ACS Publications. Most Trusted. Most Cited. Most Read
Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns
My Activity

Figure 1Loading Img
    Communication

    Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns
    Click to copy article linkArticle link copied!

    View Author Information
    International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
    Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
    § CNR-IOM-Democritos National Simulation Center c/o SISSA, via Bonomea 265, 34136 Trieste, Italy
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 33, 10374–10377
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b01363
    Published June 16, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Group II introns are Mg2+-dependent ribozymes that are considered to be the evolutionary ancestors of the eukaryotic spliceosome, thus representing an ideal model system to understand the mechanism of conversion of premature messenger RNA (mRNA) into mature mRNA. Neither in splicing nor for self-cleaving ribozymes has the role of the two Mg2+ ions been established, and even the way the nucleophile is activated is still controversial. Here we employed hybrid quantum–classical QM(Car–Parrinello)/MM molecular dynamics simulations in combination with thermodynamic integration to characterize the molecular mechanism of the first and rate-determining step of the splicing process (i.e., the cleavage of the 5′-exon) catalyzed by group II intron ribozymes. Remarkably, our results show a new RNA-specific dissociative mechanism in which the bulk water accepts the nucleophile’s proton during its attack on the scissile phosphate. The process occurs in a single step with no Mg2+ ion activating the nucleophile, at odds with nucleases enzymes. We suggest that the novel reaction path elucidated here might be an evolutionary ancestor of the more efficient two-metal-ion mechanism found in enzymes.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b01363.

    • Computational details of the calculations and Figures S1–S11 (PDF)

    • Movie S1 showing the GIIR structure (AVI)

    • Movie S2 showing the mechanism (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 76 publications.

    1. Silvia Rinaldi, Elisabetta Moroni, Riccardo Rozza, Alessandra Magistrato. Frontiers and Challenges of Computing ncRNAs Biogenesis, Function and Modulation. Journal of Chemical Theory and Computation 2024, 20 (3) , 993-1018. https://doi.org/10.1021/acs.jctc.3c01239
    2. Angelo Spinello, Pavel Janos, Riccardo Rozza, Alessandra Magistrato. Cancer-Related Mutations Alter RNA-Driven Functional Cross-Talk Underlying Premature-Messenger RNA Recognition by Splicing Factor SF3b. The Journal of Physical Chemistry Letters 2023, 14 (27) , 6263-6269. https://doi.org/10.1021/acs.jpclett.3c01402
    3. Sefora Naomi Agrò, Riccardo Rozza, Santiago Movilla, Jana Aupič, Alessandra Magistrato. Molecular Dynamics Simulations Elucidate the Molecular Basis of Pre-mRNA Translocation by the Prp2 Spliceosomal Helicase. Journal of Chemical Information and Modeling 2023, 63 (13) , 4180-4189. https://doi.org/10.1021/acs.jcim.3c00585
    4. Riccardo Rozza, Pavel Janoš, Alessandra Magistrato. Monovalent Ionic Atmosphere Modulates the Selection of Suboptimal RNA Sequences by Splicing Factors’ RNA Recognition Motifs. Journal of Chemical Information and Modeling 2023, 63 (10) , 3086-3093. https://doi.org/10.1021/acs.jcim.3c00110
    5. Souvik Sinha, Chinmai Pindi, Mohd Ahsan, Pablo R. Arantes, Giulia Palermo. Machines on Genes through the Computational Microscope. Journal of Chemical Theory and Computation 2023, 19 (7) , 1945-1964. https://doi.org/10.1021/acs.jctc.2c01313
    6. Santiago Movilla, Maite Roca, Vicent Moliner, Alessandra Magistrato. Molecular Basis of RNA-Driven ATP Hydrolysis in DExH-Box Helicases. Journal of the American Chemical Society 2023, 145 (12) , 6691-6701. https://doi.org/10.1021/jacs.2c11980
    7. Riccardo Rozza, Andrea Saltalamacchia, Clarissa Orrico, Pavel Janoš, Alessandra Magistrato. All-Atom Simulations Elucidate the Impact of U2AF2 Cancer-Associated Mutations on Pre-mRNA Recognition. Journal of Chemical Information and Modeling 2022, 62 (24) , 6691-6703. https://doi.org/10.1021/acs.jcim.2c00511
    8. Sayyed Jalil Mahdizadeh, Emil Pålsson, Antonio Carlesso, Eric Chevet, Leif A. Eriksson. QM/MM Well-Tempered Metadynamics Study of the Mechanism of XBP1 mRNA Cleavage by Inositol Requiring Enzyme 1α RNase. Journal of Chemical Information and Modeling 2022, 62 (17) , 4247-4260. https://doi.org/10.1021/acs.jcim.2c00735
    9. Jacopo Manigrasso, Marco De Vivo, Giulia Palermo. Controlled Trafficking of Multiple and Diverse Cations Prompts Nucleic Acid Hydrolysis. ACS Catalysis 2021, 11 (14) , 8786-8797. https://doi.org/10.1021/acscatal.1c01825
    10. Simon L. Dürr, Olga Bohuszewicz, Dénes Berta, Reynier Suardiaz, Pablo G. Jambrina, Christine Peter, Yihan Shao, Edina Rosta. The Role of Conserved Residues in the DEDDh Motif: the Proton-Transfer Mechanism of HIV-1 RNase H. ACS Catalysis 2021, 11 (13) , 7915-7927. https://doi.org/10.1021/acscatal.1c01493
    11. Jure Borišek, Alessandra Magistrato. An Expanded Two-Zn2+-Ion Motif Orchestrates Pre-mRNA Maturation in the 3′-End Processing Endonuclease Machinery. ACS Catalysis 2021, 11 (7) , 4319-4326. https://doi.org/10.1021/acscatal.0c05594
    12. Jure Borišek, Lorenzo Casalino, Andrea Saltalamacchia, Suzanne G. Mays, Luca Malcovati, Alessandra Magistrato. Atomic-Level Mechanism of Pre-mRNA Splicing in Health and Disease. Accounts of Chemical Research 2021, 54 (1) , 144-154. https://doi.org/10.1021/acs.accounts.0c00578
    13. Lorenzo Casalino, Łukasz Nierzwicki, Martin Jinek, Giulia Palermo. Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Ab Initio Molecular Dynamics. ACS Catalysis 2020, 10 (22) , 13596-13605. https://doi.org/10.1021/acscatal.0c03566
    14. Mario Mardirossian, Riccardo Sola, Bertrand Beckert, Erica Valencic, Dominic W. P. Collis, Jure Borišek, Federica Armas, Adriana Di Stasi, Jan Buchmann, Egor A. Syroegin, Yury S. Polikanov, Alessandra Magistrato, Kai Hilpert, Daniel N. Wilson, Marco Scocchi. Peptide Inhibitors of Bacterial Protein Synthesis with Broad Spectrum and SbmA-Independent Bactericidal Activity against Clinical Pathogens. Journal of Medicinal Chemistry 2020, 63 (17) , 9590-9602. https://doi.org/10.1021/acs.jmedchem.0c00665
    15. Narendra Kumar, Dominik Marx. Deciphering the Self-Cleavage Reaction Mechanism of Hairpin Ribozyme. The Journal of Physical Chemistry B 2020, 124 (24) , 4906-4918. https://doi.org/10.1021/acs.jpcb.0c03768
    16. Jure Borišek, Andrea Saltalamacchia, Angelo Spinello, Alessandra Magistrato. Exploiting Cryo-EM Structural Information and All-Atom Simulations To Decrypt the Molecular Mechanism of Splicing Modulators. Journal of Chemical Information and Modeling 2020, 60 (5) , 2510-2521. https://doi.org/10.1021/acs.jcim.9b00635
    17. Andrea Saltalamacchia, Lorenzo Casalino, Jure Borišek, Victor S. Batista, Ivan Rivalta, Alessandra Magistrato. Decrypting the Information Exchange Pathways across the Spliceosome Machinery. Journal of the American Chemical Society 2020, 142 (18) , 8403-8411. https://doi.org/10.1021/jacs.0c02036
    18. Jure Borišek, Alessandra Magistrato. All-Atom Simulations Decrypt the Molecular Terms of RNA Catalysis in the Exon-Ligation Step of the Spliceosome. ACS Catalysis 2020, 10 (9) , 5328-5334. https://doi.org/10.1021/acscatal.0c00390
    19. Raphael Mathias Peltzer, Jürgen Gauss, Odile Eisenstein, Michele Cascella. The Grignard Reaction – Unraveling a Chemical Puzzle. Journal of the American Chemical Society 2020, 142 (6) , 2984-2994. https://doi.org/10.1021/jacs.9b11829
    20. Aodong Zou, Sangyun Lee, Jingyuan Li, Ruhong Zhou. Retained Stability of the RNA Structure in DNA Packaging Motor with a Single Mg2+ Ion Bound at the Double Mg-Clamp Structure. The Journal of Physical Chemistry B 2020, 124 (5) , 701-707. https://doi.org/10.1021/acs.jpcb.9b06428
    21. Faisal Aldukhi, Aniket Deb, Chuankai Zhao, Alexander S. Moffett, Diwakar Shukla. Molecular Mechanism of Brassinosteroid Perception by the Plant Growth Receptor BRI1. The Journal of Physical Chemistry B 2020, 124 (2) , 355-365. https://doi.org/10.1021/acs.jpcb.9b09377
    22. Wenting Huang, Yan Huang, Jun Xu, Jie-Lou Liao. How Does the Spliceosome Catalyze Intron Lariat Formation? Insights from Quantum Mechanics/Molecular Mechanics Free-Energy Simulations. The Journal of Physical Chemistry B 2019, 123 (28) , 6049-6055. https://doi.org/10.1021/acs.jpcb.9b04377
    23. Ana R. Calixto, Cátia Moreira, Anna Pabis, Carsten Kötting, Klaus Gerwert, Till Rudack, Shina C.L. Kamerlin. GTP Hydrolysis Without an Active Site Base: A Unifying Mechanism for Ras and Related GTPases. Journal of the American Chemical Society 2019, 141 (27) , 10684-10701. https://doi.org/10.1021/jacs.9b03193
    24. Ida Ritacco, Angelo Spinello, Emiliano Ippoliti, Alessandra Magistrato. Post-Translational Regulation of CYP450s Metabolism As Revealed by All-Atoms Simulations of the Aromatase Enzyme. Journal of Chemical Information and Modeling 2019, 59 (6) , 2930-2940. https://doi.org/10.1021/acs.jcim.9b00157
    25. Mohamed M. Aboelnga, Stacey D. Wetmore. Unveiling a Single-Metal-Mediated Phosphodiester Bond Cleavage Mechanism for Nucleic Acids: A Multiscale Computational Investigation of a Human DNA Repair Enzyme. Journal of the American Chemical Society 2019, 141 (21) , 8646-8656. https://doi.org/10.1021/jacs.9b03986
    26. Giulia Palermo. Structure and Dynamics of the CRISPR–Cas9 Catalytic Complex. Journal of Chemical Information and Modeling 2019, 59 (5) , 2394-2406. https://doi.org/10.1021/acs.jcim.8b00988
    27. Pavlína Pokorná, Holger Kruse, Miroslav Krepl, Jiří Šponer. QM/MM Calculations on Protein–RNA Complexes: Understanding Limitations of Classical MD Simulations and Search for Reliable Cost-Effective QM Methods. Journal of Chemical Theory and Computation 2018, 14 (10) , 5419-5433. https://doi.org/10.1021/acs.jctc.8b00670
    28. Jiří Šponer, Giovanni Bussi, Miroslav Krepl, Pavel Banáš, Sandro Bottaro, Richard A. Cunha, Alejandro Gil-Ley, Giovanni Pinamonti, Simón Poblete, Petr Jurečka, Nils G. Walter, Michal Otyepka. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chemical Reviews 2018, 118 (8) , 4177-4338. https://doi.org/10.1021/acs.chemrev.7b00427
    29. Vojtěch Mlýnský, Petra Kührová, Petr Jurečka, Jiří Šponer, Michal Otyepka, and Pavel Banáš . Mapping the Chemical Space of the RNA Cleavage and Its Implications for Ribozyme Catalysis. The Journal of Physical Chemistry B 2017, 121 (48) , 10828-10840. https://doi.org/10.1021/acs.jpcb.7b09129
    30. Lee-Ping Wang, Keri A. McKiernan, Joseph Gomes, Kyle A. Beauchamp, Teresa Head-Gordon, Julia E. Rice, William C. Swope, Todd J. Martínez, and Vijay S. Pande . Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. The Journal of Physical Chemistry B 2017, 121 (16) , 4023-4039. https://doi.org/10.1021/acs.jpcb.7b02320
    31. Lorenzo Casalino, Giulia Palermo, Nodira Abdurakhmonova, Ursula Rothlisberger, and Alessandra Magistrato . Development of Site-Specific Mg2+–RNA Force Field Parameters: A Dream or Reality? Guidelines from Combined Molecular Dynamics and Quantum Mechanics Simulations. Journal of Chemical Theory and Computation 2017, 13 (1) , 340-352. https://doi.org/10.1021/acs.jctc.6b00905
    32. Neha Vithani, Sahil Batra, Balaji Prakash, and Nisanth N. Nair . Elucidating the GTP Hydrolysis Mechanism in FeoB: A Hydrophobic Amino-Acid Substituted GTPase. ACS Catalysis 2017, 7 (1) , 902-906. https://doi.org/10.1021/acscatal.6b03365
    33. Giulia Palermo, Yinglong Miao, Ross C. Walker, Martin Jinek, and J. Andrew McCammon . Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. ACS Central Science 2016, 2 (10) , 756-763. https://doi.org/10.1021/acscentsci.6b00218
    34. Mohd Ahsan, Chinmai Pindi, Giulia Palermo. Emerging Mechanisms of Metal-Catalyzed RNA and DNA Modifications. Annual Review of Physical Chemistry 2025, 76 (1) , 497-518. https://doi.org/10.1146/annurev-physchem-082423-030241
    35. Jure Borišek, Jana Aupič, Alessandra Magistrato. Third Metal Ion Dictates the Catalytic Activity of the Two‐Metal‐Ion Pre‐Ribosomal RNA‐Processing Machinery. Angewandte Chemie 2024, 136 (44) https://doi.org/10.1002/ange.202405819
    36. Jure Borišek, Jana Aupič, Alessandra Magistrato. Third Metal Ion Dictates the Catalytic Activity of the Two‐Metal‐Ion Pre‐Ribosomal RNA‐Processing Machinery. Angewandte Chemie International Edition 2024, 63 (44) https://doi.org/10.1002/anie.202405819
    37. Kang Wang, Zuode Yin, Chunjiang Sang, Wentao Xia, Yan Wang, Tingting Sun, Xiaojun Xu. Geometric deep learning for the prediction of magnesium-binding sites in RNA structures. International Journal of Biological Macromolecules 2024, 262 , 130150. https://doi.org/10.1016/j.ijbiomac.2024.130150
    38. Amun C. Patel, Souvik Sinha, Giulia Palermo. Graph theory approaches for molecular dynamics simulations. Quarterly Reviews of Biophysics 2024, 57 https://doi.org/10.1017/S0033583524000143
    39. Jana Aupič, Jure Borišek, Sebastian M. Fica, Wojciech P. Galej, Alessandra Magistrato. Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-44174-2
    40. Dhvani Sandip Vora, Atul Kumar Jaiswal, Durai Sundar. Implementing accelerated dynamics to unravel the effects of high-fidelity Cas9 mutants on target DNA and guide RNA hybrid stability. Journal of Biomolecular Structure and Dynamics 2023, 41 (13) , 6178-6190. https://doi.org/10.1080/07391102.2022.2103032
    41. Chandan Kumar Das, Abhinav Gupta, Nisanth N. Nair. Probing the general base for DNA polymerization in telomerase: a molecular dynamics investigation. Physical Chemistry Chemical Physics 2023, 25 (20) , 14147-14157. https://doi.org/10.1039/D3CP00521F
    42. Jure Borišek, Jana Aupič, Alessandra Magistrato. Establishing the catalytic and regulatory mechanism of RNA ‐based machineries. WIREs Computational Molecular Science 2023, 13 (3) https://doi.org/10.1002/wcms.1643
    43. Łukasz Nierzwicki, Mohd Ahsan, Giulia Palermo. The electronic structure of genome editors from the first principles. Electronic Structure 2023, 5 (1) , 014003. https://doi.org/10.1088/2516-1075/acb410
    44. Luca Mollica, Francesca Anna Cupaioli, Grazisa Rossetti, Federica Chiappori. An overview of structural approaches to study therapeutic RNAs. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.1044126
    45. Riccardo Rozza, Pavel Janoš, Angelo Spinello, Alessandra Magistrato. Role of computational and structural biology in the development of small-molecule modulators of the spliceosome. Expert Opinion on Drug Discovery 2022, 17 (10) , 1095-1109. https://doi.org/10.1080/17460441.2022.2114452
    46. Łukasz Nierzwicki, Kyle W. East, Jonas M. Binz, Rohaine V. Hsu, Mohd Ahsan, Pablo R. Arantes, Erin Skeens, Martin Pacesa, Martin Jinek, George P. Lisi, Giulia Palermo. Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR–Cas9. Nature Catalysis 2022, 5 (10) , 912-922. https://doi.org/10.1038/s41929-022-00848-6
    47. Şölen Ekesan, Darrin M. York. Who stole the proton? Suspect general base guanine found with a smoking gun in the pistol ribozyme. Organic & Biomolecular Chemistry 2022, 20 (31) , 6219-6230. https://doi.org/10.1039/D2OB00234E
    48. Juan Aranda, Milosz Wieczór, Montserrat Terrazas, Isabelle Brun-Heath, Modesto Orozco. Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2. Chem Catalysis 2022, 2 (5) , 1084-1099. https://doi.org/10.1016/j.checat.2022.03.019
    49. Yuanzhe Zhou, Shi-Jie Chen. Graph deep learning locates magnesium ions in RNA. QRB Discovery 2022, 3 https://doi.org/10.1017/qrd.2022.17
    50. Angelo Spinello, Jure Borišek, Luca Malcovati, Alessandra Magistrato. Investigating the Molecular Mechanism of H3B-8800: A Splicing Modulator Inducing Preferential Lethality in Spliceosome-Mutant Cancers. International Journal of Molecular Sciences 2021, 22 (20) , 11222. https://doi.org/10.3390/ijms222011222
    51. Isabel Chillón, Marco Marcia. Self‐Splicing Group II Introns. 2021, 143-167. https://doi.org/10.1002/9783527814527.ch6
    52. Angelo Spinello, Jure Borišek, Matic Pavlin, Pavel Janoš, Alessandra Magistrato. Computing Metal‐Binding Proteins for Therapeutic Benefit. ChemMedChem 2021, 16 (13) , 2034-2049. https://doi.org/10.1002/cmdc.202100109
    53. Pietro Vidossich, Marco De Vivo. The role of first principles simulations in studying (bio)catalytic processes. Chem Catalysis 2021, 1 (1) , 69-87. https://doi.org/10.1016/j.checat.2021.04.009
    54. Giulia Palermo, Angelo Spinello, Aakash Saha, Alessandra Magistrato. Frontiers of metal-coordinating drug design. Expert Opinion on Drug Discovery 2021, 16 (5) , 497-511. https://doi.org/10.1080/17460441.2021.1851188
    55. Jacopo Manigrasso, Isabel Chillón, Vito Genna, Pietro Vidossich, Srinivas Somarowthu, Anna Marie Pyle, Marco De Vivo, Marco Marcia. Visualizing group II intron dynamics between the first and second steps of splicing. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16741-4
    56. Abhishek Kumar, Priyadarshi Satpati. Mg2+ vs Ca2+ bound active site of group II intron– A MD study. Journal of Molecular Graphics and Modelling 2020, 97 , 107546. https://doi.org/10.1016/j.jmgm.2020.107546
    57. Ken Kostenbader, Darrin M. York. Molecular simulations of the pistol ribozyme: unifying the interpretation of experimental data and establishing functional links with the hammerhead ribozyme. RNA 2019, 25 (11) , 1439-1456. https://doi.org/10.1261/rna.071944.119
    58. Angelo Spinello, Ida Ritacco, Alessandra Magistrato. Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers. Expert Opinion on Drug Discovery 2019, 14 (10) , 1065-1076. https://doi.org/10.1080/17460441.2019.1646245
    59. Jure Borišek, Andrea Saltalamacchia, Anna Gallì, Giulia Palermo, Elisabetta Molteni, Luca Malcovati, Alessandra Magistrato. Disclosing the Impact of Carcinogenic SF3b Mutations on Pre-mRNA Recognition Via All-Atom Simulations. Biomolecules 2019, 9 (10) , 633. https://doi.org/10.3390/biom9100633
    60. Lorenzo Casalino, Alessandra Magistrato. Unraveling the Molecular Mechanism of Pre-mRNA Splicing From Multi-Scale Simulations. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00062
    61. Zena Qasem, Matic Pavlin, Ida Ritacco, Lada Gevorkyan-Airapetov, Alessandra Magistrato, Sharon Ruthstein. The pivotal role of MBD4–ATP7B in the human Cu( i ) excretion path as revealed by EPR experiments and all-atom simulations. Metallomics 2019, 11 (7) , 1288-1297. https://doi.org/10.1039/c9mt00067d
    62. Matic Pavlin, Zena Qasem, Hila Sameach, Lada Gevorkyan-Airapetov, Ida Ritacco, Sharon Ruthstein, Alessandra Magistrato. Unraveling the Impact of Cysteine-to-Serine Mutations on the Structural and Functional Properties of Cu(I)-Binding Proteins. International Journal of Molecular Sciences 2019, 20 (14) , 3462. https://doi.org/10.3390/ijms20143462
    63. Giulia Palermo, Lorenzo Casalino, Alessandra Magistrato, J. Andrew McCammon. Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. Journal of Structural Biology 2019, 206 (3) , 267-279. https://doi.org/10.1016/j.jsb.2019.03.004
    64. Jacopo Sgrignani, Lorenzo Casalino, Fabio Doro, Angelo Spinello, Alessandra Magistrato. Can Multiscale Simulations Unravel the Function of metallo-enzymes to Improve knowledge-based Drug discovery?. Future Medicinal Chemistry 2019, 11 (7) , 771-791. https://doi.org/10.4155/fmc-2018-0495
    65. Pablo D. Dans, Diego Gallego, Alexandra Balaceanu, Leonardo Darré, Hansel Gómez, Modesto Orozco. Modeling, Simulations, and Bioinformatics at the Service of RNA Structure. Chem 2019, 5 (1) , 51-73. https://doi.org/10.1016/j.chempr.2018.09.015
    66. Angelo Spinello, Ida Ritacco, Alessandra Magistrato. The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-Transcriptional Regulation. Catalysts 2019, 9 (1) , 81. https://doi.org/10.3390/catal9010081
    67. Pengfei Lan, Ming Tan, Yuebin Zhang, Shuangshuang Niu, Juan Chen, Shaohua Shi, Shuwan Qiu, Xuejuan Wang, Xiangda Peng, Gang Cai, Hong Cheng, Jian Wu, Guohui Li, Ming Lei. Structural insight into precursor tRNA processing by yeast ribonuclease P. Science 2018, 362 (6415) https://doi.org/10.1126/science.aat6678
    68. Angelo Spinello, Matic Pavlin, Lorenzo Casalino, Alessandra Magistrato. A Dehydrogenase Dual Hydrogen Abstraction Mechanism Promotes Estrogen Biosynthesis: Can We Expand the Functional Annotation of the Aromatase Enzyme?. Chemistry – A European Journal 2018, 24 (42) , 10840-10849. https://doi.org/10.1002/chem.201802025
    69. Lorenzo Casalino, Giulia Palermo, Angelo Spinello, Ursula Rothlisberger, Alessandra Magistrato. All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome. Proceedings of the National Academy of Sciences 2018, 115 (26) , 6584-6589. https://doi.org/10.1073/pnas.1802963115
    70. Vojtěch Mlýnský, Giovanni Bussi. Exploring RNA structure and dynamics through enhanced sampling simulations. Current Opinion in Structural Biology 2018, 49 , 63-71. https://doi.org/10.1016/j.sbi.2018.01.004
    71. Giulia Palermo, Janice S. Chen, Clarisse G. Ricci, Ivan Rivalta, Martin Jinek, Victor S. Batista, Jennifer A. Doudna, J. Andrew McCammon. Key role of the REC lobe during CRISPR–Cas9 activation by ‘sensing’, ‘regulating’, and ‘locking’ the catalytic HNH domain. Quarterly Reviews of Biophysics 2018, 51 https://doi.org/10.1017/S0033583518000070
    72. Angelo Spinello, Alessandra Magistrato. An omics perspective to the molecular mechanisms of anticancer metallo-drugs in the computational microscope era. Expert Opinion on Drug Discovery 2017, 107 , 1-13. https://doi.org/10.1080/17460441.2017.1340272
    73. Vojtěch Mlýnský, Giovanni Bussi. Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides. RNA 2017, 23 (5) , 712-720. https://doi.org/10.1261/rna.060442.116
    74. Wenhu Zhou, Runjhun Saran, Po‐Jung Jimmy Huang, Jinsong Ding, Juewen Liu. An Exceptionally Selective DNA Cooperatively Binding Two Ca 2+ Ions. ChemBioChem 2017, 18 (6) , 518-522. https://doi.org/10.1002/cbic.201600708
    75. Hossein Batebi, Petra Imhof. Phosphodiester hydrolysis computed for cluster models of enzymatic active sites. Theoretical Chemistry Accounts 2016, 135 (12) https://doi.org/10.1007/s00214-016-2020-8
    76. Lorenzo Casalino, Alessandra Magistrato. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chimica Acta 2016, 452 , 73-81. https://doi.org/10.1016/j.ica.2016.02.011

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 33, 10374–10377
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b01363
    Published June 16, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    2405

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.