ACS Publications. Most Trusted. Most Cited. Most Read
Characterization of Iron-Imido Species Relevant for N-Group Transfer Chemistry
My Activity

Figure 1Loading Img
    Article

    Characterization of Iron-Imido Species Relevant for N-Group Transfer Chemistry
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 6, 1983–1993
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b12582
    Published January 20, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A sterically accessible tert-butyl-substituted dipyrrinato di-iron(II) complex [(tBuL)FeCl]2 possessing two bridging chloride atoms was synthesized from the previously reported solvento adduct. Upon treatment with aryl azides, the formation of high-spin FeIII species was confirmed by 57Fe Mössbauer spectroscopy. Crystallographic characterization revealed two possible oxidation products: (1) a terminal iron iminyl from aryl azides bearing ortho isopropyl substituents, (tBuL)FeCl(NC6H3-2,6-iPr2); or (2) a bridging di-iron imido arising from reaction with 3,5-bis(trifluoromethyl)aryl azide, [(tBuL)FeCl]2(μ-NC6H3-3,5-(CF3)2). Similar to the previously reported (ArL)FeCl(NC6H4-4-tBu), the monomeric iron imido is best described as a high-spin FeIII antiferromagnetically coupled to an iminyl radical, affording an S = 2 spin state as confirmed by SQUID magnetometry. The di-iron imido possesses an S = 0 ground state, arising from two high-spin FeIII centers weakly antiferromagnetically coupled through the bridging imido ligand. The terminal iron iminyl complex undergoes facile decomposition via intra- or intermolecular hydrogen-atom abstraction (HAA) from an imido aryl ortho isopropyl group, or from 1,4-cyclohexadiene, respectively. The bridging di-iron imido is a competent N-group transfer reagent to cyclic internal olefins as well as styrene. Although solid-state magnetometry indicates an antiferromagnetic interaction between the two iron centers (J = −108.7 cm–1) in [(tBuL)FeCl]2(μ-NC6H3-3,5-(CF3)2), we demonstrate that in solution the bridging imido can facilitate HAA as well as dissociate into a terminal iminyl species, which then can promote HAA. In situ monitoring reveals the di-iron bridging imido is a catalytically competent intermediate, one of several iron complexes observed in the amination of C–H bond substrates or styrene aziridination.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b12582.

    • General experimental considerations and procedures, multinuclear NMR data, 57Fe Mössbauer and EPR spectra, magnetometry data, solid-state molecular structures, computational details, and crystallographic CIF files and crystallography data (PDF)

    • X-ray data (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 159 publications.

    1. Jeewhan Oh, Shao-Liang Zheng, Kurtis M. Carsch, Trevor P. Latendresse, Claire E. Casaday, Brandon M. Campbell, Theodore A. Betley. An Open-Shell FeIV Nitrido. Journal of the American Chemical Society 2025, Article ASAP.
    2. Ethan Zars, Lisa Pick, Achala Kankanamge, Michael R. Gau, Patrick J. Carroll, Samantha N. MacMillan, Kyle M. Lancaster, Karsten Meyer, Daniel J. Mindiola. Divergent Reactivity of Azides and Diazoalkanes Toward Ferrous Complexes and Isolation of a FeIII Carbene Radical Complex. Organometallics 2025, Article ASAP.
    3. Xinghua Wang, Jing He, Ya-Nan Wang, Zhenyan Zhao, Kui Jiang, Wei Yang, Tao Zhang, Shiqi Jia, Kangbao Zhong, Linbin Niu, Yu Lan. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C–H Functionalization. Chemical Reviews 2024, 124 (17) , 10192-10280. https://doi.org/10.1021/acs.chemrev.4c00188
    4. Asiel Mena, Juan R. Luna, Frank MacGregor, Elizabeth Noriega Landa, Alejandro Metta-Magaña, Wen-Yee Lee, Skye Fortier. Photoinduced Cleavage of a Strained N–C Bond in an Iron Complex Supported by Super-Bulky Amidinate and Guanidinate Ligands. Inorganic Chemistry 2024, 63 (12) , 5351-5364. https://doi.org/10.1021/acs.inorgchem.3c03953
    5. Vishal Yadav, Lyupeng Wen, Sudha Yadav, Maxime A. Siegler, David P. Goldberg. Selective Radical Transfer in a Series of Nonheme Iron(III) Complexes. Inorganic Chemistry 2023, 62 (43) , 17830-17842. https://doi.org/10.1021/acs.inorgchem.3c02617
    6. Yafei Gao, Xuelian Li, Jeremiah E. Stevens, Hao Tang, Jeremy M. Smith. Catalytic 1,3-Proton Transfer in Alkenes Enabled by Fe═NR Bond Cooperativity: A Strategy for pKa-Dictated Regioselective Transposition of C═C Double Bonds. Journal of the American Chemical Society 2023, 145 (22) , 11978-11987. https://doi.org/10.1021/jacs.2c13350
    7. Boying Yu, Xiaocheng Xu, Zhen-Na Huang, Keyan Tao, Hao-Ling Sun, Qing-Zheng Yang, Wenguang Wang. Iron–Aryloxide Complex Bearing Bis(dipyrromethene) Ligands for the Ring-Opening Polymerization of ε-Caprolactone. Organometallics 2023, 42 (7) , 565-570. https://doi.org/10.1021/acs.organomet.2c00618
    8. Yoshimi Kato, Tatsuhiko Yoshino, Shigeki Matsunaga. Iron/Photosensitizer-Catalyzed Directed C–H Activation Triggered by the Formation of an Iron Metallacycle. ACS Catalysis 2023, 13 (7) , 4552-4559. https://doi.org/10.1021/acscatal.3c00381
    9. Samuel M. Bhutto, Reagan X. Hooper, Brandon Q. Mercado, Patrick L. Holland. Mechanism of Nitrogen-Carbon Bond Formation from Iron(IV) Disilylhydrazido Intermediates during N2 Reduction. Journal of the American Chemical Society 2023, 145 (8) , 4626-4637. https://doi.org/10.1021/jacs.2c12382
    10. Yungen Liu, Ka-Pan Shing, Vanessa Kar-Yan Lo, Chi-Ming Che. Iron- and Ruthenium-Catalyzed C–N Bond Formation Reactions. Reactive Metal Imido/Nitrene Intermediates. ACS Catalysis 2023, 13 (2) , 1103-1124. https://doi.org/10.1021/acscatal.2c04830
    11. Martin Keilwerth, Weiqing Mao, Sergio A. V. Jannuzzi, Liam Grunwald, Frank W. Heinemann, Andreas Scheurer, Jörg Sutter, Serena DeBeer, Dominik Munz, Karsten Meyer. From Divalent to Pentavalent Iron Imido Complexes and an Fe(V) Nitride via N–C Bond Cleavage. Journal of the American Chemical Society 2023, 145 (2) , 873-887. https://doi.org/10.1021/jacs.2c09072
    12. Vishal Yadav, Lyupeng Wen, Rodolfo J. Rodriguez, Maxime A. Siegler, David P. Goldberg. Nonheme Iron(III) Azide and Iron(III) Isothiocyanate Complexes: Radical Rebound Reactivity, Selectivity, and Catalysis. Journal of the American Chemical Society 2022, 144 (45) , 20641-20652. https://doi.org/10.1021/jacs.2c07224
    13. Benjamin S. Mitchell, Andrei Chirila, Jonathan A. Kephart, Andrew C. Boggiano, Sebastian M. Krajewski, Dylan Rogers, Werner Kaminsky, Alexandra Velian. Metal–Support Interactions in Molecular Single-Site Cluster Catalysts. Journal of the American Chemical Society 2022, 144 (40) , 18459-18469. https://doi.org/10.1021/jacs.2c07033
    14. Yafei Gao, Maren Pink, Veronica Carta, Jeremy M. Smith. Ene Reactivity of an Fe═NR Bond Enables the Catalytic α-Deuteration of Nitriles and Alkynes. Journal of the American Chemical Society 2022, 144 (37) , 17165-17172. https://doi.org/10.1021/jacs.2c07462
    15. Sayanti Chatterjee, Ingolf Harden, Giovanni Bistoni, Rebeca G. Castillo, Sonia Chabbra, Maurice van Gastel, Alexander Schnegg, Eckhard Bill, James A. Birrell, Bill Morandi, Frank Neese, Serena DeBeer. A Combined Spectroscopic and Computational Study on the Mechanism of Iron-Catalyzed Aminofunctionalization of Olefins Using Hydroxylamine Derived N–O Reagent as the “Amino” Source and “Oxidant”. Journal of the American Chemical Society 2022, 144 (6) , 2637-2656. https://doi.org/10.1021/jacs.1c11083
    16. Nadia G. Léonard, Teera Chantarojsiri, Joseph W. Ziller, Jenny Y. Yang. Cationic Effects on the Net Hydrogen Atom Bond Dissociation Free Energy of High-Valent Manganese Imido Complexes. Journal of the American Chemical Society 2022, 144 (4) , 1503-1508. https://doi.org/10.1021/jacs.1c09583
    17. Yafei Gao, Maren Pink, Jeremy M. Smith. Alkali Metal Ions Dictate the Structure and Reactivity of an Iron(II) Imido Complex. Journal of the American Chemical Society 2022, 144 (4) , 1786-1794. https://doi.org/10.1021/jacs.1c11429
    18. Corey A. Richards, Nigam P. Rath, Jamie M. Neely. Iron-Catalyzed Alkyne Carboamination via an Isolable Iron Imide Complex. Organometallics 2021, 40 (17) , 2945-2950. https://doi.org/10.1021/acs.organomet.1c00454
    19. Gourab Mukherjee, Jagnyesh K. Satpathy, Umesh K. Bagha, M. Qadri E. Mubarak, Chivukula V. Sastri, Sam P. de Visser. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catalysis 2021, 11 (15) , 9761-9797. https://doi.org/10.1021/acscatal.1c01993
    20. Anshika Kalra, Vivek Bagchi, Patrina Paraskevopoulou, Purak Das, Lin Ai, Yiannis Sanakis, Grigorios Raptopoulos, Sudip Mohapatra, Amitava Choudhury, Zhicheng Sun, Thomas R. Cundari, Pericles Stavropoulos. Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics 2021, 40 (12) , 1974-1996. https://doi.org/10.1021/acs.organomet.1c00267
    21. Basujit Chatterjee, Soumyashree Jena, Vishal Chugh, Thomas Weyhermüller, Christophe Werlé. A Molecular Iron-Based System for Divergent Bond Activation: Controlling the Reactivity of Aldehydes. ACS Catalysis 2021, 11 (12) , 7176-7185. https://doi.org/10.1021/acscatal.1c00733
    22. Yuyang Dong, Alexandra T. Wrobel, Gerard J. Porter, Jessica J. Kim, Jake Z. Essman, Shao-Liang Zheng, Theodore A. Betley. O-Heterocycle Synthesis via Intramolecular C–H Alkoxylation Catalyzed by Iron Acetylacetonate. Journal of the American Chemical Society 2021, 143 (19) , 7480-7489. https://doi.org/10.1021/jacs.1c02074
    23. Yafei Gao, Veronica Carta, Maren Pink, Jeremy M. Smith. Catalytic Carbodiimide Guanylation by a Nucleophilic, High Spin Iron(II) Imido Complex. Journal of the American Chemical Society 2021, 143 (14) , 5324-5329. https://doi.org/10.1021/jacs.1c02068
    24. Yuyang Dong, Colton J. Lund, Gerard J. Porter, Ryan M. Clarke, Shao-Liang Zheng, Thomas R. Cundari, Theodore A. Betley. Enantioselective C–H Amination Catalyzed by Nickel Iminyl Complexes Supported by Anionic Bisoxazoline (BOX) Ligands. Journal of the American Chemical Society 2021, 143 (2) , 817-829. https://doi.org/10.1021/jacs.0c09839
    25. Vishal Yadav, Maxime A. Siegler, David P. Goldberg. Temperature-Dependent Reactivity of a Non-heme FeIII(OH)(SR) Complex: Relevance to Isopenicillin N Synthase. Journal of the American Chemical Society 2021, 143 (1) , 46-52. https://doi.org/10.1021/jacs.0c09688
    26. Jan Locher, Fabian A. Watt, Adam G. Neuba, Roland Schoch, Dominik Munz, Stephan Hohloch. Molybdenum(VI) bis-imido Complexes of Dipyrromethene Ligands. Inorganic Chemistry 2020, 59 (14) , 9847-9856. https://doi.org/10.1021/acs.inorgchem.0c01051
    27. Yuyang Dong, Ryan M. Clarke, Gerard J. Porter, Theodore A. Betley. Efficient C–H Amination Catalysis Using Nickel-Dipyrrin Complexes. Journal of the American Chemical Society 2020, 142 (25) , 10996-11005. https://doi.org/10.1021/jacs.0c02126
    28. Yunjung Baek, Anuvab Das, Shao-Liang Zheng, Joseph H. Reibenspies, David C. Powers, Theodore A. Betley. C–H Amination Mediated by Cobalt Organoazide Adducts and the Corresponding Cobalt Nitrenoid Intermediates. Journal of the American Chemical Society 2020, 142 (25) , 11232-11243. https://doi.org/10.1021/jacs.0c04252
    29. Vishal Yadav, Rodolfo J. Rodriguez, Maxime A. Siegler, David P. Goldberg. Determining the Inherent Selectivity for Carbon Radical Hydroxylation versus Halogenation with FeIII(OH)(X) Complexes: Relevance to the Rebound Step in Non-heme Iron Halogenases. Journal of the American Chemical Society 2020, 142 (16) , 7259-7264. https://doi.org/10.1021/jacs.0c00493
    30. Qiuran Wang, Shaoguang Zhang, Peng Cui, Alexander B. Weberg, Laura M. Thierer, Brian C. Manor, Michael R. Gau, Patrick J. Carroll, Neil C. Tomson. Interdependent Metal–Metal Bonding and Ligand Redox-Activity in a Series of Dinuclear Macrocyclic Complexes of Iron, Cobalt, and Nickel. Inorganic Chemistry 2020, 59 (7) , 4200-4214. https://doi.org/10.1021/acs.inorgchem.9b02339
    31. Aaron Trowbridge, Scarlett M. Walton, Matthew J. Gaunt. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chemical Reviews 2020, 120 (5) , 2613-2692. https://doi.org/10.1021/acs.chemrev.9b00462
    32. Siyu Liang, Xiaopeng Zhao, Tonghao Yang, Wei Yu. Iron–Phosphine Complex-Catalyzed Intramolecular C(sp3)–H Amination of Azides. Organic Letters 2020, 22 (5) , 1961-1965. https://doi.org/10.1021/acs.orglett.0c00308
    33. Kurtis M. Carsch, James T. Lukens, Ida M. DiMucci, Diana A. Iovan, Shao-Liang Zheng, Kyle M. Lancaster, Theodore A. Betley. Electronic Structures and Reactivity Profiles of Aryl Nitrenoid-Bridged Dicopper Complexes. Journal of the American Chemical Society 2020, 142 (5) , 2264-2276. https://doi.org/10.1021/jacs.9b09616
    34. Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen, Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, Bas de Bruin. Ligand Redox Noninnocence in [CoIII(TAML)]0/– Complexes Affects Nitrene Formation. Journal of the American Chemical Society 2020, 142 (1) , 552-563. https://doi.org/10.1021/jacs.9b11715
    35. Marius Peters, Dirk Baabe, Miyuki Maekawa, Dirk Bockfeld, Marc-Kevin Zaretzke, Matthias Tamm, Marc D. Walter. Pogo-Stick Iron and Cobalt Complexes: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry 2019, 58 (24) , 16475-16486. https://doi.org/10.1021/acs.inorgchem.9b02411
    36. Yunjung Baek, Elisabeth T. Hennessy, Theodore A. Betley. Direct Manipulation of Metal Imido Geometry: Key Principles to Enhance C–H Amination Efficacy. Journal of the American Chemical Society 2019, 141 (42) , 16944-16953. https://doi.org/10.1021/jacs.9b09015
    37. Yi Peng, Yan-Hui Fan, Si-Yuan Li, Bin Li, Jing Xue, Qing-Hai Deng. Iron-Catalyzed Nitrene Transfer Reaction of 4-Hydroxystilbenes with Aryl Azides: Synthesis of Imines via C═C Bond Cleavage. Organic Letters 2019, 21 (20) , 8389-8394. https://doi.org/10.1021/acs.orglett.9b03160
    38. Anuvab Das, Yu-Sheng Chen, Joseph H. Reibenspies, David C. Powers. Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation. Journal of the American Chemical Society 2019, 141 (41) , 16232-16236. https://doi.org/10.1021/jacs.9b09064
    39. Tomoya Ishizuka, Taichi Kogawa, Misaki Makino, Yoshihito Shiota, Kazuaki Ohara, Hiroaki Kotani, Shunsuke Nozawa, Shin-ichi Adachi, Kentaro Yamaguchi, Kazunari Yoshizawa, Takahiko Kojima. Formation of a Ruthenium(V)—Imido Complex and the Reactivity in Substrate Oxidation in Water through the Nitrogen Non-Rebound Mechanism. Inorganic Chemistry 2019, 58 (19) , 12815-12824. https://doi.org/10.1021/acs.inorgchem.9b01781
    40. Kelly E. Aldrich, B. Scott Fales, Amrendra K. Singh, Richard J. Staples, Benjamin G. Levine, John McCracken, Milton R. Smith, III, Aaron L. Odom. Electronic and Structural Comparisons between Iron(II/III) and Ruthenium(II/III) Imide Analogs. Inorganic Chemistry 2019, 58 (17) , 11699-11715. https://doi.org/10.1021/acs.inorgchem.9b01672
    41. Brett M. Hakey, Jonathan M. Darmon, Novruz G. Akhmedov, Jeffrey L. Petersen, Carsten Milsmann. Reactivity of Pyridine Dipyrrolide Iron(II) Complexes with Organic Azides: C–H Amination and Iron Tetrazene Formation. Inorganic Chemistry 2019, 58 (16) , 11028-11042. https://doi.org/10.1021/acs.inorgchem.9b01560
    42. Jun Cheng, Jian Liu, Xuebing Leng, Thomas Lohmiller, Alexander Schnegg, Eckhard Bill, Shengfa Ye, Liang Deng. A Two-Coordinate Iron(II) Imido Complex with NHC Ligation: Synthesis, Characterization, and Its Diversified Reactivity of Nitrene Transfer and C–H Bond Activation. Inorganic Chemistry 2019, 58 (11) , 7634-7644. https://doi.org/10.1021/acs.inorgchem.9b01147
    43. Yunjung Baek, Theodore A. Betley. Catalytic C–H Amination Mediated by Dipyrrin Cobalt Imidos. Journal of the American Chemical Society 2019, 141 (19) , 7797-7806. https://doi.org/10.1021/jacs.9b01262
    44. Xiaopeng Zhao, Siyu Liang, Xing Fan, Tonghao Yang, Wei Yu. Iron-Catalyzed Intramolecular C–H Amination of α-Azidyl Amides. Organic Letters 2019, 21 (6) , 1559-1563. https://doi.org/10.1021/acs.orglett.8b03927
    45. Niklas B. Thompson, Paul H. Oyala, Hai T. Dong, Matthew J. Chalkley, Jiyong Zhao, E. Ercan Alp, Michael Hu, Nicolai Lehnert, Jonas C. Peters. Electronic Structures of an [Fe(NNR2)]+/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation. Inorganic Chemistry 2019, 58 (5) , 3535-3549. https://doi.org/10.1021/acs.inorgchem.9b00133
    46. Yi-Dan Du, Zhen-Jiang Xu, Cong-Ying Zhou, Chi-Ming Che. An Effective [FeIII(TF4DMAP)Cl] Catalyst for C–H Bond Amination with Aryl and Alkyl Azides. Organic Letters 2019, 21 (4) , 895-899. https://doi.org/10.1021/acs.orglett.8b03765
    47. Caitlin M. Anderson, Ahmed M. Aboelenen, Michael P. Jensen. Competitive Intramolecular Amination as a Clock for Iron-Catalyzed Nitrene Transfer. Inorganic Chemistry 2019, 58 (2) , 1107-1119. https://doi.org/10.1021/acs.inorgchem.8b02284
    48. Xiaoyan Lu, Xiao-Xi Li, Mi Sook Seo, Yong-Min Lee, Martin Clémancey, Pascale Maldivi, Jean-Marc Latour, Ritimukta Sarangi, Shunichi Fukuzumi, Wonwoo Nam. A Mononuclear Nonheme Iron(IV)–Amido Complex Relevant for the Compound II Chemistry of Cytochrome P450. Journal of the American Chemical Society 2019, 141 (1) , 80-83. https://doi.org/10.1021/jacs.8b11045
    49. Vivek Bagchi, Anshika Kalra, Purak Das, Patrina Paraskevopoulou, Saidulu Gorla, Lin Ai, Qiuwen Wang, Sudip Mohapatra, Amitava Choudhury, Zhicheng Sun, Thomas R. Cundari, Pericles Stavropoulos. Comparative Nitrene-Transfer Chemistry to Olefinic Substrates Mediated by a Library of Anionic Mn(II) Triphenylamido-Amine Reagents and M(II) Congeners (M = Fe, Co, Ni) Favoring Aromatic over Aliphatic Alkenes. ACS Catalysis 2018, 8 (10) , 9183-9206. https://doi.org/10.1021/acscatal.8b01941
    50. Anuvab Das, Andrew G. Maher, Joshua Telser, David C. Powers. Observation of a Photogenerated Rh2 Nitrenoid Intermediate in C–H Amination. Journal of the American Chemical Society 2018, 140 (33) , 10412-10415. https://doi.org/10.1021/jacs.8b05599
    51. Thomas M. Pangia, Casey G. Davies, Joshua R. Prendergast, Jesse B. Gordon, Maxime A. Siegler, Guy N. L. Jameson, David P. Goldberg. Observation of Radical Rebound in a Mononuclear Nonheme Iron Model Complex. Journal of the American Chemical Society 2018, 140 (12) , 4191-4194. https://doi.org/10.1021/jacs.7b12707
    52. Seungwoo Hong, Xiaoyan Lu, Yong-Min Lee, Mi Sook Seo, Takehiro Ohta, Takashi Ogura, Martin Clémancey, Pascale Maldivi, Jean-Marc Latour, Ritimukta Sarangi, and Wonwoo Nam . Achieving One-Electron Oxidation of a Mononuclear Nonheme Iron(V)-Imido Complex. Journal of the American Chemical Society 2017, 139 (41) , 14372-14375. https://doi.org/10.1021/jacs.7b08161
    53. Matthew J. T. Wilding, Diana A. Iovan, Alexandra T. Wrobel, James T. Lukens, Samantha N. MacMillan, Kyle M. Lancaster, and Theodore A. Betley . Direct Comparison of C–H Bond Amination Efficacy through Manipulation of Nitrogen-Valence Centered Redox: Imido versus Iminyl. Journal of the American Chemical Society 2017, 139 (41) , 14757-14766. https://doi.org/10.1021/jacs.7b08714
    54. Jan Paulo T. Zaragoza, Timothy H. Yosca, Maxime A. Siegler, Pierre Moënne-Loccoz, Michael T. Green, and David P. Goldberg . Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex. Journal of the American Chemical Society 2017, 139 (39) , 13640-13643. https://doi.org/10.1021/jacs.7b07979
    55. Brian P. Jacobs, Peter T. Wolczanski, Quan Jiang, Thomas R. Cundari, and Samantha N. MacMillan . Rare Examples of Fe(IV) Alkyl-Imide Migratory Insertions: Impact of Fe—C Covalency in (Me2IPr)Fe(═NAd)R2 (R = neoPe, 1-nor). Journal of the American Chemical Society 2017, 139 (35) , 12145-12148. https://doi.org/10.1021/jacs.7b06960
    56. Matthew J. T. Wilding, Diana A. Iovan, and Theodore A. Betley . High-Spin Iron Imido Complexes Competent for C–H Bond Amination. Journal of the American Chemical Society 2017, 139 (34) , 12043-12049. https://doi.org/10.1021/jacs.7b06682
    57. Yoonsu Park, Youyoung Kim, and Sukbok Chang . Transition Metal-Catalyzed C–H Amination: Scope, Mechanism, and Applications. Chemical Reviews 2017, 117 (13) , 9247-9301. https://doi.org/10.1021/acs.chemrev.6b00644
    58. Rui Shang, Laurean Ilies, and Eiichi Nakamura . Iron-Catalyzed C–H Bond Activation. Chemical Reviews 2017, 117 (13) , 9086-9139. https://doi.org/10.1021/acs.chemrev.6b00772
    59. Seungwoo Hong, Kyle D. Sutherlin, Anil Kumar Vardhaman, James J. Yan, Sora Park, Yong-Min Lee, Soojeong Jang, Xiaoyan Lu, Takehiro Ohta, Takashi Ogura, Edward I. Solomon, and Wonwoo Nam . A Mononuclear Nonheme Iron(V)-Imido Complex. Journal of the American Chemical Society 2017, 139 (26) , 8800-8803. https://doi.org/10.1021/jacs.7b04695
    60. Claudia Kleinlein, Shao-Liang Zheng, and Theodore A. Betley . Ground State and Excited State Tuning in Ferric Dipyrrin Complexes Promoted by Ancillary Ligand Exchange. Inorganic Chemistry 2017, 56 (10) , 5892-5901. https://doi.org/10.1021/acs.inorgchem.7b00525
    61. Lukas Bucinsky, Martin Breza, Wei-Tsung Lee, Anne K. Hickey, Diane A. Dickie, Ismael Nieto, Jordan A. DeGayner, T. David Harris, Karsten Meyer, J. Krzystek, Andrew Ozarowski, Joscha Nehrkorn, Alexander Schnegg, Karsten Holldack, Rolfe H. Herber, Joshua Telser, and Jeremy M. Smith . Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. Inorganic Chemistry 2017, 56 (8) , 4751-4768. https://doi.org/10.1021/acs.inorgchem.7b00512
    62. Bidraha Bagh, Daniël L. J. Broere, Vivek Sinha, Petrus F. Kuijpers, Nicolaas P. van Leest, Bas de Bruin, Serhiy Demeshko, Maxime A. Siegler, and Jarl Ivar van der Vlugt . Catalytic Synthesis of N-Heterocycles via Direct C(sp3)–H Amination Using an Air-Stable Iron(III) Species with a Redox-Active Ligand. Journal of the American Chemical Society 2017, 139 (14) , 5117-5124. https://doi.org/10.1021/jacs.7b00270
    63. Ian G. Powers and Christopher Uyeda . Metal–Metal Bonds in Catalysis. ACS Catalysis 2017, 7 (2) , 936-958. https://doi.org/10.1021/acscatal.6b02692
    64. Xiao-Nan Yao, Jing-Zhen Du, Yi-Quan Zhang, Xue-Bing Leng, Mu-Wen Yang, Shang-Da Jiang, Zhen-Xing Wang, Zhong-Wen Ouyang, Liang Deng, Bing-Wu Wang, and Song Gao . Two-Coordinate Co(II) Imido Complexes as Outstanding Single-Molecule Magnets. Journal of the American Chemical Society 2017, 139 (1) , 373-380. https://doi.org/10.1021/jacs.6b11043
    65. Michael J. Lopez, Ai Kondo, Haruki Nagae, Koji Yamamoto, Hayato Tsurugi, and Kazushi Mashima . C(sp3)–H Alkenylation Catalyzed by Cationic Alkylhafnium Complexes: Stereoselective Synthesis of Trisubstituted Alkenes from 2,6-Dimethylpyridines and Internal Alkynes. Organometallics 2016, 35 (22) , 3816-3827. https://doi.org/10.1021/acs.organomet.6b00655
    66. Yoonsu Park, Joon Heo, Mu-Hyun Baik, and Sukbok Chang . Why is the Ir(III)-Mediated Amido Transfer Much Faster Than the Rh(III)-Mediated Reaction? A Combined Experimental and Computational Study. Journal of the American Chemical Society 2016, 138 (42) , 14020-14029. https://doi.org/10.1021/jacs.6b08211
    67. Chen Kong, Navendu Jana, Crystalann Jones, and Tom G. Driver . Control of the Chemoselectivity of Metal N-Aryl Nitrene Reactivity: C–H Bond Amination versus Electrocyclization. Journal of the American Chemical Society 2016, 138 (40) , 13271-13280. https://doi.org/10.1021/jacs.6b07026
    68. Daniël L. J. Broere, Nicolaas P. van Leest, Bas de Bruin, Maxime A. Siegler, and Jarl Ivar van der Vlugt . Reversible Redox Chemistry and Catalytic C(sp3)–H Amination Reactivity of a Paramagnetic Pd Complex Bearing a Redox-Active o-Aminophenol-Derived NNO Pincer Ligand. Inorganic Chemistry 2016, 55 (17) , 8603-8611. https://doi.org/10.1021/acs.inorgchem.6b01192
    69. Dario Possenti, Giorgio Olivo. Homogeneous Iron Catalyzed C−H Amination. ChemCatChem 2024, 16 (18) https://doi.org/10.1002/cctc.202400353
    70. Zachary S. Lincoln, Melissa R. Hoffbauer, Vlad M. Iluc. Directed C–H activation with iron carbene complexes. Inorganic Chemistry Frontiers 2024, 11 (17) , 5579-5586. https://doi.org/10.1039/D4QI01088D
    71. Tingjie You, Ka‐Pan Shing, Liangliang Wu, Kai Wu, Hua‐Hua Wang, Yungen Liu, Lili Du, Runhui Liang, David Lee Phillips, Xiao‐Yong Chang, Jie‐Sheng Huang, Chi‐Ming Che. Iron Corrole‐Catalyzed Intramolecular Amination Reactions of Alkyl Azides. Spectroscopic Characterization and Reactivity of [Fe V (Cor)(NAd)]. Advanced Science 2024, https://doi.org/10.1002/advs.202401420
    72. Shengwen Liang, Michael P. Jensen. [Fe(NCMe)6](BF4)2 is a bifunctional catalyst for styrene aziridination by nitrene transfer and heterocycle expansion by subsequent dipolar insertion. Journal of Inorganic Biochemistry 2024, 256 , 112551. https://doi.org/10.1016/j.jinorgbio.2024.112551
    73. Jeremiah E. Stevens, Gillian P. Hatzis, Maria C. Seith, Curtis E. Moore, Christine M. Thomas. Oxidation of phosphine donors to phosphinimines via a putative Fe-imido intermediate. Polyhedron 2024, 250 , 116822. https://doi.org/10.1016/j.poly.2023.116822
    74. Nneka Damola Ajayi, Samson Abidemi Ajayi, John Oizamsi Boyi, Oluwaseun Oladeji Olaniyi. Understanding the Chemistry of Nitrene and Highlighting its Remarkable Catalytic Capabilities as a Non-Heme Iron Enzyme. SSRN Electronic Journal 2024, 11 https://doi.org/10.2139/ssrn.4682019
    75. Alicia Casitas, Philip Andreetta. Iron-catalyzed group-transfer reactions with iodine(III) reagents. 2024, 33-99. https://doi.org/10.1016/bs.acat.2024.05.003
    76. Yan Li, Chase Abelson, Lawrence Que, Dong Wang. 10 6 -fold faster C–H bond hydroxylation by a Co III,IV 2 (µ-O) 2 complex [via a Co III 2 (µ-O)(µ-OH) intermediate] versus its Fe III Fe IV analog. Proceedings of the National Academy of Sciences 2023, 120 (51) https://doi.org/10.1073/pnas.2307950120
    77. Ethan Zars, Lisa Pick, Abinash Swain, Mrinal Bhunia, Patrick J. Carroll, Dominik Munz, Karsten Meyer, Daniel J. Mindiola. Iron‐Catalyzed Intermolecular C−H Amination Assisted by an Isolated Iron‐Imido Radical Intermediate. Angewandte Chemie 2023, 135 (51) https://doi.org/10.1002/ange.202311749
    78. Ethan Zars, Lisa Pick, Abinash Swain, Mrinal Bhunia, Patrick J. Carroll, Dominik Munz, Karsten Meyer, Daniel J. Mindiola. Iron‐Catalyzed Intermolecular C−H Amination Assisted by an Isolated Iron‐Imido Radical Intermediate. Angewandte Chemie International Edition 2023, 62 (51) https://doi.org/10.1002/anie.202311749
    79. Zihan Zhang, Karsten Meyer. Terminal Cobalt Imido Complexes Bearing N-Anchored Tripodal N-Heterocyclic Carbene Ligands:From Imides to Imidyls and Nitrenes. Bulletin of Japan Society of Coordination Chemistry 2023, 82 (0) , 2-12. https://doi.org/10.4019/bjscc.82.2
    80. Wowa Stroek, Martin Keilwerth, Lorraine A. Malaspina, Simon Grabowsky, Karsten Meyer, Martin Albrecht. Deciphering Iron‐Catalyzed C−H Amination with Organic Azides: N 2 Cleavage from a Stable Organoazide Complex. Chemistry – A European Journal 2023, 62 https://doi.org/10.1002/chem.202303410
    81. Andres Gonzalez, Serhiy Demeshko, Franc Meyer, C. Gunnar Werncke. A low-coordinate iron organoazide complex. Chemical Communications 2023, 59 (77) , 11532-11535. https://doi.org/10.1039/D3CC03765G
    82. Eva J. Meeus, Max T.G.M. Derks, Nicolaas P. van Leest, Caroline J. Verhoef, Jana Roithová, Joost N.H. Reek, Bas de Bruin. Styrene aziridination with [CoIII(TAMLred)]– in water: Understanding and preventing epoxidation via nitrene hydrolysis. Chem Catalysis 2023, 3 (8) , 100700. https://doi.org/10.1016/j.checat.2023.100700
    83. Mònica Rodríguez, Aleksandr Y. Pereverzev, Jana Roithová. Octahedral Iron‐Acyl‐Nitrenoid Intermediates in Sulphur −Nitrogen Coupling and Hydrogen Atom Transfer Reactions. ChemCatChem 2023, 15 (12) https://doi.org/10.1002/cctc.202300410
    84. Wowa Stroek, Martin Albrecht. Discovery of a simple iron catalyst reveals the intimate steps of C–H amination to form C–N bonds. Chemical Science 2023, 14 (11) , 2849-2859. https://doi.org/10.1039/D2SC04170G
    85. Jin Xiong, Qing Liu, Barbara Lavina, Michael Y. Hu, Jiyong Zhao, Esen E. Alp, Liang Deng, Shengfa Ye, Yisong Guo. Spin polarization assisted facile C–H activation by an S = 1 iron( iv )–bisimido complex: a comprehensive spectroscopic and theoretical investigation. Chemical Science 2023, 14 (11) , 2808-2820. https://doi.org/10.1039/D2SC06273A
    86. Kaijie Wei, Menglu Jiang, Siyu Liang, Wei Yu. Iron-Catalyzed Benzene Ring Expansion of α-Azido-N-phenylamides. Synthesis 2022, 54 (23) , 5203-5214. https://doi.org/10.1055/a-1915-7916
    87. Yue Xia, Yi‐Ming Wang. α‐CH Functionalization of π‐Bonds Using Iron Complexes. 2022, 1-30. https://doi.org/10.1002/9783527834242.chf0051
    88. Weiqing Mao, Dominik Fehn, Frank W. Heinemann, Andreas Scheurer, Maurice van Gastel, Sergio A. V. Jannuzzi, Serena DeBeer, Dominik Munz, Karsten Meyer. Umpolung in einem Paar endständiger Cobalt(III)‐Imido/Imidylkomplexe. Angewandte Chemie 2022, 134 (36) https://doi.org/10.1002/ange.202206848
    89. Weiqing Mao, Dominik Fehn, Frank W. Heinemann, Andreas Scheurer, Maurice van Gastel, Sergio A. V. Jannuzzi, Serena DeBeer, Dominik Munz, Karsten Meyer. Umpolung in a Pair of Cobalt(III) Terminal Imido/Imidyl Complexes. Angewandte Chemie International Edition 2022, 61 (36) https://doi.org/10.1002/anie.202206848
    90. Maria Sohail, Muhammad Bilal, Tahir Maqbool, Nasir Rasool, Muhammad Ammar, Sajid Mahmood, Ayesha Malik, Muhammad Zubair, Ghulam Abbas Ashraf. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. Arabian Journal of Chemistry 2022, 15 (9) , 104095. https://doi.org/10.1016/j.arabjc.2022.104095
    91. Sudheer S. Kurup, Natalie M. Woodland, Richard L. Lord, Stanislav Groysman. Aziridination Reactivity of a Manganese(II) Complex with a Bulky Chelating Bis(Alkoxide) Ligand. Molecules 2022, 27 (18) , 5751. https://doi.org/10.3390/molecules27185751
    92. Po-Chun Yang, Kuan-Po Yu, Chi-Tien Hsieh, Junjie Zou, Chia-Te Fang, Hsin-Kuan Liu, Chih-Wen Pao, Liang Deng, Mu-Jeng Cheng, Chun-Yi Lin. Stabilization of a high-spin three-coordinate Fe( iii ) imidyl complex by radical delocalization. Chemical Science 2022, 13 (33) , 9637-9643. https://doi.org/10.1039/D2SC02699F
    93. Sascha Reith, Serhiy Demeshko, Beatrice Battistella, Alexander Reckziegel, Christian Schneider, Andreas Stoy, Crispin Lichtenberg, Franc Meyer, Dominik Munz, C. Gunnar Werncke. Between imide, imidyl and nitrene – an imido iron complex in two oxidation states. Chemical Science 2022, 13 (26) , 7907-7913. https://doi.org/10.1039/D2SC01088G
    94. Alexander Reckziegel, Beatrice Battistella, C. Gunnar Werncke. On the Synthesis of a T‐Shaped Imido Nickel Complex and Trigonal Amido Nickel Complexes. European Journal of Inorganic Chemistry 2022, 2022 (10) https://doi.org/10.1002/ejic.202101102
    95. Katharina Bleher, Peter Comba, Michael Gast, Sandra Kronenberger, Thomas Josephy. Copper-bispidine-catalyzed aziridination – A new twist in small molecule activation. Inorganica Chimica Acta 2022, 532 , 120752. https://doi.org/10.1016/j.ica.2021.120752
    96. Liane M. Moreau, Ekaterina Lapsheva, Jorge I. Amaro-Estrada, Michael R. Gau, Patrick J. Carroll, Brian C. Manor, Yusen Qiao, Qiaomu Yang, Wayne W. Lukens, Dimosthenis Sokaras, Eric J. Schelter, Laurent Maron, Corwin H. Booth. Electronic structure studies reveal 4f/5d mixing and its effect on bonding characteristics in Ce-imido and -oxo complexes. Chemical Science 2022, 13 (6) , 1759-1773. https://doi.org/10.1039/D1SC06623D
    97. Yannick Takinda Boni, Bo Wei, Huw Madoc Lynn Davies. Synthetic Applications of Carbene and Nitrene C H Insertion. 2022, 251-293. https://doi.org/10.1016/B978-0-12-820206-7.00157-8
    98. Amymarie K. Bartholomew, Rebecca A. Musgrave, Kevin J. Anderton, Cristin E. Juda, Yuyang Dong, Wei Bu, Su-Yin Wang, Yu-Sheng Chen, Theodore A. Betley. Revealing redox isomerism in trichromium imides by anomalous diffraction. Chemical Science 2021, 12 (47) , 15739-15749. https://doi.org/10.1039/D1SC04819H
    99. Guillaume Coin, Jean-Marc Latour. Nitrene transfers mediated by natural and artificial iron enzymes. Journal of Inorganic Biochemistry 2021, 225 , 111613. https://doi.org/10.1016/j.jinorgbio.2021.111613
    100. Fabian Thomas, Dominik Steden, Alexander Eith, Alexander Hoffmann, Sonja Herres-Pawlis. Chiral bis(pyrazolyl)methane copper(I) complexes and their application in nitrene transfer reactions. Zeitschrift für Naturforschung B 2021, 76 (10-12) , 835-847. https://doi.org/10.1515/znb-2021-0140
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 6, 1983–1993
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b12582
    Published January 20, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    8663

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.