16 (6) , 8097-8138. https://doi.org/10.1007/s12274-022-5227-0
    73. Lei Zhang, Huilin Fan, Yuzhen Dang, Quanchao Zhuang, Hamidreza Arandiyan, Yuan Wang, Ningyan Cheng, Hongyu Sun, H. Hugo Pérez Garza, Runguo Zheng, Zhiyuan Wang, Sajjad S. Mofarah, Pramod Koshy, Suresh K. Bhargava, Yanhua Cui, Zongping Shao, Yanguo Liu. Recent advances in in situ and operando characterization techniques for Li 7 La 3 Zr 2 O 12 -based solid-state lithium batteries. Materials Horizons 2023, 10 (5) , 1479-1538. https://doi.org/10.1039/D3MH00135K
    74. Akio Yoneyama, Daiko Takamatsu, Thet-Thet Lwin, Shigehito Yamada, Tetsuya Takakuwa, Kazuyuki Hyodo, Keiichi Hirano, Satoshi Takeya. Crystal-Based X-ray Interferometry and Its Application to Phase-Contrast X-ray Imaging, Zeff Imaging, and X-ray Thermography. Applied Sciences 2023, 13 (9) , 5424. https://doi.org/10.3390/app13095424
    75. Jinhyeok Ahn, Minjae Kim, Junhyeok Seo, Sukeun Yoon, Kuk Young Cho. Delineating the relationship between separator parameters and practical lithium metal batteries characteristics. Journal of Power Sources 2023, 566 , 232931. https://doi.org/10.1016/j.jpowsour.2023.232931
    76. Heze You, Bo Jiang, Jiangong Zhu, Xueyuan Wang, Gaoya Shi, Guangshuai Han, Xuezhe Wei, Haifeng Dai. In-situ quantitative detection of irreversible lithium plating within full-lifespan of lithium-ion batteries. Journal of Power Sources 2023, 564 , 232892. https://doi.org/10.1016/j.jpowsour.2023.232892
    77. Aashutosh Mistry, Venkat Srinivasan, Hans‐Georg Steinrück. Characterizing Ion Transport in Electrolytes via Concentration and Velocity Profiles. Advanced Energy Materials 2023, 13 (9) https://doi.org/10.1002/aenm.202203690
    78. Cristina Grosu, Chiara Panosetti, Steffen Merz, Peter Jakes, Stefan Seidlmayer, Sebastian Matera, Rüdiger-A. Eichel, Josef Granwehr, Christoph Scheurer. Revisiting the Storage Capacity Limit of Graphite Battery Anodes: Spontaneous Lithium Overintercalation at Ambient Pressure. PRX Energy 2023, 2 (1) https://doi.org/10.1103/PRXEnergy.2.013003
    79. Prakhar Verma, Sreeraj Puravankara, Mahendra N. Nandanwar, Jayanta Chakraborty. Insights into the Morphological Evolution of Mossy Dendrites in Lithium Metal Symmetric and Full Cell: A Modelling Study. Journal of The Electrochemical Society 2023, 170 (3) , 030529. https://doi.org/10.1149/1945-7111/acc211
    80. Mengshi Wang, Youzhi Song, Wenjuan Wei, Hongmei Liang, Yanyan Yi, Xiaolin Wang, Dongsheng Ren, Li Wang, Jianlong Wang, Yen Wei, Xiangming He, Yang Yang. First fluorescent probe for graphite anodes of lithium-ion battery. Matter 2023, 6 (3) , 873-886. https://doi.org/10.1016/j.matt.2022.12.014
    81. Weibing Xing, Andrew J. Snyder, Strauss C. Langrud, Duane L. Abata. Challenges of lithium dendrite formation in solid-state batteries. 2023, 95-127. https://doi.org/10.1016/B978-0-323-90635-7.00001-4
    82. Kent J. Griffith, John M. Griffin. Solid-state NMR of energy storage materials. 2023, 282-329. https://doi.org/10.1016/B978-0-12-823144-9.00147-3
    83. Jiale Xing, Stoyan Bliznakov, Leonard Bonville, Miodrag Oljaca, Radenka Maric. A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries. Electrochemical Energy Reviews 2022, 5 (4) https://doi.org/10.1007/s41918-022-00131-z
    84. Hongmei Liang, Li Wang, Li Sheng, Hong Xu, Youzhi Song, Xiangming He. Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews 2022, 5 (S2) https://doi.org/10.1007/s41918-022-00158-2
    85. Jun Li, Feng Shi, Jingjin Liu, Kongjun Zhu, Tao Gao, Jing Wang, Kang Yan, Jinsong Liu. Soft‐Rigid Sandwich‐Structured Hybrid Electrolytes Based on Polymer‐in‐Ceramic Electrolytes for Stable‐Cycle Solid‐State Lithium‐Metal Batteries. ChemElectroChem 2022, 9 (19) https://doi.org/10.1002/celc.202200658
    86. Yongxiu Chen, Xiangyu Dou, Kai Wang, Yongsheng Han. Magnetically enhancing diffusion for dendrite-free and long-term stable lithium metal anodes. Green Energy & Environment 2022, 7 (5) , 965-974. https://doi.org/10.1016/j.gee.2020.12.014
    87. Xianyang Wu, Lin Ma, Jue Liu, Kejie Zhao, David L. Wood, Zhijia Du. Understanding the effect of salt concentrations on fast charging performance of Li-ion cells. Journal of Power Sources 2022, 545 , 231863. https://doi.org/10.1016/j.jpowsour.2022.231863
    88. Jin Su, Mauro Pasta, Ziyang Ning, Xiangwen Gao, Peter G. Bruce, Chris R. M. Grovenor. Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy & Environmental Science 2022, 15 (9) , 3805-3814. https://doi.org/10.1039/D2EE01390H
    89. Maria Angeles Cabañero Martínez, Nicola Boaretto, Andrew J. Naylor, Francisco Alcaide, Girish D. Salian, Flavia Palombarini, Elixabete Ayerbe, Mateu Borras, Montserrat Casas‐Cabanas. Are Polymer‐Based Electrolytes Ready for High‐Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance. Advanced Energy Materials 2022, 12 (32) https://doi.org/10.1002/aenm.202201264
    90. Apurva Patrike, Poonam Yadav, Vilas Shelke, Manjusha Shelke. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next‐Generation Rechargeable Batteries. ChemSusChem 2022, 15 (14) https://doi.org/10.1002/cssc.202200504
    91. Zhiqiang Chen, Dmitri L. Danilov, Rüdiger-A. Eichel, Peter H.L. Notten. Li+ concentration waves in a liquid electrolyte of Li-ion batteries with porous graphite-based electrodes. Energy Storage Materials 2022, 48 , 475-486. https://doi.org/10.1016/j.ensm.2022.03.037
    92. Daiko Takamatsu, Akio Yoneyama, Shin Yabuuchi, Jun Hayakawa, Tatsumi Hirano. Quantitative visualization of ion and thermal distributions in electrolytes during operation of electrochemical devices by Operando phase-contrast X-ray imaging. Journal of Materials Research 2022, 37 (9) , 1576-1590. https://doi.org/10.1557/s43578-022-00581-7
    93. Shuenn-Jyh Chang, Chih-Hung Chen, Kuo-Ching Chen. Assessment of the mechanical suppression of nonuniform electrodeposition in lithium metal batteries. Physical Chemistry Chemical Physics 2022, 24 (18) , 11086-11095. https://doi.org/10.1039/D1CP05310H
    94. Chenrayan Senthil, Seung Gyu Kim, Sun‐Sik Kim, Myung Gwan Hahm, Hyun Young Jung. Robust, Ultrasmooth Fluorinated Lithium Metal Interphase Feasible via Lithiophilic Graphene Quantum Dots for Dendrite‐Less Batteries. Small 2022, 18 (19) https://doi.org/10.1002/smll.202200919
    95. Elodie Salager. In Situ Spectroscopic Imaging of Devices for Electrochemical Storage with Focus on the Solid Components. 2022, 355-381. https://doi.org/10.1002/9783527827244.ch16
    96. Stefan Benders, Alexej Jerschow. Magnetic Field Map Measurements and Operando NMR / MRI as a Diagnostic Tool for the Battery Condition. 2022, 383-406. https://doi.org/10.1002/9783527827244.ch17
    97. Claire L. Doswell, Galina E. Pavlovskaya, Thomas Meersmann, Melanie M. Britton. Magnetic Resonance Imaging of Sodium‐Ion Batteries. 2022, 407-423. https://doi.org/10.1002/9783527827244.ch18
    98. Yongho Shin, Wontae Lee, Kyungho Ahn, Chulhaeng Lee, Byoungwoo Kang. An insulating material in a structured host enables sustainable formation of a granular Li metal for highly durable Li metal battery. Journal of Power Sources 2022, 527 , 231170. https://doi.org/10.1016/j.jpowsour.2022.231170
    99. Yuan Ma, Yingying Jia, Yi Zhang, Fangzheng Qin, Mingjie He, Xiaohang Ma, Lingyun Liu, Yaodong Wu, Ying Meng, Zhenfa Zi. Recent Research and Advances of Gradient Graphene and 3D Collectors for Lithium Metal Anode. International Journal of Electrochemical Science 2022, 17 (3) , 220332. https://doi.org/10.20964/2022.03.33
    100. XiaoLong Xu, Hao Wang. Suppression of lithium dendrite growth in lithium-sulfur batteries. 2022, 261-295. https://doi.org/10.1016/B978-0-12-819676-2.00004-9
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect