ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis of (+)-7,20-Diisocyanoadociane and Liver-Stage Antiplasmodial Activity of the Isocyanoterpene Class

View Author Information
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive 0741, La Jolla, California 92093, United States
Cite this: J. Am. Chem. Soc. 2016, 138, 23, 7268–7271
Publication Date (Web):May 31, 2016
https://doi.org/10.1021/jacs.6b03899
Copyright © 2016 American Chemical Society

    Article Views

    8630

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    7,20-Diisocyanoadociane, a scarce marine metabolite with potent antimalarial activity, was synthesized as a single enantiomer in 13 steps from simple building blocks (17 linear steps). Chemical synthesis enabled identification of isocyanoterpene antiplasmodial activity against liver-stage parasites, which suggested that inhibition of heme detoxification does not exclusively underlie the mechanism of action of this class.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b03899.

    • Detailed experimental procedures, spectral data, and chromatograms (PDF)

    • Crystallographic data for (+)-14 and (−)-17 (PDF)

    • Crystallographic data for (−)-17 (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 61 publications.

    1. Shijia Li, Qiang Feng, Lijuan Song, Xinhao Zhang, Yun-Dong Wu, Jianwei Sun. Mild Stereoselective Synthesis of Densely Substituted [3]Dendralenes via Ru-Catalyzed Intermolecular Dimerization of 1,1-Disubstituted Allenes. Journal of the American Chemical Society 2024, 146 (2) , 1532-1542. https://doi.org/10.1021/jacs.3c11448
    2. Yi-Min Fan, Josemon George, Jiao Yu J. Wang, Michael G. Gardiner, Michelle L. Coote, Michael S. Sherburn. A Rapid Aza-Bicycle Synthesis from Dendralenes and Imines. Organic Letters 2023, 25 (41) , 7545-7550. https://doi.org/10.1021/acs.orglett.3c02890
    3. Xu Chen, Ilan Marek. Highly Diastereoselective Preparation of Tertiary Alkyl Isonitriles by Stereoinvertive Nucleophilic Substitution at a Nonclassical Carbocation. Organic Letters 2023, 25 (13) , 2285-2288. https://doi.org/10.1021/acs.orglett.3c00583
    4. Natalie C. Dwulet, Zeinab Chahine, Karine G. Le Roch, Christopher D. Vanderwal. An Enantiospecific Synthesis of Isoneoamphilectane Confirms Its Strained Tricyclic Structure. Journal of the American Chemical Society 2023, 145 (6) , 3716-3726. https://doi.org/10.1021/jacs.2c13137
    5. Yi-Min Fan, Madison J. Sowden, Nicholas L. Magann, Erik J. Lindeboom, Michael G. Gardiner, Michael S. Sherburn. A General Stereoselective Synthesis of [4]Dendralenes. Journal of the American Chemical Society 2022, 144 (43) , 20090-20098. https://doi.org/10.1021/jacs.2c09360
    6. Nicholas L. Magann, Erin Westley, Madison J. Sowden, Michael G. Gardiner, Michael S. Sherburn. Total Synthesis of Matrine Alkaloids. Journal of the American Chemical Society 2022, 144 (43) , 19695-19699. https://doi.org/10.1021/jacs.2c09804
    7. Philipp C. Roosen, Alexander S. Karns, Bryan D. Ellis, Christopher D. Vanderwal. Evolution of a Short and Stereocontrolled Synthesis of (+)-7,20-Diisocyanoadociane. The Journal of Organic Chemistry 2022, 87 (2) , 1398-1420. https://doi.org/10.1021/acs.joc.1c02700
    8. Erin Westley, Madison J. Sowden, Nicholas L. Magann, Kelsey L. Horvath, Kieran P. E. Connor, Michael S. Sherburn. Substituted Tetraethynylethylene–Tetravinylethylene Hybrids. Journal of the American Chemical Society 2022, 144 (2) , 977-986. https://doi.org/10.1021/jacs.1c11598
    9. Alberto Massarotti, Francesca Brunelli, Silvio Aprile, Mariateresa Giustiniano, Gian Cesare Tron. Medicinal Chemistry of Isocyanides. Chemical Reviews 2021, 121 (17) , 10742-10788. https://doi.org/10.1021/acs.chemrev.1c00143
    10. Stone Woo, Ryan A. Shenvi. Natural Product Synthesis through the Lens of Informatics. Accounts of Chemical Research 2021, 54 (5) , 1157-1167. https://doi.org/10.1021/acs.accounts.0c00791
    11. Camille Desfeux, Céline Besnard, Clément Mazet. [n]Dendralenes as a Platform for Selective Catalysis: Ligand-Controlled Cu-Catalyzed Chemo-, Regio-, and Enantioselective Borylations. Organic Letters 2020, 22 (21) , 8181-8187. https://doi.org/10.1021/acs.orglett.0c01892
    12. Taiga Yurino, Takeshi Ohkuma. Nucleophilic Isocyanation. ACS Omega 2020, 5 (10) , 4719-4724. https://doi.org/10.1021/acsomega.9b04073
    13. Josemon George, Michael S. Sherburn. Diene-Transmissive Enantioselective Diels–Alder Reactions and Sequences Involving Substituted Dendralenes. The Journal of Organic Chemistry 2019, 84 (22) , 14712-14723. https://doi.org/10.1021/acs.joc.9b02296
    14. Taiga Yurino, Ryutaro Tani, Takeshi Ohkuma. Pd-Catalyzed Allylic Isocyanation: Nucleophilic N-Terminus Substitution of Ambident Cyanide. ACS Catalysis 2019, 9 (5) , 4434-4440. https://doi.org/10.1021/acscatal.9b00858
    15. Samantha A. Green, Steven W. M. Crossley, Jeishla L. M. Matos, Suhelen Vásquez-Céspedes, Sophia L. Shevick, Ryan A. Shenvi. The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer. Accounts of Chemical Research 2018, 51 (11) , 2628-2640. https://doi.org/10.1021/acs.accounts.8b00337
    16. Emily E. Robinson and Regan J. Thomson . A Strategy for the Convergent and Stereoselective Assembly of Polycyclic Molecules. Journal of the American Chemical Society 2018, 140 (5) , 1956-1965. https://doi.org/10.1021/jacs.7b13234
    17. Andrew M. White, Kathy Dao, Darius Vrubliauskas, Zef A. Könst, Gregory K. Pierens, Attila Mándi, Katherine T. Andrews, Tina S. Skinner-Adams, Mary E. Clarke, Patrick T. Narbutas, Desmond C.-M. Sim, Karen L. Cheney, Tibor Kurtán, Mary J. Garson, and Christopher D. Vanderwal . Catalyst-Controlled Stereoselective Synthesis Secures the Structure of the Antimalarial Isocyanoterpene Pustulosaisonitrile-1. The Journal of Organic Chemistry 2017, 82 (24) , 13313-13323. https://doi.org/10.1021/acs.joc.7b02421
    18. Joshua E. Zweig, Daria E. Kim, and Timothy R. Newhouse . Methods Utilizing First-Row Transition Metals in Natural Product Total Synthesis. Chemical Reviews 2017, 117 (18) , 11680-11752. https://doi.org/10.1021/acs.chemrev.6b00833
    19. Shu-An Liu and Dirk Trauner . Asymmetric Synthesis of the Antiviral Diterpene Wickerol A. Journal of the American Chemical Society 2017, 139 (28) , 9491-9494. https://doi.org/10.1021/jacs.7b05046
    20. Mary Elisabeth Daub, Philipp C. Roosen, and Christopher D. Vanderwal . General Approaches to Structurally Diverse Isocyanoditerpenes. The Journal of Organic Chemistry 2017, 82 (9) , 4533-4541. https://doi.org/10.1021/acs.joc.7b00448
    21. Gonna Somu Naidu, Rekha Singh, Mukesh Kumar, and Sunil K. Ghosh . Tuning the Stability and the Reactivity of Substituted [3]Dendralenes for Quick Access to Diverse Copiously Functionalized Fused Polycycles with Step and Atom Economy. The Journal of Organic Chemistry 2017, 82 (7) , 3648-3658. https://doi.org/10.1021/acs.joc.7b00169
    22. Christopher A. Reiher and Ryan A. Shenvi . Stereocontrolled Synthesis of Kalihinol C. Journal of the American Chemical Society 2017, 139 (10) , 3647-3650. https://doi.org/10.1021/jacs.7b01124
    23. Mary Elisabeth Daub, Jacques Prudhomme, Choukri Ben Mamoun, Karine G. Le Roch, and Christopher D. Vanderwal . Antimalarial Properties of Simplified Kalihinol Analogues. ACS Medicinal Chemistry Letters 2017, 8 (3) , 355-360. https://doi.org/10.1021/acsmedchemlett.7b00013
    24. Steven W. M. Crossley, Carla Obradors, Ruben M. Martinez, and Ryan A. Shenvi . Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins. Chemical Reviews 2016, 116 (15) , 8912-9000. https://doi.org/10.1021/acs.chemrev.6b00334
    25. Sujun Xie, Yuye Chen, Yan Zhang, Zhiting Zhang, Xinyue Hu, Chongyuan Yan, Jing Xu. Collective total synthesis of fusicoccane diterpenoids via Yu [5+2+1] cycloaddition and oxidative Nazarov cyclization. Cell Reports Physical Science 2024, 5 (3) , 101855. https://doi.org/10.1016/j.xcrp.2024.101855
    26. Melissa A. Hardy, Jack Hayward Cooke, Zhitao Feng, Kenta Noda, Isabel Kerschgens, Lynée A. Massey, Dean J. Tantillo, Richmond Sarpong. Unified Synthesis of 2‐Isocyanoallopupukeanane and 9‐Isocyanopupukeanane through a “Contra‐biosynthetic” Rearrangement. Angewandte Chemie International Edition 2024, 63 (4) https://doi.org/10.1002/anie.202317348
    27. Melissa A. Hardy, Jack Hayward Cooke, Zhitao Feng, Kenta Noda, Isabel Kerschgens, Lynée A. Massey, Dean J. Tantillo, Richmond Sarpong. Unified Synthesis of 2‐Isocyanoallopupukeanane and 9‐Isocyanopupukeanane through a “Contra‐biosynthetic” Rearrangement. Angewandte Chemie 2024, 136 (4) https://doi.org/10.1002/ange.202317348
    28. Taiga Yurino, Takeshi Ohkuma. Development of Catalytic Isocyanation via Precise Reactivity Control of Ambident Reagent. Journal of Synthetic Organic Chemistry, Japan 2023, 81 (3) , 235-243. https://doi.org/10.5059/yukigoseikyokaishi.81.235
    29. Yanyu Chen, Zhengyuan Xin, Hui Wang, Haibing He, Shuanhu Gao. Asymmetric total synthesis of norzoanthamine and formal synthesis of zoanthenol. Organic Chemistry Frontiers 2023, 10 (3) , 651-660. https://doi.org/10.1039/D2QO01834A
    30. Alexander Düfert. Oxidation und Reduktion. 2023, 333-479. https://doi.org/10.1007/978-3-662-65244-2_4
    31. Gajanan K. Rathod, Meenakshi Jain, Krishna K. Sharma, Samarpita Das, Ahana Basak, Rahul Jain. New structural classes of antimalarials. European Journal of Medicinal Chemistry 2022, 242 , 114653. https://doi.org/10.1016/j.ejmech.2022.114653
    32. Yi‐Min Fan, Li‐Juan Yu, Michael G. Gardiner, Michelle L. Coote, Michael S. Sherburn. Enantioselective oxa‐Diels–Alder Sequences of Dendralenes. Angewandte Chemie 2022, 134 (39) https://doi.org/10.1002/ange.202204872
    33. Yi‐Min Fan, Li‐Juan Yu, Michael G. Gardiner, Michelle L. Coote, Michael S. Sherburn. Enantioselective oxa‐Diels–Alder Sequences of Dendralenes. Angewandte Chemie International Edition 2022, 61 (39) https://doi.org/10.1002/anie.202204872
    34. Jia‐Lei Yan, Hongling Wang, Yonggui Robin Chi. ASYMMETRIC CARBENE CATALYSIS. 2022, 199-242. https://doi.org/10.1002/9781119736424.ch6
    35. David G. I. Kingston, Maria Belen Cassera. Antimalarial Natural Products. 2022, 1-106. https://doi.org/10.1007/978-3-030-89873-1_1
    36. Jinghua Wu, Zhiqiang Ma. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Organic Chemistry Frontiers 2021, 8 (24) , 7050-7076. https://doi.org/10.1039/D1QO01139A
    37. Zhengyuan Xin, Hui Wang, Haibing He, Xiaoli Zhao, Shuanhu Gao. Asymmetric Total Synthesis of Norzoanthamine. Angewandte Chemie 2021, 133 (23) , 12917-12922. https://doi.org/10.1002/ange.202102643
    38. Zhengyuan Xin, Hui Wang, Haibing He, Xiaoli Zhao, Shuanhu Gao. Asymmetric Total Synthesis of Norzoanthamine. Angewandte Chemie International Edition 2021, 60 (23) , 12807-12812. https://doi.org/10.1002/anie.202102643
    39. Martin Tomanik, Ian Tingyung Hsu, Seth B. Herzon. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angewandte Chemie 2021, 133 (3) , 1132-1167. https://doi.org/10.1002/ange.201913645
    40. Martin Tomanik, Ian Tingyung Hsu, Seth B. Herzon. Fragment Coupling Reactions in Total Synthesis That Form Carbon–Carbon Bonds via Carbanionic or Free Radical Intermediates. Angewandte Chemie International Edition 2021, 60 (3) , 1116-1150. https://doi.org/10.1002/anie.201913645
    41. Hyung Min Chi, Charles J. F. Cole, Pengfei Hu, Cooper A. Taylor, Scott A. Snyder. Total syntheses of spiroviolene and spirograterpene A: a structural reassignment with biosynthetic implications. Chemical Science 2020, 11 (40) , 10939-10944. https://doi.org/10.1039/D0SC04686H
    42. Kwaku Kyei-Baffour, Dexter C. Davis, Zarko Boskovic, Nobutaka Kato, Mingji Dai. Natural product-inspired aryl isonitriles as a new class of antimalarial compounds against drug-resistant parasites. Bioorganic & Medicinal Chemistry 2020, 28 (19) , 115678. https://doi.org/10.1016/j.bmc.2020.115678
    43. Madison J. Sowden, Jas S. Ward, Michael S. Sherburn. Synthesis and Properties of 2,3‐Diethynyl‐1,3‐Butadienes. Angewandte Chemie 2020, 132 (10) , 4174-4182. https://doi.org/10.1002/ange.201914807
    44. Madison J. Sowden, Jas S. Ward, Michael S. Sherburn. Synthesis and Properties of 2,3‐Diethynyl‐1,3‐Butadienes. Angewandte Chemie International Edition 2020, 59 (10) , 4145-4153. https://doi.org/10.1002/anie.201914807
    45. Josemon George, Jas S. Ward, Michael S. Sherburn. A general synthesis of dendralenes. Chemical Science 2019, 10 (43) , 9969-9973. https://doi.org/10.1039/C9SC03976G
    46. Ryan A. Shenvi, Jeishla L. M. Matos, Samantha A. Green. Hydrofunctionalization of Alkenes by Hydrogen‐Atom Transfer. 2019, 383-470. https://doi.org/10.1002/0471264180.or100.07
    47. Cecile Elgindy, Jas S. Ward, Michael S. Sherburn. Tetravinylallene. Angewandte Chemie 2019, 131 (41) , 14715-14719. https://doi.org/10.1002/ange.201908496
    48. Cecile Elgindy, Jas S. Ward, Michael S. Sherburn. Tetravinylallene. Angewandte Chemie International Edition 2019, 58 (41) , 14573-14577. https://doi.org/10.1002/anie.201908496
    49. Alexander S. Karns, Bryan D. Ellis, Philipp C. Roosen, Zeinab Chahine, Karine G. Le Roch, Christopher D. Vanderwal. Concise Synthesis of the Antiplasmodial Isocyanoterpene 7,20‐Diisocyanoadociane. Angewandte Chemie 2019, 131 (39) , 13887-13890. https://doi.org/10.1002/ange.201906834
    50. Alexander S. Karns, Bryan D. Ellis, Philipp C. Roosen, Zeinab Chahine, Karine G. Le Roch, Christopher D. Vanderwal. Concise Synthesis of the Antiplasmodial Isocyanoterpene 7,20‐Diisocyanoadociane. Angewandte Chemie International Edition 2019, 58 (39) , 13749-13752. https://doi.org/10.1002/anie.201906834
    51. Houhua Li, Rajesh Gontla, Jana Flegel, Christian Merten, Slava Ziegler, Andrey P. Antonchick, Herbert Waldmann. Enantioselective Formal C(sp 3 )−H Bond Activation in the Synthesis of Bioactive Spiropyrazolone Derivatives. Angewandte Chemie 2019, 131 (1) , 313-317. https://doi.org/10.1002/ange.201811041
    52. Houhua Li, Rajesh Gontla, Jana Flegel, Christian Merten, Slava Ziegler, Andrey P. Antonchick, Herbert Waldmann. Enantioselective Formal C(sp 3 )−H Bond Activation in the Synthesis of Bioactive Spiropyrazolone Derivatives. Angewandte Chemie International Edition 2019, 58 (1) , 307-311. https://doi.org/10.1002/anie.201811041
    53. Vladimir V. Voronin, Maria S. Ledovskaya, Alexander S. Bogachenkov, Konstantin S. Rodygin, Valentine P. Ananikov. Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules 2018, 23 (10) , 2442. https://doi.org/10.3390/molecules23102442
    54. M. Todd Hovey, Ashley A. Jaworski, Karl A. Scheidt. N‐Heterocyclic Carbene Catalysis in Natural Product and Complex Target Synthesis. 2018, 345-404. https://doi.org/10.1002/9783527809042.ch12
    55. Maria S. Ledovskaya, Vladimir V. Voronin, Konstantin S. Rodygin. Methods for the synthesis of O-, S- and N-vinyl derivatives. Russian Chemical Reviews 2018, 87 (2) , 167-191. https://doi.org/10.1070/RCR4782
    56. Heping Deng, Wei Cao, Rong Liu, Yanhui Zhang, Bo Liu. Asymmetric Total Synthesis of Hispidanin A. Angewandte Chemie 2017, 129 (21) , 5943-5946. https://doi.org/10.1002/ange.201700958
    57. Heping Deng, Wei Cao, Rong Liu, Yanhui Zhang, Bo Liu. Asymmetric Total Synthesis of Hispidanin A. Angewandte Chemie International Edition 2017, 56 (21) , 5849-5852. https://doi.org/10.1002/anie.201700958
    58. Daniel J. Lippincott, Roscoe T. H. Linstadt, Michael R. Maser, Bruce H. Lipshutz. Synthesis of Functionalized [3], [4], [5] and [6]Dendralenes through Palladium‐Catalyzed Cross‐Couplings of Substituted Allenoates. Angewandte Chemie 2017, 129 (3) , 865-868. https://doi.org/10.1002/ange.201609636
    59. Daniel J. Lippincott, Roscoe T. H. Linstadt, Michael R. Maser, Bruce H. Lipshutz. Synthesis of Functionalized [3], [4], [5] and [6]Dendralenes through Palladium‐Catalyzed Cross‐Couplings of Substituted Allenoates. Angewandte Chemie International Edition 2017, 56 (3) , 847-850. https://doi.org/10.1002/anie.201609636
    60. Barbara Berkes, Kristóf Ozsváth, Laura Molnár, Tamás Gáti, Tamás Holczbauer, György Kardos, Tibor Soós. Expedient and Diastereodivergent Assembly of Terpenoid Decalin Subunits having Quaternary Stereocenters through Organocatalytic Robinson Annulation of Nazarov Reagent. Chemistry – A European Journal 2016, 22 (50) , 18101-18106. https://doi.org/10.1002/chem.201604541
    61. Yun‐Tao Xia, Xiao‐Tao Sun, Ling Zhang, Kai Luo, Lei Wu. Metal‐Free Hydrogen Atom Transfer from Water: Expeditious Hydrogenation of N‐Heterocycles Mediated by Diboronic Acid. Chemistry – A European Journal 2016, 22 (48) , 17151-17155. https://doi.org/10.1002/chem.201604503

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect