ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Design of Iron Coordination Complexes as Highly Active Homogenous Water Oxidation Catalysts by Deuteration of Oxidation-Sensitive Sites

  • Zoel Codolà
    Zoel Codolà
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
    More by Zoel Codolà
  • Ilaria Gamba
    Ilaria Gamba
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
    More by Ilaria Gamba
  • Ferran Acuña-Parés
    Ferran Acuña-Parés
    Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007, Tarragona, Catalonia, Spain
  • Carla Casadevall
    Carla Casadevall
    Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007, Tarragona, Catalonia, Spain
  • Martin Clémancey
    Martin Clémancey
    Université Grenoble Alpes, CEA, CNRS, LCBM, pmb, F-38000 Grenoble, France
  • Jean-Marc Latour
    Jean-Marc Latour
    Université Grenoble Alpes, CEA, CNRS, LCBM, pmb, F-38000 Grenoble, France
  • Josep M. Luis
    Josep M. Luis
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
  • Julio Lloret-Fillol*
    Julio Lloret-Fillol
    Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007, Tarragona, Catalonia, Spain
    Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
    *E-mail for J.L.-F.: [email protected]
  • , and 
  • Miquel Costas*
    Miquel Costas
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
    *E-mail for M.C.: [email protected]
Cite this: J. Am. Chem. Soc. 2019, 141, 1, 323–333
Publication Date (Web):November 30, 2018
https://doi.org/10.1021/jacs.8b10211
Copyright © 2018 American Chemical Society

    Article Views

    5362

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The nature of the oxidizing species in water oxidation reactions with chemical oxidants catalyzed by α-[Fe(OTf)2(mcp)] (; mcp = N,N′-dimethyl-N,N′-bis(pyridin-2-ylmethyl)cyclohexane-1,2-diamine, OTf = trifluoromethanesulfonate anion) and β-[Fe(OTf)2(mcp)] () has been investigated. Mössbauer spectroscopy provides definitive evidence that and generate oxoiron(IV) species as the resting state. Decomposition paths of the catalysts have been investigated by identifying and quantifying ligand fragments that form upon degradation. This analysis correlates the water oxidation activity of and with stability against oxidative damage of the ligand via aliphatic C–H oxidation. The site of degradation and the relative stability against oxidative degradation are shown to be dependent on the topology of the catalyst. Furthermore, the mechanisms of catalyst degradation have been rationalized by computational analyses, which also explain why the topology of the catalyst enforces different oxidation-sensitive sites. This information has served in creating catalysts where sensitive C–H bonds have been replaced by C–D bonds. The deuterated analogues D4-α-[Fe(OTf)2(mcp)] (D4-1α), D4-β-[Fe(OTf)2(mcp)] (D4-1β), and D6-β-[Fe(OTf)2(mcp)] (D6-1β) were prepared, and their catalytic activity has been studied. D4-1α proves to be an extraordinarily active and efficient catalyst (up to 91% of O2 yield); it exhibits initial reaction rates identical with those of its protio analogue, but it is substantially more robust toward oxidative degradation and yields more than 3400 TON (n(O2)/n(Fe)). Altogether this evidences that the water oxidation catalytic activity is performed by a well-defined coordination complex and not by iron oxides formed after oxidative degradation of the ligands.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b10211.

    • Sample preparation details and spectroscopic and spectrometric characterization, spectral simulations of Mössbauer analyses, computational details, and Cartesian coordinates (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 54 publications.

    1. ZhaoXuanAssociate ProfessorKumaravel Dinesh Gunasekaran, CRANN/AMBER, School of Chemistry, Trinity College Dublin, Dublin. Homogeneous Water Splitting. 2023https://doi.org/10.1021/acsinfocus.7e7005
    2. Moumita Bera, Simarjeet Kaur, Kritika Keshari, Dooshaye Moonshiram, Sayantan Paria. Characterization of Reaction Intermediates Involved in the Water Oxidation Reaction of a Molecular Cobalt Complex. Inorganic Chemistry 2022, 61 (51) , 21035-21046. https://doi.org/10.1021/acs.inorgchem.2c03559
    3. Gabriel Menendez Rodriguez, Francesco Zaccaria, Sybren Van Dijk, Cristiano Zuccaccia, Alceo Macchioni. Substituent Effects on the Activity of Cp*Ir(pyridine-carboxylate) Water Oxidation Catalysts: Which Ligand Fragments Remain Coordinated to the Active Ir Centers?. Organometallics 2021, 40 (20) , 3445-3453. https://doi.org/10.1021/acs.organomet.1c00464
    4. Reza Latifi, Taryn D. Palluccio, Wanhua Ye, Jennifer L. Minnick, Kwame S. Glinton, Elena V. Rybak-Akimova, Sam P. de Visser, Laleh Tahsini. pH Changes That Induce an Axial Ligand Effect on Nonheme Iron(IV) Oxo Complexes with an Appended Aminopropyl Functionality. Inorganic Chemistry 2021, 60 (18) , 13821-13832. https://doi.org/10.1021/acs.inorgchem.1c01312
    5. Justin L. Lee, Dolores L. Ross, Suman K. Barman, Joseph W. Ziller, A. S. Borovik. C–H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorganic Chemistry 2021, 60 (18) , 13759-13783. https://doi.org/10.1021/acs.inorgchem.1c01754
    6. Bingyang Wang, Jin Lin, Qiangsheng Sun, Chungu Xia, Wei Sun. Efficient Aliphatic C–H Oxidation and C═C Epoxidation Catalyzed by Porous Organic Polymer-Supported Single-Site Manganese Catalysts. ACS Catalysis 2021, 11 (17) , 10964-10973. https://doi.org/10.1021/acscatal.1c02738
    7. Shaojin Hu, Penglin Xu, Rui-Xue Xu, Xiao Zheng. Unveiling the High Catalytic Activity of a Dinuclear Iron Complex for the Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (10) , 7297-7305. https://doi.org/10.1021/acs.inorgchem.1c00394
    8. Ruihua Zhao, Xiang-Yu Chen, Zhi-Xiang Wang. Insight into the Selective Methylene Oxidation Catalyzed by Mn(CF3-PDP)(SbF6)2/H2O2/CH2ClCO2H) System: A DFT Mechanistic Study. Organic Letters 2021, 23 (5) , 1535-1540. https://doi.org/10.1021/acs.orglett.0c04102
    9. Silvia D’Agostini, Konstantin G. Kottrup, Carla Casadevall, Ilaria Gamba, Valeria Dantignana, Alberto Bucci, Miquel Costas, Julio Lloret-Fillol, Dennis G.H. Hetterscheid. Electrocatalytic Water Oxidation with α-[Fe(mcp)(OTf)2] and Analogues. ACS Catalysis 2021, 11 (5) , 2583-2595. https://doi.org/10.1021/acscatal.0c05439
    10. Laia Vicens, Giorgio Olivo, Miquel Costas. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catalysis 2020, 10 (15) , 8611-8631. https://doi.org/10.1021/acscatal.0c02073
    11. Jianming Chen, Robertus J. M. Klein Gebbink. Deuterated N2Py2 Ligands: Building More Robust Non-Heme Iron Oxidation Catalysts. ACS Catalysis 2019, 9 (4) , 3564-3575. https://doi.org/10.1021/acscatal.8b04463
    12. Fanshi Li, Isabelle Meijer, Bauke Kniestedt, Martin Lutz, Daniël L. J. Broere, Robertus J. M. Klein Gebbink. Combining Ligand Deuteration with Ligand Bulkiness in Non‐Heme Iron Oxidation Catalysis: Enhancing Catalyst Lifetime and Site‐Selectivity. ChemCatChem 2023, 15 (22) https://doi.org/10.1002/cctc.202301128
    13. Haoyuan Lv, Xue‐Peng Zhang, Kai Guo, Jinxiu Han, Hongbo Guo, Haitao Lei, Xialiang Li, Wei Zhang, Ulf‐Peter Apfel, Rui Cao. Coordination Tuning of Metal Porphyrins for Improved Oxygen Evolution Reaction. Angewandte Chemie 2023, 135 (38) https://doi.org/10.1002/ange.202305938
    14. Haoyuan Lv, Xue‐Peng Zhang, Kai Guo, Jinxiu Han, Hongbo Guo, Haitao Lei, Xialiang Li, Wei Zhang, Ulf‐Peter Apfel, Rui Cao. Coordination Tuning of Metal Porphyrins for Improved Oxygen Evolution Reaction. Angewandte Chemie International Edition 2023, 62 (38) https://doi.org/10.1002/anie.202305938
    15. Melina Knezevic, Konrad Tiefenbacher. Tweezer‐Based C−H Oxidation Catalysts Overriding the Intrinsic Reactivity of Aliphatic Ammonium Substrates. Chemistry – A European Journal 2023, 29 (13) https://doi.org/10.1002/chem.202203480
    16. Jesús Antonio Luque-Urrutia, Thalía Ortiz-García, Miquel Solà, Albert Poater. Green Energy by Hydrogen Production from Water Splitting, Water Oxidation Catalysis and Acceptorless Dehydrogenative Coupling. Inorganics 2023, 11 (2) , 88. https://doi.org/10.3390/inorganics11020088
    17. Camilo A. Mesa, Ernest Pastor, Laia Francàs. UV–Vis operando spectroelectrochemistry for (photo)electrocatalysis: Principles and guidelines. Current Opinion in Electrochemistry 2022, 35 , 101098. https://doi.org/10.1016/j.coelec.2022.101098
    18. Daan den Boer, Dennis G.H. Hetterscheid. Design principles for homogeneous water oxidation catalysts based on first–row transition metals. Current Opinion in Electrochemistry 2022, 35 , 101064. https://doi.org/10.1016/j.coelec.2022.101064
    19. Ting Fan, Yongfei Ji. A theoretical study of the role of the non-innocent phenolate ligand of a nickel complex in water oxidation. Physical Chemistry Chemical Physics 2022, 24 (26) , 15802-15810. https://doi.org/10.1039/D2CP01869A
    20. Francesco Zaccaria, Gabriel Menendez Rodriguez, Luca Rocchigiani, Alceo Macchioni. Molecular Catalysis in “Green” Hydrogen Production. Frontiers in Catalysis 2022, 2 https://doi.org/10.3389/fctls.2022.892183
    21. Wan‐Chi Hsu, Yu‐Heng Wang. Homogeneous Water Oxidation Catalyzed by First‐Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. ChemSusChem 2022, 15 (5) https://doi.org/10.1002/cssc.202102378
    22. Xia-Xing Sun, Juan Du, Jie-Jie Tan, Shu-Zhong Zhan. A mono-oxo-bridged binuclear iron( iii ) complex with a Fe–O–Fe angle of 180.0° and its catalytic activity for hydrogen evolution. New Journal of Chemistry 2022, 46 (8) , 3794-3799. https://doi.org/10.1039/D1NJ05904A
    23. Bingyang Wang, Jin Lin, Chungu Xia, Wei Sun. Porous organic polymer-supported manganese catalysts with tunable wettability for efficient oxidation of secondary alcohols. Journal of Catalysis 2022, 406 , 87-95. https://doi.org/10.1016/j.jcat.2022.01.002
    24. Jie-Jie Tan, Xia-Xing Sun, Chun-Li Wang, Shu-Zhong Zhan. Electrochemical-driven water reduction and oxidation catalyzed by an iron(III) complex supported by a N2O2 ligand. Journal of Electroanalytical Chemistry 2022, 906 , 115895. https://doi.org/10.1016/j.jelechem.2021.115895
    25. Carla Casadevall. Heterogenization of Molecular Water Oxidation Catalysts in Electrodes for (Photo)Electrochemical Water Oxidation. Water 2022, 14 (3) , 371. https://doi.org/10.3390/w14030371
    26. Yan Zhang, Jie-Jie Tan, Hao Yang, Xia-Xing Sun, Juan Du, Chun-Li Wang, Shu-Zhong Zhan. An infinite chain, {[Ni(tn)2]3[Fe(CN)4(μ-CN)2]2}n, a new catalyst for electrochemical-driven water splitting and photochemical-driven hydrogen evolution from water under blue light. International Journal of Hydrogen Energy 2022, 47 (4) , 2279-2292. https://doi.org/10.1016/j.ijhydene.2021.10.123
    27. Yanjun Li, Ziqi Ye, Yu-Mei Lin, Yan Liu, Yumeng Zhang, Lei Gong. Organophotocatalytic selective deuterodehalogenation of aryl or alkyl chlorides. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23255-0
    28. Michael John Craig, Max García-Melchor. Applying Active Learning to the Screening of Molecular Oxygen Evolution Catalysts. Molecules 2021, 26 (21) , 6362. https://doi.org/10.3390/molecules26216362
    29. Yen-Ting Lin, Sam P. de Visser. Product Distributions of Cytochrome P450 OleTJE with Phenyl-Substituted Fatty Acids: A Computational Study. International Journal of Molecular Sciences 2021, 22 (13) , 7172. https://doi.org/10.3390/ijms22137172
    30. Mio Kondo, Hayato Tatewaki, Shigeyuki Masaoka. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chemical Society Reviews 2021, 50 (12) , 6790-6831. https://doi.org/10.1039/D0CS01442G
    31. Agnes E. Thorarinsdottir, Daniel G. Nocera. Energy catalysis needs ligands with high oxidative stability. Chem Catalysis 2021, 1 (1) , 32-43. https://doi.org/10.1016/j.checat.2021.05.012
    32. Hong‐Tao Zhang, Xiao‐Jun Su, Fei Xie, Rong‐Zhen Liao, Ming‐Tian Zhang. Iron‐Catalyzed Water Oxidation: O–O Bond Formation via Intramolecular Oxo–Oxo Interaction. Angewandte Chemie 2021, 133 (22) , 12575-12582. https://doi.org/10.1002/ange.202100060
    33. Hong‐Tao Zhang, Xiao‐Jun Su, Fei Xie, Rong‐Zhen Liao, Ming‐Tian Zhang. Iron‐Catalyzed Water Oxidation: O–O Bond Formation via Intramolecular Oxo–Oxo Interaction. Angewandte Chemie International Edition 2021, 60 (22) , 12467-12474. https://doi.org/10.1002/anie.202100060
    34. Yuji Mikata, Yasuko Kuroda, Kyoko Naito, Kana Murakami, Chihiro Yamamoto, Shoko Yabe, Shizuka Yonemura, Arimasa Matsumoto, Hajime Katano. Structure and electrochemical properties of (μ-O) 2 Mn 2 ( iii , iii ) and (μ-O) 2 Mn 2 ( iii , iv ) complexes supported by pyridine-, quinoline-, isoquinoline- and quinoxaline-based tetranitrogen ligands. Dalton Transactions 2021, 50 (12) , 4133-4144. https://doi.org/10.1039/D1DT00184A
    35. Carmen E. Castillo, Ilaria Gamba, Laia Vicens, Martin Clémancey, Jean‐Marc Latour, Miquel Costas, Manuel G. Basallote. Spin State Tunes Oxygen Atom Transfer towards Fe IV O Formation in Fe II Complexes. Chemistry – A European Journal 2021, 27 (15) , 4946-4954. https://doi.org/10.1002/chem.202004921
    36. J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews 2021, 50 (4) , 2444-2485. https://doi.org/10.1039/D0CS00978D
    37. Biaobiao Zhang, Oleksandr Kravchenko, Licheng Sun. Bio-Inspired Water Oxidation Catalysts. 2021, 589-610. https://doi.org/10.1016/B978-0-08-102688-5.00015-5
    38. Elizabeth T. Papish. Water Oxidation with Coordination Complex Catalysts Using Group 7 and 8 Metals. 2021, 715-741. https://doi.org/10.1016/B978-0-12-409547-2.14688-8
    39. Sahir M. Al-Zuraiji, Dávid Lukács, Miklós Németh, Krisztina Frey, Tímea Benkó, Levente Illés, József S. Pap. An Iron(III) Complex with Pincer Ligand—Catalytic Water Oxidation through Controllable Ligand Exchange. Reactions 2020, 1 (1) , 16-36. https://doi.org/10.3390/reactions1010003
    40. Joeri Hessels, Fengshou Yu, Remko J. Detz, Joost N. H. Reek. Potential‐ and Buffer‐Dependent Catalyst Decomposition during Nickel‐Based Water Oxidation Catalysis. ChemSusChem 2020, 13 (21) , 5625-5631. https://doi.org/10.1002/cssc.202001428
    41. Jesús A. Luque-Urrutia, Jayneil M. Kamdar, Douglas B. Grotjahn, Miquel Solà, Albert Poater. Understanding the performance of a bisphosphonate Ru water oxidation catalyst. Dalton Transactions 2020, 49 (40) , 14052-14060. https://doi.org/10.1039/D0DT02253E
    42. Michael John Craig, Max García‐Melchor. Discerning Activity and Inactivity in Earth‐Abundant Molecular Oxygen Evolution Catalysts. ChemCatChem 2020, 12 (19) , 4775-4779. https://doi.org/10.1002/cctc.202000771
    43. Chieh‐Chih George Yeh, Gerald Hörner, Sam P. de Visser. Computational Study on O–O Bond Formation on a Mononuclear Non‐Heme Iron Center. European Journal of Inorganic Chemistry 2020, 2020 (27) , 2573-2581. https://doi.org/10.1002/ejic.202000321
    44. B. Chakraborty, A. Indra, P.V. Menezes, M. Driess, P.W. Menezes. Improved chemical water oxidation with Zn in the tetrahedral site of spinel-type ZnCo2O4 nanostructure. Materials Today Chemistry 2020, 15 , 100226. https://doi.org/10.1016/j.mtchem.2019.100226
    45. Sahir M. Al-Zuraiji, Tímea Benkó, Levente Illés, Miklós Németh, Krisztina Frey, Attila Sulyok, József S. Pap. Utilization of hydrophobic ligands for water-insoluble Fe(II) water oxidation catalysts – Immobilization and characterization. Journal of Catalysis 2020, 381 , 615-625. https://doi.org/10.1016/j.jcat.2019.12.003
    46. Sheng Ye, Chunmei Ding, Mingyao Liu, Aoqi Wang, Qinge Huang, Can Li. Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials 2019, 31 (50) https://doi.org/10.1002/adma.201902069
    47. Zahra Abdi, Robabeh Bagheri, Zhenlun Song, Mohammad Mahdi Najafpour. Water oxidation by Ferritin: A semi-natural electrode. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-47661-z
    48. Ilaria Corbucci, Francesco Zaccaria, Rachel Heath, Giordano Gatto, Cristiano Zuccaccia, Martin Albrecht, Alceo Macchioni. Iridium Water Oxidation Catalysts Based on Pyridine‐Carbene Alkyl‐Substituted Ligands. ChemCatChem 2019, 11 (21) , 5353-5361. https://doi.org/10.1002/cctc.201901092
    49. Giordano Gatto, Alceo Macchioni, Roberto Bondi, Fabio Marmottini, Ferdinando Costantino. Post Synthetic Defect Engineering of UiO-66 Metal–Organic Framework with An Iridium(III)-HEDTA Complex and Application in Water Oxidation Catalysis. Inorganics 2019, 7 (10) , 123. https://doi.org/10.3390/inorganics7100123
    50. Oksana V. Nesterova, Maximilian N. Kopylovich, Dmytro S. Nesterov. A Comparative Study of the Catalytic Behaviour of Alkoxy-1,3,5-Triazapentadiene Copper(II) Complexes in Cyclohexane Oxidation. Inorganics 2019, 7 (7) , 82. https://doi.org/10.3390/inorganics7070082
    51. Tomohiro Fujimoto, Hideki Sugimoto, Kenichiro Kai, Kazuki Maeda, Shinobu Itoh. Oxido‐Hydroxido‐ and Oxido‐Aminato‐Osmium(V) Complexes with a Cyclohexanediamine‐Based Tetradentate Ligand as Active Oxidants for Dihydroxylation and Aminohydroxylation of Alkenes. European Journal of Inorganic Chemistry 2019, 2019 (24) , 2891-2898. https://doi.org/10.1002/ejic.201900339
    52. Andrey Shatskiy, Markus D. Kärkäs, Björn Åkermark. The Art of Splitting Water: Storing Energy in a Readily Available and Convenient Form. European Journal of Inorganic Chemistry 2019, 2019 (15) , 2020-2024. https://doi.org/10.1002/ejic.201801548
    53. Sergii I. Shylin, Mariia V. Pavliuk, Luca D’Amario, Fikret Mamedov, Jacinto Sá, Gustav Berggren, Igor O. Fritsky. Efficient visible light-driven water oxidation catalysed by an iron( iv ) clathrochelate complex. Chemical Communications 2019, 55 (23) , 3335-3338. https://doi.org/10.1039/C9CC00229D
    54. Carla Casadevall, Alberto Bucci, Miquel Costas, Julio Lloret-Fillol. Water oxidation catalysis with well-defined molecular iron complexes. 2019, 151-196. https://doi.org/10.1016/bs.adioch.2019.03.004

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect