ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO–ZnS Electron Transport Layer

  • Ruihao Chen
    Ruihao Chen
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
    More by Ruihao Chen
  • Jing Cao
    Jing Cao
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
    More by Jing Cao
  • Yuan Duan
    Yuan Duan
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
    More by Yuan Duan
  • Yong Hui
    Yong Hui
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
    More by Yong Hui
  • Tracy T Chuong
    Tracy T Chuong
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
  • Daohui Ou
    Daohui Ou
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
    More by Daohui Ou
  • Faming Han
    Faming Han
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
    More by Faming Han
  • Fangwen Cheng
    Fangwen Cheng
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
  • Xiaofeng Huang
    Xiaofeng Huang
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
  • Binghui Wu*
    Binghui Wu
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
    *[email protected]
    More by Binghui Wu
  • , and 
  • Nanfeng Zheng*
    Nanfeng Zheng
    State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
    *[email protected]
Cite this: J. Am. Chem. Soc. 2019, 141, 1, 541–547
Publication Date (Web):December 10, 2018
https://doi.org/10.1021/jacs.8b11001
Copyright © 2018 American Chemical Society

    Article Views

    7148

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Perovskite solar cells (PSCs) have reached certified efficiencies of up to 23.7% but suffered from frailness and instability when exposed to ambient atmosphere. Zinc oxide (ZnO), when used as electron transport layer (ETL) on PSCs, gives rise to excellent electronic, optic, and photonic properties, yet the Lewis basic nature of ZnO surface leads to deprotonation of the perovskite layer, resulting in serious degradation of PSCs using ZnO as ETL. Here, we report a simple but effective strategy to convert ZnO surface into ZnS at the ZnO/perovskite interface by sulfidation. The sulfide on ZnO–ZnS surface binds strongly with Pb2+ and creates a novel pathway of electron transport to accelerate electron transfer and reduce interfacial charge recombination, yielding a champion efficiency of 20.7% with improved stability and no appreciable hysteresis. The model devices modified with sulfide maintained 88% of their initial performance for 1000 h under storage condition and 87% for 500 h under UV radiation. ZnS is demonstrated to act as both a cascade ETL and a passivating layer for enhancing the performance of PSCs.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b11001.

    • XRD, SEM, TEM, EDS, and XPS data of ZnO–ZnS layers or perovskite layers or reduced GO; and photovoltaic parameters and UV stabilities of the devices (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 186 publications.

    1. Zhinan Xia, Bei Liu, Yang Xiao, Wanchao Hu, Mingxiao Deng, Changli Lü. Integrating Hybrid Perovskite Nanocrystals into Metal–Organic Framework as Efficient S-Scheme Heterojunction Photocatalyst for Synergistically Boosting Controlled Radical Photopolymerization under 980 nm NIR Light. ACS Applied Materials & Interfaces 2023, 15 (49) , 57119-57133. https://doi.org/10.1021/acsami.3c13496
    2. Haoran Xu, Feifan Yu, Jin Feng, Jia-Xin Wang, Tao Zhou. Ultraviolet Laser-Induced Selective Metallization on White Polymers Using Oxygen Vacancy Laser Sensitizer for IoT Sensors. Industrial & Engineering Chemistry Research 2023, 62 (48) , 20741-20751. https://doi.org/10.1021/acs.iecr.3c03602
    3. Qili Song, Yiyi Li, Zhichao Lin, Xiangning Xu, Hongye Dong, Hairui Duan, Li Guan, Xiaowen Gao, Xi-Cheng Ai, Cheng Mu. High-Fill-Factor Perovskite Solar Cells via Pseudohalide Salt Modification of the Substrate to Mitigate Nonradiative Recombination at the Interface. The Journal of Physical Chemistry Letters 2023, 14 (44) , 9951-9959. https://doi.org/10.1021/acs.jpclett.3c02633
    4. Caixiang Zhao, Junfeng Shu, Jiaqi Fang, Shuangxia Luo, Yanjun Guo, Peng Xu, Ji Feng, Meng He, Zhan’ao Tan, Xiong Yin, Leyu Wang. Interface Modification Using Li-Doped Hollow Titania Nanospheres for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2023, 15 (40) , 46925-46932. https://doi.org/10.1021/acsami.3c09455
    5. Arivazhagan Valluvar Oli, Zinuo Li, Yu Chen, Aruna Ivaturi. Near-Ultraviolet Indoor Black Light-Harvesting Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (12) , 14669-14679. https://doi.org/10.1021/acsaem.2c01560
    6. Boyang Zhou, Takaki Kimura, Yutaka Okazaki, Kan Hachiya, Takashi Sagawa. Inheriting Sb2Se3 Nanorods on Sb2S3 Nanorod Arrays for Effective Light Harvesting and Charge Extraction in Solar Cells. ACS Applied Nano Materials 2022, 5 (11) , 16082-16093. https://doi.org/10.1021/acsanm.2c02661
    7. Danting Xu, Xia Zhu, Jiakun An, Gaoyu Chen, Jianchun Bao, Xiangxing Xu. UV–vis–IR Broad Spectral Photodetectors Based on VO2–ZnO Nanocrystal Films. ACS Omega 2022, 7 (42) , 37078-37084. https://doi.org/10.1021/acsomega.2c02549
    8. Muthukumar Venu Rajendran, Saraswathi Ganesan, Vidya Sudhakaran Menon, Rohith Kumar Raman, Ananthan Alagumalai, Sangeetha Ashok Kumar, Ananthanarayanan Krishnamoorthy. Manganese Dopant-Induced Isoelectric Point Tuning of ZnO Electron Selective Layer Enable Improved Interface Stability in Cesium–Formamidinium-Based Planar Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (6) , 6671-6686. https://doi.org/10.1021/acsaem.2c00170
    9. Jing Lei, Wei Liu, Yan Jin, Baoxin Li. Oxygen Vacancy-Dependent Chemiluminescence: A Facile Approach for Quantifying Oxygen Defects in ZnO. Analytical Chemistry 2022, 94 (24) , 8642-8650. https://doi.org/10.1021/acs.analchem.2c00359
    10. Marwa Dkhili, Giulia Lucarelli, Francesca De Rossi, Babak Taheri, Khadija Hammedi, Hatem Ezzaouia, Francesca Brunetti, Thomas M. Brown. Attributes of High-Performance Electron Transport Layers for Perovskite Solar Cells on Flexible PET versus on Glass. ACS Applied Energy Materials 2022, 5 (4) , 4096-4107. https://doi.org/10.1021/acsaem.1c03311
    11. Chuan-Jia Tong, Xiaoyi Cai, An-Yu Zhu, Li-Min Liu, Oleg V. Prezhdo. How Hole Injection Accelerates Both Ion Migration and Nonradiative Recombination in Metal Halide Perovskites. Journal of the American Chemical Society 2022, 144 (14) , 6604-6612. https://doi.org/10.1021/jacs.2c02148
    12. Zhihao Zhang, Zicheng Li, Longhui Deng, Yifeng Gao, Can Wang, Jianbin Xu, Tinghao Li, Peng Gao. Hot-Air Treatment-Regulated Diffusion of LiTFSI to Accelerate the Aging-Induced Efficiency Rising of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (3) , 4378-4388. https://doi.org/10.1021/acsami.1c23062
    13. Jiejun Zeng, Yuhui Qi, Yang Liu, Desui Chen, Zhizhen Ye, Yizheng Jin. ZnO-Based Electron-Transporting Layers for Perovskite Light-Emitting Diodes: Controlling the Interfacial Reactions. The Journal of Physical Chemistry Letters 2022, 13 (2) , 694-703. https://doi.org/10.1021/acs.jpclett.1c04117
    14. Seungkyu Kim, Yong Ju Yun, Taemin Kim, Chanyong Lee, Yohan Ko, Yongseok Jun. Hydrolysis-Regulated Chemical Bath Deposition of Tin-Oxide-Based Electron Transport Layers for Efficient Perovskite Solar Cells with a Reduced Potential Loss. Chemistry of Materials 2021, 33 (21) , 8194-8204. https://doi.org/10.1021/acs.chemmater.1c02101
    15. Qingchen He, Haiming Zhang, Siqi Han, Rufeng Wang, Yujie Li, Xianjing Zhang, Yuwen Xing. Improvement of Thiourea (Lewis Base)-Modified SnO2 Electron-Transport Layer for Carbon-Based CsPbIBr2 Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (10) , 10958-10967. https://doi.org/10.1021/acsaem.1c01918
    16. Kaixin Guo, Rongfen Zhang, Zhao Fu, Liangyu Zhang, Xu Wang, Chaoyong Deng. Regulation of Photovoltaic Response in ZSO-Based Multiferroic BFCO/BFCNT Heterojunction Photoelectrodes via Magnetization and Polarization. ACS Applied Materials & Interfaces 2021, 13 (30) , 35657-35663. https://doi.org/10.1021/acsami.1c07534
    17. Ruihao Chen, Yongke Wang, Siqing Nie, Hui Shen, Yong Hui, Jian Peng, Binghui Wu, Jun Yin, Jing Li, Nanfeng Zheng. Sulfonate-Assisted Surface Iodide Management for High-Performance Perovskite Solar Cells and Modules. Journal of the American Chemical Society 2021, 143 (28) , 10624-10632. https://doi.org/10.1021/jacs.1c03419
    18. Olivier Fournier, Claire Darin Bapaume, Davina Messou, Muriel Bouttemy, Philip Schulz, François Ozanam, Laurent Lombez, Nathanaelle Schneider, Jean Rousset. Chemical Passivation with Phosphonic Acid Derivatives of ZnO Deposited by Atomic Layer Deposition and Its Influence on the Halide Perovskite Interface. ACS Applied Energy Materials 2021, 4 (6) , 5787-5797. https://doi.org/10.1021/acsaem.1c00612
    19. Weiguang Chi, Sanjay K. Banerjee. Achieving Resistance against Moisture and Oxygen for Perovskite Solar Cells with High Efficiency and Stability. Chemistry of Materials 2021, 33 (12) , 4269-4303. https://doi.org/10.1021/acs.chemmater.1c00773
    20. Amjad Farooq, Motiur Rahman Khan, Tobias Abzieher, Achim Voigt, Doru C. Lupascu, Uli Lemmer, Bryce Sydney Richards, Ulrich Wilhelm Paetzold. Photodegradation of Triple-Cation Perovskite Solar Cells: The Role of Spectrum and Bias Conditions. ACS Applied Energy Materials 2021, 4 (4) , 3083-3092. https://doi.org/10.1021/acsaem.0c02813
    21. Fangwen Cheng, Ruiqin He, Siqing Nie, Chongjian Zhang, Jun Yin, Jing Li, Nanfeng Zheng, Binghui Wu. Perovskite Quantum Dots as Multifunctional Interlayers in Perovskite Solar Cells with Dopant-Free Organic Hole Transporting Layers. Journal of the American Chemical Society 2021, 143 (15) , 5855-5866. https://doi.org/10.1021/jacs.1c00852
    22. Zheng Lv, Li He, Haipeng Jiang, Xiaojun Ma, Fengyou Wang, Lin Fan, Maobin Wei, Jinghai Yang, Lili Yang, Nannan Yang. Diluted-CdS Quantum Dot-Assisted SnO2 Electron Transport Layer with Excellent Conductivity and Suitable Band Alignment for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (14) , 16326-16335. https://doi.org/10.1021/acsami.1c00896
    23. Weiguang Chi, Sanjay K. Banerjee. Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chemistry of Materials 2021, 33 (5) , 1540-1570. https://doi.org/10.1021/acs.chemmater.0c04931
    24. Kwang Jae Lee, Jung-Wook Min, Bekir Turedi, Abdullah Y. Alsalloum, Jung-Hong Min, Yeong Jae Kim, Young Jin Yoo, Semi Oh, Namchul Cho, Ram Chandra Subedi, Somak Mitra, Sang Eun Yoon, Jong H. Kim, Kwangwook Park, Tae-Hoon Chung, Sung Hoon Jung, Jong H. Baek, Young Min Song, Iman S. Roqan, Tien Khee Ng, Boon S. Ooi, Osman M. Bakr. Nanoporous GaN/n-type GaN: A Cathode Structure for ITO-Free Perovskite Solar Cells. ACS Energy Letters 2020, 5 (10) , 3295-3303. https://doi.org/10.1021/acsenergylett.0c01621
    25. Jian Han, Xingyu Pu, Hui Zhou, Qi Cao, Shuangjie Wang, Ziwei He, Bingyu Gao, Tongtong Li, Junsong Zhao, Xuanhua Li. Synergistic Effect through the Introduction of Inorganic Zinc Halides at the Interface of TiO2 and Sb2S3 for High-Performance Sb2S3 Planar Thin-Film Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (39) , 44297-44306. https://doi.org/10.1021/acsami.0c11550
    26. Fatemeh Ansari, Erfan Shirzadi, Masoud Salavati-Niasari, Thomas LaGrange, Kazuteru Nonomura, Jun-Ho Yum, Kevin Sivula, Shaik M. Zakeeruddin, Mohammad Khaja Nazeeruddin, Michael Grätzel, Paul J. Dyson, Anders Hagfeldt. Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells. Journal of the American Chemical Society 2020, 142 (26) , 11428-11433. https://doi.org/10.1021/jacs.0c01704
    27. Liguo Gao, Caiyun Liu, Fanning Meng, Anmin Liu, Yanqiang Li, Yang Li, Chu Zhang, Meiqiang Fan, Guoying Wei, Tingli Ma. Significantly Enhanced V-oc and Efficiency in Perovskite Solar Cells through Composition Adjustment of SnS2 Electron Transport Layers. ACS Sustainable Chemistry & Engineering 2020, 8 (25) , 9250-9256. https://doi.org/10.1021/acssuschemeng.0c02565
    28. Pui Munn Wong, Joon Ching Juan, Jau Choy Lai, Teck Hock Lim. Galvanic Replacement-Enabled Synthesis of In(OH)3/Ag/C Nanocomposite as an Effective Photocatalyst for Ultraviolet C Degradation of Methylene Blue. ACS Omega 2020, 5 (23) , 13719-13728. https://doi.org/10.1021/acsomega.0c00881
    29. Hao Sun, Danyan Xie, Zhen Song, Chuanhui Liang, Lingbo Xu, Xianlin Qu, Yuxin Yao, Deng Li, Hang Zhai, Kun Zheng, Can Cui, Yiying Zhao. Interface Defects Passivation and Conductivity Improvement in Planar Perovskite Solar Cells Using Na2S-Doped Compact TiO2 Electron Transport Layers. ACS Applied Materials & Interfaces 2020, 12 (20) , 22853-22861. https://doi.org/10.1021/acsami.0c03180
    30. Xiaofeng Huang, Ruihao Chen, Guocheng Deng, Faming Han, Pengpeng Ruan, Fangwen Cheng, Jun Yin, Binghui Wu, Nanfeng Zheng. Methylamine-Dimer-Induced Phase Transition toward MAPbI3 Films and High-Efficiency Perovskite Solar Modules. Journal of the American Chemical Society 2020, 142 (13) , 6149-6157. https://doi.org/10.1021/jacs.9b13443
    31. Chuan-Jia Tong, Linqiu Li, Li-Min Liu, Oleg V. Prezhdo. Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites. Journal of the American Chemical Society 2020, 142 (6) , 3060-3068. https://doi.org/10.1021/jacs.9b12391
    32. Dong Hee Shin, Jung Sun Ko, Seoung Kwon Kang, Suk-Ho Choi. Enhanced Flexibility and Stability in Perovskite Photodiode–Solar Cell Nanosystem Using MoS2 Electron-Transport Layer. ACS Applied Materials & Interfaces 2020, 12 (4) , 4586-4593. https://doi.org/10.1021/acsami.9b18501
    33. Fei Deng, Xitao Li, Xinding Lv, Junshuai Zhou, Yingchu Chen, Xiangnan Sun, Yan-Zhen Zheng, Xia Tao, Jian-Feng Chen. Low-Temperature Processing All-Inorganic Carbon-Based Perovskite Solar Cells up to 11.78% Efficiency via Alkali Hydroxides Interfacial Engineering. ACS Applied Energy Materials 2020, 3 (1) , 401-410. https://doi.org/10.1021/acsaem.9b01652
    34. Jinmin Wang, Bing Yan. Improving Covalent Organic Frameworks Fluorescence by Triethylamine Pinpoint Surgery as Selective Biomarker Sensor for Diabetes Mellitus Diagnosis. Analytical Chemistry 2019, 91 (20) , 13183-13190. https://doi.org/10.1021/acs.analchem.9b03534
    35. Jie Dou, Deli Shen, Yafeng Li, Antonio Abate, Mingdeng Wei. Highly Efficient Perovskite Solar Cells Based on a Zn2SnO4 Compact Layer. ACS Applied Materials & Interfaces 2019, 11 (40) , 36553-36559. https://doi.org/10.1021/acsami.9b09209
    36. Tulus, Selina Olthof, Magdalena Marszalek, Andreas Peukert, Loreta A. Muscarella, Bruno Ehrler, Olivera Vukovic, Yulia Galagan, Simon Christian Boehme, Elizabeth von Hauff. Control of Surface Defects in ZnO Nanorod Arrays with Thermally Deposited Au Nanoparticles for Perovskite Photovoltaics. ACS Applied Energy Materials 2019, 2 (5) , 3736-3748. https://doi.org/10.1021/acsaem.9b00452
    37. Seyyedeh Sedigheh Azad, Reza Keshavarzi, Valiollah Mirkhani, Majid Moghadam, Shahram Tangestaninejad, Iraj Mohammadpoor-Baltork. Stability enhancement of perovskite solar cells using multifunctional inorganic materials with UV protective, self cleaning, and high wear resistance properties. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-57133-8
    38. Lele Zang, Chunhu Zhao, Xiaobo Hu, Jiahua Tao, Shaoqiang Chen, Junhao Chu. Emerging Trends in Electron Transport Layer Development for Stable and Efficient Perovskite Solar Cells. Small 2024, 555 https://doi.org/10.1002/smll.202400807
    39. Rashmi Runjhun, Essa A. Alharbi, Zygmunt Drużyński, Anurag Krishna, Małgorzata Wolska‐Pietkiewicz, Viktor Škorjanc, Thomas P. Baumeler, George Kakavelakis, Felix Eickemeyer, Mounir Mensi, Shaik M. Zakeeruddin, Michael Graetzel, Janusz Lewiński. High‐Performance Perovskite Solar Cells with Zwitterion‐Capped‐ZnO Quantum Dots as Electron Transport Layer and NH 4 X (X = F, Cl, Br) Assisted Interfacial Engineering. ENERGY & ENVIRONMENTAL MATERIALS 2024, 131 https://doi.org/10.1002/eem2.12720
    40. Anurag Dehingia, Ujjal Das, Dipankar Mandal, Asim Roy. Application of Ti3C2Tx MXene nanosheets and quantum-dots in halide perovskite solar cells. Materials Today Sustainability 2024, 25 , 100619. https://doi.org/10.1016/j.mtsust.2023.100619
    41. Takumi Shoji, Keiju Hashida, Masaki Kaneda, Ibuki Hata, Md. Shahiduzzaman, Makoto Karakawa, Tetsuya Taima, Koichi Iiyama, Masahiro Nakano. Doping of 1,1-dicyano-2,2-bis(methylthio)ethylene in ZnO to improve photoresponce of organic solar cells and photodetectors under UV-cut light irradiation. Japanese Journal of Applied Physics 2024, 63 (2) , 02SP05. https://doi.org/10.35848/1347-4065/ad01c4
    42. Haonan Si, Xuan Zhao, Zheng Zhang, Qingliang Liao, Yue Zhang. Low-temperature electron-transporting materials for perovskite solar cells: Fundamentals, progress, and outlook. Coordination Chemistry Reviews 2024, 500 , 215502. https://doi.org/10.1016/j.ccr.2023.215502
    43. Lingling Bi, Xiaobo Liang, Wenhao Zhang, Zhenzhou Wu, Jiahao Zhan, Tengfeng Xie, Lijing Zhang, Weichuan Xu, Jinlong Jiang, Mei Wu. Improving the charge separation efficiency by embedding the electron transfer layer of hematite photoanode for photoelectrochemical water oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 683 , 133103. https://doi.org/10.1016/j.colsurfa.2023.133103
    44. Ranjith Kumar Poobalan, Ramarajan Ramanathan, Chellakumar R., K. Ravichandran, Michel Zinigrad. Enhancing the perovskite solar cell performance by the interface modification of Zn–Sn–O compound heterostructures. Materials Advances 2023, 4 (24) , 6704-6717. https://doi.org/10.1039/D3MA00674C
    45. Hui Xie, Lilac Amirav, Zheng Xing. Modular design of solar-powered photocathodic metal protection device. Carbon Neutrality 2023, 2 (1) https://doi.org/10.1007/s43979-023-00068-2
    46. Yu-Cheng Liu, Rong Zou, Wen-Wu Liu, Chong-Yang Cui, Yi-Xiao Lei, Cai-Xia Li, Sheng-Tao Niu, Zhi-Qiang Xu, Wei-Qian Chen, Wen-Jun Niu, Mao-Cheng Liu, Ming-Jin Liu, Bingni Gu, Fen Ran, Yu-Lun Chueh. Enhanced efficiency and long-term stability of all inorganic CsPbBr3 perovskite solar cells via regulation of charge separation and extraction by band engineered-Co3O4 nanocrystals as a hole transport material layer. Materials Today Communications 2023, 37 , 107502. https://doi.org/10.1016/j.mtcomm.2023.107502
    47. Yutao Li, Chenyu Zhao, Xinxuan Yang, Lin Fan, Maobin Wei, Huilian Liu, Xiaoyan Liu, Jinghai Yang, Fengyou Wang, Lili Yang. Zirconium acetate stabilized tin dioxide colloidal quantum dots as multifunctional electron transporting layer for efficient and stable perovskite solar cells. Surfaces and Interfaces 2023, 43 , 103546. https://doi.org/10.1016/j.surfin.2023.103546
    48. Anirudh Kumar, Deepak Kumar, Naini Jain, Manoj Kumar, Gajanan Ghodake, Sushil Kumar, Rupendra K. Sharma, Jakub Holovsky, Viswanathan S. Saji, Sanjeev K. Sharma. Enhanced efficiency and stability of electron transport layer in perovskite tandem solar cells: Challenges and future perspectives. Solar Energy 2023, 266 , 112185. https://doi.org/10.1016/j.solener.2023.112185
    49. Weilin Liu, Xinpeng Yao, Benlin He, Haojie Sui, Meng Wei, Haiyan Chen, Jialong Duan, Qunwei Tang. A self-assembled CuS–MXene bridge for hole-boosting 10.51%-efficiency all-inorganic tri-brominated perovskite solar cells. Journal of Materials Chemistry A 2023, 11 (37) , 20206-20214. https://doi.org/10.1039/D3TA04992B
    50. Jiale Liu, Sheng Li, Anyi Mei, Hongwei Han. Applications of Metal Oxide Charge Transport Layers in Perovskite Solar Cells. Small Science 2023, 3 (9) https://doi.org/10.1002/smsc.202300020
    51. Deyi Zhang, Anyi Mei, Hongwei Han. Stability Issues and Solutions for Perovskite Solar Cells. 2023, 209-235. https://doi.org/10.1002/9783527834297.ch8
    52. Yang Yang, Qing Chang, Yuyao Yang, Yuhui Jiang, Zhiyuan Dai, Xiaofeng Huang, Jiangwei Huo, Pengfei Guo, Hui Shen, Zhe Liu, Ruihao Chen, Hongqiang Wang. Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules. Journal of Materials Chemistry A 2023, 11 (31) , 16871-16877. https://doi.org/10.1039/D3TA02209A
    53. Liang Han, Haihua Hu, Min Yuan, Ping Lin, Peng Wang, Lingbo Xu, Xuegong Yu, Can Cui. CuCl 2 -modified SnO 2 electron transport layer for high efficiency perovskite solar cells. Nanotechnology 2023, 34 (30) , 305401. https://doi.org/10.1088/1361-6528/accfa3
    54. Zhimin Fang, Ting Nie, Nan Yan, Jing Zhang, Xiaodong Ren, Xu Guo, Yuwei Duan, Jiangshan Feng, Shengzhong Frank Liu. Charge transport materials for monolithic perovskite-based tandem solar cells: A review. Science China Materials 2023, 66 (6) , 2107-2127. https://doi.org/10.1007/s40843-022-2437-9
    55. Xueli Du, Guangyue Zhang, Xiaohui Guo, Chengqing Li, Gaocan Qi, Zhihao Yuan. Synergistically optimizing thermoelectric performance of ZnO ceramics by interfacial band alignment and self-doping defects. Journal of the European Ceramic Society 2023, 43 (5) , 1978-1984. https://doi.org/10.1016/j.jeurceramsoc.2022.12.038
    56. Parshuram Singh, Amitesh Kumar. Device engineering of double perovskite based solar cells towards high-performance, eco-friendly solar cells. Optical and Quantum Electronics 2023, 55 (4) https://doi.org/10.1007/s11082-023-04580-8
    57. Guo-Bin Xiao, Ruiqian Meng, Shengrong Yang, Jing Cao, Yu Tang. Cerium oxide nanoparticle as interfacial modifier for efficient and UV-stable perovskite solar cells. Chemical Engineering Journal 2023, 462 , 142047. https://doi.org/10.1016/j.cej.2023.142047
    58. Zhiqiang Ma, Zhimin Yu, Yang Yang. Interfacial modification for the fabrication of Silicon-based green perovskite Light-Emitting diodes. Applied Surface Science 2023, 616 , 156547. https://doi.org/10.1016/j.apsusc.2023.156547
    59. Md. Helal Miah, Md. Bulu Rahman, Mohammad Nur‐E‐Alam, Narottam Das, Norhayati Binti Soin, Sharifah Fatmadiana Wan Muhammad Hatta, Mohammad Aminul Islam. Understanding the Degradation Factors, Mechanism and Initiatives for Highly Efficient Perovskite Solar Cells. ChemNanoMat 2023, 9 (3) https://doi.org/10.1002/cnma.202200471
    60. Yohan Ko, Taemin Kim, Chanyong Lee, Changhyun Lee, Yong Ju Yun, Yongseok Jun. Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23%. ENERGY & ENVIRONMENTAL MATERIALS 2023, 6 (2) https://doi.org/10.1002/eem2.12347
    61. Yuan Yu, Peng Xu, Huitian Du, Qian Zhou, Yukun Wu, Yuying Hao, Junfeng Ren, Zhiyong Pang, Zhaolai Chen, Shenghao Han. Surface Modification of NiO x Layer with Versatile Coupling Agent Enables Enhanced Performance and Stability of Inverted Perovskite Solar Cells. Solar RRL 2023, 7 (6) https://doi.org/10.1002/solr.202201047
    62. Furkan H. Isikgor, Shynggys Zhumagali, Luis V. T. Merino, Michele De Bastiani, Iain McCulloch, Stefaan De Wolf. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nature Reviews Materials 2023, 8 (2) , 89-108. https://doi.org/10.1038/s41578-022-00503-3
    63. Jintao Wang, Zhenyu Wang, Shuming Chen, Ning Jiang, Long Yuan, Jian Zhang, Yu Duan. Reduced Surface Hydroxyl and Released Interfacial Strain by Inserting CsF Anchor Interlayer for High‐Performance Perovskite Solar Cells. Solar RRL 2023, 7 (2) https://doi.org/10.1002/solr.202200960
    64. Dariush Madadi, Iman Gharibshahian, Ali A. Orouji. High-performance α-FAPbI3 perovskite solar cells with an optimized interface energy band alignment by a Zn(O,S) electron transport layer. Journal of Materials Science: Materials in Electronics 2023, 34 (1) https://doi.org/10.1007/s10854-022-09565-z
    65. Jiang-Yang Shao, Dongmei Li, Jiangjian Shi, Chuang Ma, Yousheng Wang, Xiaomin Liu, Xianyuan Jiang, Mengmeng Hao, Luozheng Zhang, Chang Liu, Yiting Jiang, Zhenhan Wang, Yu-Wu Zhong, Shengzhong Frank Liu, Yaohua Mai, Yongsheng Liu, Yixin Zhao, Zhijun Ning, Lianzhou Wang, Baomin Xu, Lei Meng, Zuqiang Bian, Ziyi Ge, Xiaowei Zhan, Jingbi You, Yongfang Li, Qingbo Meng. Recent progress in perovskite solar cells: material science. Science China Chemistry 2023, 66 (1) , 10-64. https://doi.org/10.1007/s11426-022-1445-2
    66. Sayantan Mazumdar, Ying Zhao, Xiaodan Zhang. Comparative architecture in monolithic perovskite/silicon tandem solar cells. Science China Physics, Mechanics & Astronomy 2023, 66 (1) https://doi.org/10.1007/s11433-022-1928-8
    67. Haojie Sui, Benlin He, Junjie Ti, Shouhao Sun, Wenjing Jiao, Haiyan Chen, Yanyan Duan, Peizhi Yang, Qunwei Tang. Sulfur vacancy defects healing of WS2 quantum dots boosted hole extraction for all-inorganic perovskite solar cells. Chemical Engineering Journal 2023, 455 , 140728. https://doi.org/10.1016/j.cej.2022.140728
    68. Hend I Alkhammash, M Mottakin, Md Mosaddek Hossen, Md Akhtaruzzaman, Mohammad Junaebur Rashid. Design and defect study of Cs 2 AgBiBr 6 double perovskite solar cell using suitable charge transport layers. Semiconductor Science and Technology 2023, 38 (1) , 015005. https://doi.org/10.1088/1361-6641/aca42b
    69. Doan Nhat Giang, Nhat Minh Nguyen, Duc Anh Ngo, Thanh Trang Tran, Le Thai Duy, Cong Khanh Tran, Thi Thanh Van Tran, Phan Phuong Ha La, Vinh Quang Dang. A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods. Beilstein Journal of Nanotechnology 2023, 14 , 1018-1027. https://doi.org/10.3762/bjnano.14.84
    70. Yutian Xu, Yichuan Rui, Xiaojie Wang, Bin Li, Zuoming Jin, Yuanqiang Wang, Qinghong Zhang. Boosted charge extraction of SnO2 nanorod arrays via nanostructural and surface chemical engineering for efficient and stable perovskite solar cells. Applied Surface Science 2023, 607 , 154986. https://doi.org/10.1016/j.apsusc.2022.154986
    71. , Ankit Stephen THOMAS. METAL OXIDE ELECTRON TRANSPORT MATERIALS IN PEROVSKITE SOLAR CELLS: A REVIEW. European Journal of Materials Science and Engineering 2022, 7 (4) , 225-260. https://doi.org/10.36868/ejmse.2022.07.04.225
    72. Rohit D. Chavan, Małgorzata Wolska‐Pietkiewicz, Daniel Prochowicz, Maria Jędrzejewska, Mohammad Mahdi Tavakoli, Pankaj Yadav, Chang Kook Hong, Janusz Lewiński. Organic Ligand‐Free ZnO Quantum Dots for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials 2022, 32 (49) https://doi.org/10.1002/adfm.202205909
    73. Shini Foo, Mariyappan Thambidurai, Ponnusamy Senthil Kumar, Rathinam Yuvakkumar, Yizhong Huang, Cuong Dang. Recent review on electron transport layers in perovskite solar cells. International Journal of Energy Research 2022, 46 (15) , 21441-21451. https://doi.org/10.1002/er.7958
    74. Xiaoli Mao, Changxue Wang, Moran Bian, Lei Wan, Xi Yang, Ru Zhou. The Design of SnO 2 ‐Dominated Electron Transport Layer for High‐Efficiency Sb 2 (S,Se) 3 Solar Cells. physica status solidi (a) 2022, 219 (24) https://doi.org/10.1002/pssa.202200576
    75. Siqing Nie, Qifan Feng, Ziheng Tang, Yaolin Hou, Xiaofeng Huang, Ruihao Chen, Fang Cao, Binghui Wu, Jun Yin, Jing Li, Nanfeng Zheng. Scalable spray coated high performance sulfurized electron transporter for efficient and stable perovskite solar modules. Journal of Energy Chemistry 2022, 75 , 391-398. https://doi.org/10.1016/j.jechem.2022.08.045
    76. Yurong Jiang, Linlin Zhang, Wenqian Xing, Huiyan Guan, Tongtong Zhang, Congxin Xia. Broaden spectral response of ZnO nanorod arrays by NiO modulation. Journal of Luminescence 2022, 252 , 119319. https://doi.org/10.1016/j.jlumin.2022.119319
    77. Chufeng Qiu, Yan Wu, Jiaxing Song, Wentao Wang, Zaifang Li. Efficient Planar Perovskite Solar Cells with ZnO Electron Transport Layer. Coatings 2022, 12 (12) , 1981. https://doi.org/10.3390/coatings12121981
    78. Tao Zhang, Qingquan He, Jiewen Yu, An Chen, Zenan Zhang, Jun Pan. Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells. Nano Energy 2022, 104 , 107918. https://doi.org/10.1016/j.nanoen.2022.107918
    79. Ruihao Chen, Hui Shen, Qing Chang, Ziheng Tang, Siqing Nie, Bili Chen, Tan Ping, Binghui Wu, Jun Yin, Jing Li, Nanfeng Zheng. Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Efficient Solar Modules. Advanced Science 2022, 9 (36) https://doi.org/10.1002/advs.202204017
    80. Bo Xiao, Xin Li, Yongxin Qian, Zijun Yi, Abubakar Yakubu Haruna, Qinghui Jiang, Yubo Luo, Junyou Yang. Simultaneous interface passivation and defect compensation for high-efficiency planar perovskite solar cells. Applied Surface Science 2022, 604 , 154431. https://doi.org/10.1016/j.apsusc.2022.154431
    81. Qingchen He, Haiming Zhang, Siqi Han, Yuwen Xing, Yujie Li, Xianjing Zhang, Rufeng Wang. Improvement of green antisolvent-isopropanol and additive-thiourea on carbon based CsPbIBr2 perovskite solar cells. Materials Science in Semiconductor Processing 2022, 150 , 106940. https://doi.org/10.1016/j.mssp.2022.106940
    82. Boyang Zhou, Takashi Sagawa. Comb-shaped Sb2S3 nanorod arrays on ZnO nanofibers for thin-film photovoltaics. AIP Advances 2022, 12 (11) https://doi.org/10.1063/5.0124401
    83. Tulus, Loreta A. Muscarella, Yulia Galagan, Simon Christian Boehme, Elizabeth von Hauff. Trap passivation and suppressed electrochemical dynamics in perovskite solar cells with C60 interlayers. Electrochimica Acta 2022, 433 , 141215. https://doi.org/10.1016/j.electacta.2022.141215
    84. Ayon Das Mahapatra, Jin-Wook Lee. Metal oxide charge transporting layers for stable high-performance perovskite solar cells. CrystEngComm 2022, 24 (41) , 7229-7249. https://doi.org/10.1039/D2CE00825D
    85. Qifan Feng, Xiaofeng Huang, Ziheng Tang, Yaolin Hou, Qing Chang, Siqing Nie, Fang Cao, Xiaoying Niu, Jun Yin, Jing Li, Nanfeng Zheng, Binghui Wu. Governing PbI 6 octahedral frameworks for high-stability perovskite solar modules. Energy & Environmental Science 2022, 15 (10) , 4404-4413. https://doi.org/10.1039/D2EE02162E
    86. Dan Wang, Shunwei Yao, Yening Zhong, Lin Peng, Tingting Shi, Jin Chen, Xiaolin Liu, Jia Lin. Optoelectronic simulation of a four-terminal all-inorganic CsPbI 3 /CZTSSe tandem solar cell with high power conversion efficiency. Physical Chemistry Chemical Physics 2022, 24 (37) , 22746-22755. https://doi.org/10.1039/D2CP02302D
    87. Boyang Zhou, Takahiro Hayashi, Kan Hachiya, Takashi Sagawa. Preparation of Sb2S3 nanorod arrays by hydrothermal method as light absorbing layer for Sb2S3-based solar cells. Thin Solid Films 2022, 757 , 139389. https://doi.org/10.1016/j.tsf.2022.139389
    88. Yichuan Rui, Tianpeng Li, Bin Li, Yuanqiang Wang, Peter Müller-Buschbaum. Two-dimensional SnS 2 nanosheets as electron transport and interfacial layers enable efficient perovskite solar cells. Journal of Materials Chemistry C 2022, 10 (34) , 12392-12401. https://doi.org/10.1039/D2TC02452G
    89. Zun-Yi Deng, Hong-Jian Feng. Real-time first-principles calculations of ultrafast carrier dynamics of SnSe/TiO 2 heterojunction under Li + implantation. Journal of Physics: Condensed Matter 2022, 34 (35) , 355001. https://doi.org/10.1088/1361-648X/ac7997
    90. Fang Cao, Fangwen Cheng, Xiaofeng Huang, Xinfeng Dai, Ziheng Tang, Siqing Nie, Jun Yin, Jing Li, Nanfeng Zheng, Binghui Wu. Synergistic Effect between NiO x and P3HT Enabling Efficient and Stable Hole Transport Pathways for Regular Perovskite Photovoltaics. Advanced Functional Materials 2022, 32 (31) https://doi.org/10.1002/adfm.202201423
    91. Jialu Li, Dengfeng Wang, Guofeng Zhang, Changgang Yang, Wenli Guo, Xue Han, Xiuqing Bai, Ruiyun Chen, Chengbing Qin, Jianyong Hu, Liantuan Xiao, Suotang Jia. The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots. Nano Research 2022, 15 (8) , 7655-7661. https://doi.org/10.1007/s12274-022-4389-0
    92. Fangwen Cheng, Fang Cao, Feng Ru Fan, Binghui Wu. Promotion Strategies of Hole Transport Materials by Electronic and Steric Controls for n–i–p Perovskite Solar Cells. ChemSusChem 2022, 15 (14) https://doi.org/10.1002/cssc.202200340
    93. Md. Akhtaruzzaman, Mohammad Ismail Hossain, Mohammad Aminul Islam, Md. Shahiduzzaman, Ghulam Muhammad, A. K. Mahmud Hasan, Yuen Hong Tsang, Kamaruzzaman Sopian. Nanophotonic-structured front contact for high-performance perovskite solar cells. Science China Materials 2022, 65 (7) , 1727-1740. https://doi.org/10.1007/s40843-021-1973-y
    94. Zhenyu Pang, Shuo Yang, Yansen Sun, Li He, Fengyou Wang, Lin Fan, Shaohua Chi, Xiaoxu Sun, Lili Yang, Jinghai Yang. Hydrophobic PbS QDs layer decorated ZnO electron transport layer to boost photovoltaic performance of perovskite solar cells. Chemical Engineering Journal 2022, 439 , 135701. https://doi.org/10.1016/j.cej.2022.135701
    95. Cristian Dias Fernandes, Mateus Meneghetti Ferrer, Cristiane Wienke Raubach, Eduardo Ceretta Moreira, Luciano Timm Gularte, Sérgio da Silva Cava, Pedro Lovato Gomes Jardim, Ramon Dadalto Carvalho, Elson Longo, Mario Lucio Moreira. Low recombination rates and improving charge transfer as decisive conditions for high current densities and fill factors in ZnS complex systems. Physical Chemistry Chemical Physics 2022, 24 (25) , 15556-15564. https://doi.org/10.1039/D2CP00328G
    96. Joanna Kruszyńska, Jakub Ostapko, Veysel Ozkaya, Belkis Surucu, Oliwia Szawcow, Kostiantyn Nikiforow, Marcin Hołdyński, Mohammad Mahdi Tavakoli, Pankaj Yadav, Małgorzata Kot, Grzegorz Piotr Kołodziej, Mateusz Wlazło, Soumitra Satapathi, Seckin Akin, Daniel Prochowicz. Atomic Layer Engineering of Aluminum‐Doped Zinc Oxide Films for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces 2022, 9 (17) https://doi.org/10.1002/admi.202200575
    97. Tian Chen, Jiangsheng Xie, Pingqi Gao. Ultraviolet Photocatalytic Degradation of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Energy and Sustainability Research 2022, 3 (6) https://doi.org/10.1002/aesr.202100218
    98. Abdessamad Najim, Bouchaib Hartiti, Hicham Labrim, Salah Fadili, Mehmet Ertuğrul, Philippe Thevenin. Synthesis of ZnS thin films using the spray pyrolysis technique. Journal of Materials Science: Materials in Electronics 2022, 33 (18) , 15086-15097. https://doi.org/10.1007/s10854-022-08428-x
    99. Qiubo Li, Guangxia Liu, Jiaoxian Yu, Guodong Wang, Shouzhi Wang, Tao Cheng, Chengmin Chen, Lei Liu, Jia-yue Yang, Xiangang Xu, Lei Zhang. A perovskite/porous GaN crystal hybrid structure for ultrahigh sensitivity ultraviolet photodetectors. Journal of Materials Chemistry C 2022, 10 (21) , 8321-8328. https://doi.org/10.1039/D2TC01207C
    100. Jingbo Guo, Yunfei Han, Zihan Xu, Wusong Zha, Jin Fang, Qun Luo, Liqi Liu, Chang-Qi Ma. Monodispersed ZnO nanoink and ultra-smooth large-area ZnO films for high performance and stable organic solar cells. Flexible and Printed Electronics 2022, 7 (2) , 025013. https://doi.org/10.1088/2058-8585/ac6fa3
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect