ACS Publications. Most Trusted. Most Cited. Most Read
Room-Temperature Activation of Hydrogen by Semi-immobilized Frustrated Lewis Pairs in Microporous Polymer Networks
My Activity

Figure 1Loading Img
    Communication

    Room-Temperature Activation of Hydrogen by Semi-immobilized Frustrated Lewis Pairs in Microporous Polymer Networks
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin, Germany
    Department of Chemistry, Organic Chemistry/Sustainable Synthetic Methods, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 10, 3615–3618
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b13147
    Published March 1, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Porous polymer networks based on sterically encumbered triphenylphosphine motifs, mimicking the basic sites employed in frustrated Lewis pair (FLP) chemistry, were synthesized via Yamamoto polymerization and their interactions with the strong Lewis acid B(C6F5)3 probed. The combinations yield semi-immobilized FLPs, which are able to cleave dihydrogen heterolytically at ambient temperature and low hydrogen pressure.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b13147.

    • Experimental details on synthesis of monomers and polymers and hydrogen activation; 13C NMR of polymers and molecular model compounds; fluorescence spectra and TGA of the polymers, including Figures S1–S4 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 98 publications.

    1. Linhao Zhong, Xiaoqing Liao, Huaquan Huang, Haishuai Cui, Jinmei Huang, He’an Luo, Yong Pei, Yang Lv, Pingle Liu. B, N Codoped Defective Reduced Graphene Oxide as a Highly Efficient Frustrated Lewis Pairs Catalyst for the Selective Hydrogenation of α,β-Unsaturated Aldehydes to Unsaturated Alcohols. Journal of the American Chemical Society 2025, 147 (4) , 3840-3854. https://doi.org/10.1021/jacs.4c17103
    2. Linhao Zhong, Xiaoqing Liao, Haishuai Cui, Jinmei Huang, He’an Luo, Yang Lv, Pingle Liu. Covalent Organic Framework-Derived B/N Co-Doped Carbon FLPs Metal-Free Catalysts for the Selective Hydrogenation of α,β-Unsaturated Aldehydes to Unsaturated Alcohols. ACS Catalysis 2024, 14 (20) , 15799-15810. https://doi.org/10.1021/acscatal.4c04537
    3. Emily A. Latif, Jeremy D. Hilgar, Nathan A. Romero. Synthesis and Photochemical Uncaging of Alkene-Protected, Polymer-Bound Vicinal Frustrated Lewis Pairs. Journal of the American Chemical Society 2024, 146 (36) , 24764-24769. https://doi.org/10.1021/jacs.4c09012
    4. Zheng-Qing Huang, Xue Su, Xi-Yang Yu, Tao Ban, Xin Gao, Chun-Ran Chang. Theoretical Perspective on the Design of Surface Frustrated Lewis Pairs for Small-Molecule Activation. The Journal of Physical Chemistry Letters 2024, 15 (20) , 5436-5444. https://doi.org/10.1021/acs.jpclett.4c00836
    5. Wenhao Chen, Shenhui Li, Lezhi Yi, Ziyi Chen, Zihao Li, Yifan Wu, Wei Yan, Feng Deng, Hexiang Deng. Precise Distance Control and Functionality Adjustment of Frustrated Lewis Pairs in Metal–Organic Frameworks. Journal of the American Chemical Society 2024, 146 (17) , 12215-12224. https://doi.org/10.1021/jacs.4c03133
    6. Meng Wang, Muralidharan Shanmugam, Eric J. L. McInnes, Michael P. Shaver. Light-Induced Polymeric Frustrated Radical Pairs as Building Blocks for Materials and Photocatalysts. Journal of the American Chemical Society 2023, 145 (44) , 24294-24301. https://doi.org/10.1021/jacs.3c09075
    7. Yao-Bing Huang, Feng Gu, Bin Hu, Ke-Ming Li, Zhong-Ming Xu, Jinyue Luo, Qiang Lu. Flexible Borane–Nitrogen Frustrated Lewis Pair Organic Microsphere for Selective Alkyne Hydrogenation. Chemistry of Materials 2023, 35 (15) , 5752-5763. https://doi.org/10.1021/acs.chemmater.2c03507
    8. Kwan Chee Leung, Sungil Hong, Guangchao Li, Youdong Xing, Bryan Kit Yue Ng, Ping-Luen Ho, Dongpei Ye, Pu Zhao, Ephraem Tan, Olga Safonova, Tai-Sing Wu, Molly Meng-Jung Li, Giannis Mpourmpakis, Shik Chi Edman Tsang. Confined Ru Sites in a 13X Zeolite for Ultrahigh H2 Production from NH3 Decomposition. Journal of the American Chemical Society 2023, 145 (26) , 14548-14561. https://doi.org/10.1021/jacs.3c05092
    9. Meijia Li, Tianyu Zhang, Shi-Ze Yang, Yifan Sun, Junyan Zhang, Felipe Polo-Garzon, Kevin M. Siniard, Xinbin Yu, Zili Wu, Darren M. Driscoll, Alexander S. Ivanov, Hao Chen, Zhenzhen Yang, Sheng Dai. Mechanochemistry-Induced Strong Metal–Support Interactions Construction toward Enhanced Hydrogenation. ACS Catalysis 2023, 13 (9) , 6114-6125. https://doi.org/10.1021/acscatal.2c05730
    10. Hailong Xu, Xuedan Song, Miaomiao Chen, Wei Bai, Jie Zhang, Min Ji. Frustrated Lewis Pairs Bridged by Water and Immobilized in a Metal–Organic Framework as a Recyclable Transfer Hydrogenation Nanocatalyst. ACS Applied Nano Materials 2023, 6 (7) , 5255-5263. https://doi.org/10.1021/acsanm.2c05291
    11. Liping Liu, Min Qiu, Siyu Liu, Haixia Ma, Zheng-Qing Huang, Chun-Ran Chang. Design of Frustrated Lewis Pairs by Functionalizing N-Doped Graphene Edge with Tunable Activity for H2 Dissociation. The Journal of Physical Chemistry C 2023, 127 (14) , 6714-6722. https://doi.org/10.1021/acs.jpcc.3c00396
    12. Sai Zhang, Zhimin Tian, Yuanyuan Ma, Yongquan Qu. Adsorption of Molecules on Defective CeO2 for Advanced Catalysis. ACS Catalysis 2023, 13 (7) , 4629-4645. https://doi.org/10.1021/acscatal.2c06351
    13. Zhikai Zhang, Qing Wang, Haiming Liu, Tao Li, Yi Ren. Ultramicroporous Organophosphorus Polymers via Self-Accelerating P–C Coupling Reactions: Kinetic Effects on Crosslinking Environments and Porous Structures. Journal of the American Chemical Society 2022, 144 (26) , 11748-11756. https://doi.org/10.1021/jacs.2c03759
    14. Hao Chen, Chuanye Xiong, Jisue Moon, Alexander S. Ivanov, Wenwen Lin, Tao Wang, Jie Fu, De-en Jiang, Zili Wu, Zhenzhen Yang, Sheng Dai. Defect-Regulated Frustrated-Lewis-Pair Behavior of Boron Nitride in Ambient Pressure Hydrogen Activation. Journal of the American Chemical Society 2022, 144 (24) , 10688-10693. https://doi.org/10.1021/jacs.2c00343
    15. Cece Xue, Min Peng, Zhikai Zhang, Xue Han, Qing Wang, Conger Li, Haiming Liu, Tao Li, Na Yu, Yi Ren. Conjugated Boron Porous Polymers Having Strong p−π* Conjugation for Amine Sensing and Absorption. Macromolecules 2022, 55 (10) , 3850-3859. https://doi.org/10.1021/acs.macromol.2c00029
    16. Douglas W. Stephan. Diverse Uses of the Reaction of Frustrated Lewis Pair (FLP) with Hydrogen. Journal of the American Chemical Society 2021, 143 (48) , 20002-20014. https://doi.org/10.1021/jacs.1c10845
    17. Guangchao Li, Christopher Foo, Xianfeng Yi, Wei Chen, Pu Zhao, Pan Gao, Tatchamapan Yoskamtorn, Yao Xiao, Sarah Day, Chiu C. Tang, Guangjin Hou, Anmin Zheng, Shik Chi Edman Tsang. Induced Active Sites by Adsorbate in Zeotype Materials. Journal of the American Chemical Society 2021, 143 (23) , 8761-8771. https://doi.org/10.1021/jacs.1c03166
    18. Zhipeng Ouyang, Diana Tranca, Yazhen Zhao, Zhenying Chen, Xiaobin Fu, Jinhui Zhu, Guangqun Zhai, Changchun Ke, Emmanuel Kymakis, Xiaodong Zhuang. Quinone-Enriched Conjugated Microporous Polymer as an Organic Cathode for Li-Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (7) , 9064-9073. https://doi.org/10.1021/acsami.1c00867
    19. Kgauhelo Mentoor, Linette Twigge, J. W. Hans Niemantsverdriet, Jannie C. Swarts, Elizabeth Erasmus. Silica Nanopowder Supported Frustrated Lewis Pairs for CO2 Capture and Conversion to Formic Acid. Inorganic Chemistry 2021, 60 (1) , 55-69. https://doi.org/10.1021/acs.inorgchem.0c02012
    20. Huina Lin, Shivani Patel, Frieder Jäkle. Tailored Triarylborane Polymers as Supported Catalysts and Luminescent Materials. Macromolecules 2020, 53 (23) , 10601-10612. https://doi.org/10.1021/acs.macromol.0c02258
    21. Fernando Vidal, James McQuade, Roger Lalancette, Frieder Jäkle. ROMP-Boranes as Moisture-Tolerant and Recyclable Lewis Acid Organocatalysts. Journal of the American Chemical Society 2020, 142 (34) , 14427-14431. https://doi.org/10.1021/jacs.0c05454
    22. Manas Ghara, Santanab Giri, Pratim Kumar Chattaraj. Cycloaddition Reactions between H2C = CHR (R = H, CN, CH3) and a Cyclic P/B Frustrated Lewis Pair: A DFT Study. The Journal of Physical Chemistry A 2020, 124 (22) , 4455-4462. https://doi.org/10.1021/acs.jpca.0c02799
    23. Dongyang Zhang, Qian Li, Jianqi Zhang, Jianqiu Wang, Xuning Zhang, Rong Wang, Jiyu Zhou, Zhixiang Wei, Chunfeng Zhang, Huiqiong Zhou, Yuan Zhang. Control of Nanomorphology in Fullerene-Free Organic Solar Cells by Lewis Acid Doping with Enhanced Photovoltaic Efficiency. ACS Applied Materials & Interfaces 2020, 12 (1) , 667-677. https://doi.org/10.1021/acsami.9b17238
    24. Zheng-Qing Huang, Tianyu Zhang, Chun-Ran Chang, Jun Li. Dynamic Frustrated Lewis Pairs on Ceria for Direct Nonoxidative Coupling of Methane. ACS Catalysis 2019, 9 (6) , 5523-5536. https://doi.org/10.1021/acscatal.9b00838
    25. Yuxi Han, Sutao Zhang, Jianghua He, Yuetao Zhang. Switchable C–H Silylation of Indoles Catalyzed by a Thermally Induced Frustrated Lewis Pair. ACS Catalysis 2018, 8 (9) , 8765-8773. https://doi.org/10.1021/acscatal.8b01847
    26. Qianyi Wang, Wuchao Zhao, Sutao Zhang, Jianghua He, Yuetao Zhang, Eugene Y.-X. Chen. Living Polymerization of Conjugated Polar Alkenes Catalyzed by N-Heterocyclic Olefin-Based Frustrated Lewis Pairs. ACS Catalysis 2018, 8 (4) , 3571-3578. https://doi.org/10.1021/acscatal.8b00333
    27. Meng Wang, Fabio Nudelman, Rebecca R. Matthes, and Michael P. Shaver . Frustrated Lewis Pair Polymers as Responsive Self-Healing Gels. Journal of the American Chemical Society 2017, 139 (40) , 14232-14236. https://doi.org/10.1021/jacs.7b07725
    28. Alastair T. Littlewood, Tao Liu, Laura E. English, Linjiang Chen, Timothy A. Barendt, Andrew R. Jupp. Quantifying interactions in the active encounter complex of frustrated Lewis pairs. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-58965-2
    29. Xiaoqing Liao, Haishuai Cui, Hean Luo, Yang Lv, Pingle Liu. Oxygen vacancy-induced interfacial Frustrated Lewis Pairs on Co3O4 for selective hydrogenation of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan. Chemical Engineering Journal 2025, 509 , 161231. https://doi.org/10.1016/j.cej.2025.161231
    30. Paige R. Hawkins, Chris S. Hawes, Peter D. Matthews. Exploring Supramolecular Frustrated Lewis Pairs. ChemPlusChem 2025, 314 https://doi.org/10.1002/cplu.202400725
    31. Ahmed F. Saber, Ya-Fan Chen, Levannie Mabuti, Swetha V. Chaganti, Santosh U. Sharma, Johann Lüder, Jyh-Tsung Lee, Shiao-Wei Kuo, Ahmed F. M. EL-Mahdy. Engineering carbonyl-rich conjugated microporous polymers with a pyrene-4,5,9,10-tetraone building block as highly efficient and stable electrodes for energy storage. Materials Advances 2025, 6 (2) , 607-616. https://doi.org/10.1039/D4MA00928B
    32. Qiang Liu, Qiaobo Liao, Congxin Du, Jiao Geng, Kai Xi, Xingbang Hu. Construction of heterogeneous frustrated lewis pairs based on covalent organic frameworks stabilized boron cations and investigation of cycloaddition reaction performance. Journal of Environmental Chemical Engineering 2024, 12 (6) , 114137. https://doi.org/10.1016/j.jece.2024.114137
    33. Riddhi Kumari Riddhi, Francesc Penas-Hidalgo, Hongmei Chen, Elsje Alessandra Quadrelli, Jérôme Canivet, Caroline Mellot-Draznieks, Albert Solé-Daura. Experimental and computational aspects of molecular frustrated Lewis pairs for CO 2 hydrogenation: en route for heterogeneous systems?. Chemical Society Reviews 2024, 53 (19) , 9874-9903. https://doi.org/10.1039/D3CS00267E
    34. Qiang Liu, Qiaobo Liao, Chenghua Zhang, Congxin Du, Lei Zhou, Jiao Geng, Kai Xi, Xingbang Hu. Construction of heterogeneous FLPs based on COFs supported Lewis acid and its application in terminal alkyne hydrogenation. Molecular Catalysis 2024, 565 , 114402. https://doi.org/10.1016/j.mcat.2024.114402
    35. Himangshu Mondal, Pratim Kumar Chattaraj. Frustrated Lewis pair-mediated hydro-dehalogenation: crucial role of non-covalent interactions. Journal of Molecular Modeling 2024, 30 (7) https://doi.org/10.1007/s00894-024-05997-y
    36. Elvana Çako, Kumaravel Dinesh Gunasekaran, Saravanan Rajendran, Anna Zielińska-Jurek. Recent advances on magnetic carbon-related materials in advanced oxidation processes of emerging pollutants degradation. Water Resources and Industry 2024, 31 , 100241. https://doi.org/10.1016/j.wri.2024.100241
    37. Miaomiao Chen, Min Wang, Min Ji. Design and Synthesis of Heterogeneous Frustrated Lewis Pairs for Hydrogenation: From Molecular Immobilization to Defects Engineering. ChemCatChem 2024, 16 (6) https://doi.org/10.1002/cctc.202301472
    38. Qingyuan Wu, Ruixuan Qin, Mengsi Zhu, Hui Shen, Shenshui Yu, Yuanyuan Zhong, Gang Fu, Xiaodong Yi, Nanfeng Zheng. Frustrated Lewis pairs on pentacoordinated Al 3+ -enriched Al 2 O 3 promote heterolytic hydrogen activation and hydrogenation. Chemical Science 2024, 15 (9) , 3140-3147. https://doi.org/10.1039/D3SC06425E
    39. Zhikai Zhang, Zhaoxin Liu, Cece Xue, Hongyi Chen, Xue Han, Yi Ren. Amorphous porous organic polymers containing main group elements. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-01063-5
    40. Jialong Ou, Tianxiang Zhao, Wenjie Xiong, Hua Liang, Qiang Liu, Xingbang Hu. Water-resistant FLPs-polymer as recyclable catalysts for selective hydrogenation of alkynes. Chemical Engineering Journal 2023, 477 , 147248. https://doi.org/10.1016/j.cej.2023.147248
    41. Yan Liang, Zhong Zhang, Xiaofang Su, Xiao Feng, Songzhu Xing, Wei Liu, Rui Huang, Yiwei Liu. Coordination Defect‐Induced Frustrated Lewis Pairs in Polyoxo‐metalate‐Based Metal–Organic Frameworks for Efficient Catalytic Hydrogenation. Angewandte Chemie 2023, 135 (37) https://doi.org/10.1002/ange.202309030
    42. Yan Liang, Zhong Zhang, Xiaofang Su, Xiao Feng, Songzhu Xing, Wei Liu, Rui Huang, Yiwei Liu. Coordination Defect‐Induced Frustrated Lewis Pairs in Polyoxo‐metalate‐Based Metal–Organic Frameworks for Efficient Catalytic Hydrogenation. Angewandte Chemie International Edition 2023, 62 (37) https://doi.org/10.1002/anie.202309030
    43. Zhaowei Tian, Lei Wang, Tianyao Shen, Pan Yin, Weimin Da, Zhitong Qian, Xun Zhao, Guirong Wang, Yusen Yang, Min Wei. Surface solid frustrated Lewis pair constructed on alumina for selective hydrogenation reaction. Chemical Engineering Journal 2023, 472 , 144876. https://doi.org/10.1016/j.cej.2023.144876
    44. Meijia Li, Liqi Qiu, Ilja Popovs, Weiwei Yang, Alexander S. Ivanov, Takeshi Kobayashi, Bishnu P. Thapaliya, Debabrata Moitra, Xinbin Yu, Zili Wu, Zhenzhen Yang, Sheng Dai. Construction of Boron‐ and Nitrogen‐Enriched Nanoporous π‐Conjugated Networks Towards Enhanced Hydrogen Activation. Angewandte Chemie 2023, 135 (28) https://doi.org/10.1002/ange.202302684
    45. Meijia Li, Liqi Qiu, Ilja Popovs, Weiwei Yang, Alexander S. Ivanov, Takeshi Kobayashi, Bishnu P. Thapaliya, Debabrata Moitra, Xinbin Yu, Zili Wu, Zhenzhen Yang, Sheng Dai. Construction of Boron‐ and Nitrogen‐Enriched Nanoporous π‐Conjugated Networks Towards Enhanced Hydrogen Activation. Angewandte Chemie International Edition 2023, 62 (28) https://doi.org/10.1002/anie.202302684
    46. Anqi Dai, Shulin Li, Tienan Wang, Yuting Yang, Yuyang Tian, Xiaofei Jing, Guangshan Zhu. Frustrated Lewis pairs in situ formation in B-based porous aromatic frameworks for efficient o-phenylenediamine cyclization. Chinese Chemical Letters 2023, 34 (5) , 107559. https://doi.org/10.1016/j.cclet.2022.05.073
    47. Yixin Wang, Qiang Yan. CO 2 ‐Fueled Transient Breathing Nanogels that Couple Nonequilibrium Catalytic Polymerization. Angewandte Chemie 2023, 135 (14) https://doi.org/10.1002/ange.202217001
    48. Yixin Wang, Qiang Yan. CO 2 ‐Fueled Transient Breathing Nanogels that Couple Nonequilibrium Catalytic Polymerization. Angewandte Chemie International Edition 2023, 62 (14) https://doi.org/10.1002/anie.202217001
    49. Patrick Gäumann, Daniele Cartagenova, Marco Ranocchiari. Phosphine‐Functionalized Porous Materials for Catalytic Organic Synthesis. European Journal of Organic Chemistry 2022, 2022 (48) https://doi.org/10.1002/ejoc.202201006
    50. Bingxin You, Yuyang Tian, Baolin Wang, Guangshan Zhu. Porous aromatic frameworks with high Pd nanoparticles loading as efficient catalysts for the Suzuki coupling reaction. Journal of Colloid and Interface Science 2022, 628 , 1023-1032. https://doi.org/10.1016/j.jcis.2022.08.026
    51. Pratap Vishnoi, Aditi Saraswat, C. N. R. Rao. Chemically functionalized phosphorenes and their use in the water splitting reaction. Journal of Materials Chemistry A 2022, 10 (37) , 19534-19551. https://doi.org/10.1039/D2TA01932A
    52. Wenwen Lin, Hao Chen, Gaobo Lin, Siyu Yao, Zihao Zhang, Jizhen Qi, Meizan Jing, Weiyu Song, Jing Li, Xi Liu, Jie Fu, Sheng Dai. Creating Frustrated Lewis Pairs in Defective Boron Carbon Nitride for Electrocatalytic Nitrogen Reduction to Ammonia. Angewandte Chemie 2022, 134 (36) https://doi.org/10.1002/ange.202207807
    53. Wenwen Lin, Hao Chen, Gaobo Lin, Siyu Yao, Zihao Zhang, Jizhen Qi, Meizan Jing, Weiyu Song, Jing Li, Xi Liu, Jie Fu, Sheng Dai. Creating Frustrated Lewis Pairs in Defective Boron Carbon Nitride for Electrocatalytic Nitrogen Reduction to Ammonia. Angewandte Chemie International Edition 2022, 61 (36) https://doi.org/10.1002/anie.202207807
    54. Hailong Xu, Miaomiao Chen, Min Ji. Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde. Catalysis Today 2022, 402 , 52-59. https://doi.org/10.1016/j.cattod.2022.03.001
    55. Bingxin You, Min Zou, Ruitong Xu, Yuyang Tian, Baolin Wang, Guangshan Zhu. Metal−free catalysis of the reductive amination of aldehydes using a phosphonium−doped porous aromatic framework. Molecular Catalysis 2022, 530 , 112600. https://doi.org/10.1016/j.mcat.2022.112600
    56. Gaowen Zhai, Qiang Liu, Jialan Ji, Youting Wu, Jiao Geng, Xingbang Hu. Recyclable polymerized Lewis acid poly-BPh(C6F5)2 catalyzed selective N-formylation and N-methylation of amines with carbon dioxide and phenylsilanes. Journal of CO2 Utilization 2022, 61 , 102052. https://doi.org/10.1016/j.jcou.2022.102052
    57. Yong Zou, Mingkai Zhang, Yuxuan Liu, Yuanyuan Ma, Sai Zhang, Yongquan Qu. Highly selective transfer hydrogenation of furfural into furfuryl alcohol by interfacial frustrated Lewis pairs on CeO2. Journal of Catalysis 2022, 410 , 54-62. https://doi.org/10.1016/j.jcat.2022.04.010
    58. Qiang Liu, Qiaobo Liao, Jinling Hu, Kai Xi, Youting Wu, Xingbang Hu. Covalent organic frameworks anchored with frustrated Lewis pairs for hydrogenation of alkynes with H 2. Journal of Materials Chemistry A 2022, 10 (13) , 7333-7340. https://doi.org/10.1039/D1TA08916A
    59. Yin Zhang, Pui Ching Lan, Kyle Martin, Shengqian Ma. Porous frustrated Lewis pair catalysts: Advances and perspective. Chem Catalysis 2022, 2 (3) , 439-457. https://doi.org/10.1016/j.checat.2021.12.001
    60. Jiaxin Song, Kai Zhang, Zhongye Huang, Jinyu Zhao, Zhengyi Yang, Lingbo Zong, Jianbin Chen, Congxia Xie, Xiaofei Jia. A porous organic polymer supported Pd/Cu bimetallic catalyst for heterogeneous oxidation of alkynes to 1,2-diketones. Catalysis Science & Technology 2022, 12 (3) , 722-727. https://doi.org/10.1039/D1CY02002A
    61. Miquel Navarro, Juan José Moreno, Jesús Campos. Frustrated Lewis Pair Systems. 2022, 523-616. https://doi.org/10.1016/B978-0-12-820206-7.00129-3
    62. . Other Directions for FLP Hydrogenations. 2021, 129-163. https://doi.org/10.1039/9781839162442-00129
    63. Qiang Wan, Juan Li, Rong Jiang, Sen Lin. Construction of frustrated Lewis pairs on carbon nitride nanosheets for catalytic hydrogenation of acetylene. Physical Chemistry Chemical Physics 2021, 23 (42) , 24349-24356. https://doi.org/10.1039/D1CP03592D
    64. Peifeng Su, Yinwu Li, Zhuofeng Ke. Metal Effect Meets Volcano Plots: A DFT Study on Tris(phosphino)borane‐Transition Metal Complexes Catalyzed H 2 Activation. Chemistry – An Asian Journal 2021, 16 (21) , 3427-3436. https://doi.org/10.1002/asia.202100772
    65. Himangshu Mondal, Manas Ghara, Pratim Kumar Chattaraj. A computational investigation of the activation of allene (H2C = C = CHR; R = H, CH3, CN) by a frustrated phosphorous/boron Lewis pair. Chemical Physics Letters 2021, 774 , 138623. https://doi.org/10.1016/j.cplett.2021.138623
    66. Qiang Wan, Yang Chen, Shulan Zhou, Jian Lin, Sen Lin. Selective hydrogenation of acetylene to ethylene on anatase TiO 2 through first-principles studies. Journal of Materials Chemistry A 2021, 9 (24) , 14064-14073. https://doi.org/10.1039/D1TA03490A
    67. Pramod Kumar, Animesh Das, Biplab Maji. Phosphorus containing porous organic polymers: synthetic techniques and applications in organic synthesis and catalysis. Organic & Biomolecular Chemistry 2021, 19 (19) , 4174-4192. https://doi.org/10.1039/D1OB00137J
    68. Jorge Juan Cabrera‐Trujillo, Israel Fernández. Understanding the C−F Bond Activation Mediated by Frustrated Lewis Pairs: Crucial Role of Non‐covalent Interactions. Chemistry – A European Journal 2021, 27 (11) , 3823-3831. https://doi.org/10.1002/chem.202004733
    69. Mojgan Heshmat, Lei Liu, Bernd Ensing. Mechanistic Insight into the Hydrogen Activation by Frustrated Lewis Pairs. 2021, 167-208. https://doi.org/10.1007/978-3-030-58888-5_5
    70. Andrew R. Jupp. Heterogeneous Catalysis by Frustrated Lewis Pairs. 2021, 237-281. https://doi.org/10.1007/978-3-030-58888-5_7
    71. Meera Mehta, Christopher B. Caputo. Rivaling transition metal reactivity—an exploration of frustrated Lewis pairs chemistry. 2021, 169-220. https://doi.org/10.1016/B978-0-12-818429-5.00003-X
    72. Manas Ghara, Pratim Kumar Chattaraj. Can a decrease in anti-aromaticity increase the dihydrogen activation ability of a frustrated phosphorous/borane Lewis pair?: a DFT study. Theoretical Chemistry Accounts 2020, 139 (12) https://doi.org/10.1007/s00214-020-02698-6
    73. Utku Yolsal, Thomas A.R. Horton, Meng Wang, Michael P. Shaver. Polymer-supported Lewis acids and bases: Synthesis and applications. Progress in Polymer Science 2020, 111 , 101313. https://doi.org/10.1016/j.progpolymsci.2020.101313
    74. Qinghao Meng, Yihan Huang, Dan Deng, Yajie Yang, Haoyan Sha, Xiaoqin Zou, Roland Faller, Ye Yuan, Guangshan Zhu. Porous Aromatic Framework Nanosheets Anchored with Lewis Pairs for Efficient and Recyclable Heterogeneous Catalysis. Advanced Science 2020, 7 (22) https://doi.org/10.1002/advs.202000067
    75. Yun Bai, Huaiyu Wang, Jianghua He, Yuetao Zhang. Rapid and Scalable Access to Sequence‐Controlled DHDM Multiblock Copolymers by FLP Polymerization. Angewandte Chemie 2020, 132 (28) , 11710-11716. https://doi.org/10.1002/ange.202004013
    76. Yun Bai, Huaiyu Wang, Jianghua He, Yuetao Zhang. Rapid and Scalable Access to Sequence‐Controlled DHDM Multiblock Copolymers by FLP Polymerization. Angewandte Chemie International Edition 2020, 59 (28) , 11613-11619. https://doi.org/10.1002/anie.202004013
    77. Wuchao Zhao, Jianghua He, Yuetao Zhang. Lewis pairs polymerization of polar vinyl monomers. Science Bulletin 2019, 64 (24) , 1830-1840. https://doi.org/10.1016/j.scib.2019.08.025
    78. Lu Wang, Tingjiang Yan, Rui Song, Wei Sun, Yuchan Dong, Jiuli Guo, Zizhong Zhang, Xuxu Wang, Geoffrey A. Ozin. Room‐Temperature Activation of H 2 by a Surface Frustrated Lewis Pair. Angewandte Chemie 2019, 131 (28) , 9601-9605. https://doi.org/10.1002/ange.201904568
    79. Lu Wang, Tingjiang Yan, Rui Song, Wei Sun, Yuchan Dong, Jiuli Guo, Zizhong Zhang, Xuxu Wang, Geoffrey A. Ozin. Room‐Temperature Activation of H 2 by a Surface Frustrated Lewis Pair. Angewandte Chemie International Edition 2019, 58 (28) , 9501-9505. https://doi.org/10.1002/anie.201904568
    80. Mar Ríos-Gutiérrez, Luis R. Domingo, René S. Rojas, Alejandro Toro-Labbé, Patricia Pérez. A molecular electron density theory study of the insertion of CO into frustrated Lewis pair boron-amidines: a [4 + 1] cycloaddition reaction. Dalton Transactions 2019, 48 (25) , 9214-9224. https://doi.org/10.1039/C9DT01489F
    81. Fernando Vidal, Frieder Jäkle. Funktionelle polymere Materialien auf der Basis von Hauptgruppen‐Elementen. Angewandte Chemie 2019, 131 (18) , 5904-5929. https://doi.org/10.1002/ange.201810611
    82. Fernando Vidal, Frieder Jäkle. Functional Polymeric Materials Based on Main‐Group Elements. Angewandte Chemie International Edition 2019, 58 (18) , 5846-5870. https://doi.org/10.1002/anie.201810611
    83. Yuting Yang, Tienan Wang, Xiaofei Jing, Guangshan Zhu. Phosphine-based porous aromatic frameworks for gold nanoparticle immobilization with superior catalytic activities. Journal of Materials Chemistry A 2019, 7 (16) , 10004-10009. https://doi.org/10.1039/C8TA12099D
    84. E. I. Musina, A. S. Balueva, A. A. Karasik. Phosphines: preparation, reactivity and applications. 2019, 1-63. https://doi.org/10.1039/9781788016988-00001
    85. Nicolas Bouchard, Frédéric-Georges Fontaine. Alkylammoniotrifluoroborate functionalized polystyrenes: polymeric pre-catalysts for the metal-free borylation of heteroarenes. Dalton Transactions 2019, 48 (15) , 4846-4856. https://doi.org/10.1039/C9DT00484J
    86. Serhii Shyshkanov, Tu N. Nguyen, Fatmah Mish Ebrahim, Kyriakos C. Stylianou, Paul J. Dyson. In Situ Formation of Frustrated Lewis Pairs in a Water‐Tolerant Metal‐Organic Framework for the Transformation of CO 2. Angewandte Chemie 2019, 131 (16) , 5425-5429. https://doi.org/10.1002/ange.201901171
    87. Serhii Shyshkanov, Tu N. Nguyen, Fatmah Mish Ebrahim, Kyriakos C. Stylianou, Paul J. Dyson. In Situ Formation of Frustrated Lewis Pairs in a Water‐Tolerant Metal‐Organic Framework for the Transformation of CO 2. Angewandte Chemie International Edition 2019, 58 (16) , 5371-5375. https://doi.org/10.1002/anie.201901171
    88. Sai Zhang, Zheng-Qing Huang, Xiao Chen, Jie Gan, Xuezhi Duan, Bolun Yang, Chun-Ran Chang, Yongquan Qu. Hydrogen activation enabled by the interfacial frustrated Lewis pairs on cobalt borate nanosheets. Journal of Catalysis 2019, 372 , 142-150. https://doi.org/10.1016/j.jcat.2019.02.033
    89. Andrew R. Jupp, Douglas W. Stephan. New Directions for Frustrated Lewis Pair Chemistry. Trends in Chemistry 2019, 1 (1) , 35-48. https://doi.org/10.1016/j.trechm.2019.01.006
    90. Pratap Vishnoi, Uttam Gupta, Richa Pandey, C. N. R. Rao. Stable functionalized phosphorenes with photocatalytic HER activity. Journal of Materials Chemistry A 2019, 7 (12) , 6631-6637. https://doi.org/10.1039/C8TA08497A
    91. Yun Bai, Jianghua He, Yuetao Zhang. Ultra‐High‐Molecular‐Weight Polymers Produced by the Immortal Phosphine‐Based Catalyst System. Angewandte Chemie 2018, 130 (52) , 17476-17480. https://doi.org/10.1002/ange.201811946
    92. Yun Bai, Jianghua He, Yuetao Zhang. Ultra‐High‐Molecular‐Weight Polymers Produced by the Immortal Phosphine‐Based Catalyst System. Angewandte Chemie International Edition 2018, 57 (52) , 17230-17234. https://doi.org/10.1002/anie.201811946
    93. Wuchao Zhao, Yuetao Zhang. Organopolymerization of Acrylic Monomers. 2018, 473-530. https://doi.org/10.1039/9781788015738-00473
    94. Zheng Niu, Wilarachchige D.C. Bhagya Gunatilleke, Qi Sun, Pui Ching Lan, Jason Perman, Jian-Gong Ma, Yuchuan Cheng, Briana Aguila, Shengqian Ma. Metal-Organic Framework Anchored with a Lewis Pair as a New Paradigm for Catalysis. Chem 2018, 4 (11) , 2587-2599. https://doi.org/10.1016/j.chempr.2018.08.018
    95. Andrea Willms, Hannah Schumacher, Tarnuma Tabassum, Long Qi, Susannah L. Scott, Peter J. C. Hausoul, Marcus Rose. Solid Molecular Frustrated Lewis Pairs in a Polyamine Organic Framework for the Catalytic Metal‐free Hydrogenation of Alkenes. ChemCatChem 2018, 10 (8) , 1835-1843. https://doi.org/10.1002/cctc.201701783
    96. Yuanyuan Ma, Sai Zhang, Chun-Ran Chang, Zheng-Qing Huang, Johnny C. Ho, Yongquan Qu. Semi-solid and solid frustrated Lewis pair catalysts. Chemical Society Reviews 2018, 47 (15) , 5541-5553. https://doi.org/10.1039/C7CS00691H
    97. Sebastian Arndt, Matthias Rudolph, A. Stephen K. Hashmi. Gold-based frustrated Lewis acid/base pairs (FLPs). Gold Bulletin 2017, 50 (3) , 267-282. https://doi.org/10.1007/s13404-017-0219-7
    98. Nicolas Chaoui, Matthias Trunk, Robert Dawson, Johannes Schmidt, Arne Thomas. Trends and challenges for microporous polymers. Chemical Society Reviews 2017, 46 (11) , 3302-3321. https://doi.org/10.1039/C7CS00071E

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 10, 3615–3618
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b13147
    Published March 1, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    5795

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.