ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Identification and Reactivity of Cyclometalated Iron(II) Intermediates in Triazole-Directed Iron-Catalyzed C–H Activation

  • Theresa E. Boddie
    Theresa E. Boddie
    Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
  • Stephanie H. Carpenter
    Stephanie H. Carpenter
    Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
  • Tessa M. Baker
    Tessa M. Baker
    Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
  • Joshua C. DeMuth
    Joshua C. DeMuth
    Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
  • Gianpiero Cera
    Gianpiero Cera
    Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Gottingen, Germany
  • William W. Brennessel
    William W. Brennessel
    Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
  • Lutz Ackermann
    Lutz Ackermann
    Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Gottingen, Germany
  • , and 
  • Michael L. Neidig*
    Michael L. Neidig
    Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
    *[email protected]
Cite this: J. Am. Chem. Soc. 2019, 141, 31, 12338–12345
Publication Date (Web):July 14, 2019
https://doi.org/10.1021/jacs.9b05269
Copyright © 2019 American Chemical Society

    Article Views

    4905

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (4)»

    Abstract

    Abstract Image

    While iron-catalyzed C–H activation offers an attractive reaction methodology for organic transformations, the lack of molecular-level insight into the in situ formed and reactive iron species impedes continued reaction development. Herein, freeze-trapped 57Fe Mössbauer spectroscopy and single-crystal X-ray crystallography combined with reactivity studies are employed to define the key cyclometalated iron species active in triazole-assisted iron-catalyzed C–H activation. These studies provide the first direct experimental definition of an activated intermediate, which has been identified as the low-spin iron(II) complex [(sub-A)(dppbz)(THF)Fe]2(μ-MgX2), where sub-A is a deprotonated benzamide substrate. Reaction of this activated intermediate with additional diarylzinc leads to the formation of a cyclometalated iron(II)–aryl species, which upon reaction with oxidant, generates C–H arylated product at a catalytically relevant rate. Furthermore, pseudo-single-turnover reactions between catalytically relevant iron intermediates and excess nucleophile identify transmetalation as rate-determining, whereas C–H activation is shown to be facile under the reaction conditions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b05269.

    • Experimental methods and supplementary data including Mössbauer, EPR, NMR, and X-ray crystal details of 2 and 4* (PDF)

    • X-ray crystallographic data for 2 (CIF)

    • X-ray crystallographic data for 4* (CIF)

    • X-ray crystallographic data for Fe(η6-biphenyl)(dppbz) (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Vincent Wowk, Alexis K. Bauer, Aleksa Radovic, Lise-Marie Chamoreau, Michael L. Neidig, Guillaume Lefèvre. Divergent Fe-Mediated C–H Activation Paths Driven by Alkali Cations. JACS Au 2024, 4 (2) , 512-524. https://doi.org/10.1021/jacsau.3c00649
    2. Jiayu Mo, Antonis M. Messinis, Jinlian Li, Svenja Warratz, Lutz Ackermann. Chelation-Assisted Iron-Catalyzed C–H Activations: Scope and Mechanism. Accounts of Chemical Research 2024, 57 (1) , 10-22. https://doi.org/10.1021/acs.accounts.3c00294
    3. Qiulin You, Xin Xiao, Yang Shi, Yimin Wu, Guangying Tan. Iron-Catalyzed para-Selective C–H Allylation of Aniline Derivatives. Organic Letters 2023, 25 (42) , 7683-7688. https://doi.org/10.1021/acs.orglett.3c03012
    4. Yi-Ming Wei, Xiao-Di Ma, Meng-Fei Wang, Xin-Fang Duan. Fe-Catalyzed Difunctionalization of Aryl Titanates Enabled by Fe/Ti Synergism. Organic Letters 2023, 25 (15) , 2745-2749. https://doi.org/10.1021/acs.orglett.3c00975
    5. Yi-Ming Wei, Xiao-Di Ma, Meng-Fei Wang, Xin-Fang Duan. Synergism of Fe/Ti Enabled Regioselective Arene Difunctionalization. Journal of the American Chemical Society 2023, 145 (3) , 1542-1547. https://doi.org/10.1021/jacs.2c13207
    6. Edouard Zhou, Pablo Chourreu, Nicolas Lefèvre, Mathieu Ahr, Lidie Rousseau, Christian Herrero, Eric Gayon, Gérard Cahiez, Guillaume Lefèvre. Mechanistic Facets of the Competition between Cross-Coupling and Homocoupling in Supporting Ligand-Free Iron-Mediated Aryl–Aryl Bond Formations. ACS Organic & Inorganic Au 2022, 2 (4) , 359-369. https://doi.org/10.1021/acsorginorgau.2c00002
    7. Antonis M. Messinis, João C. A. Oliveira, A. Claudia Stückl, Lutz Ackermann. Cyclometallated Iron(II) Alkoxides in Iron-Catalyzed C–H Activations by Weak O-Carbonyl Chelation. ACS Catalysis 2022, 12 (9) , 4947-4960. https://doi.org/10.1021/acscatal.2c00772
    8. Kwok-Chung Law, Zhou Tang, Liangliang Wu, Qingyun Wan, Wai-Pong To, Xiaoyong Chang, Kam-Hung Low, Yungen Liu, Chi-Ming Che. Cyclometalated Iron and Ruthenium Complexes Supported by a Tetradentate Ligand Scaffold with Mixed O, N, and C Donor Atoms: Synthesis, Structures, and Excited-State Properties. Organometallics 2022, 41 (4) , 418-429. https://doi.org/10.1021/acs.organomet.1c00677
    9. Samantha M. Brewer, Timothy M. Schwartz, Magy A. Mekhail, Lara S. Turan, Timothy J. Prior, Timothy J. Hubin, Benjamin G. Janesko, Kayla N. Green. Mechanistic Insights into Iron-Catalyzed C–H Bond Activation and C–C Coupling. Organometallics 2021, 40 (15) , 2467-2477. https://doi.org/10.1021/acs.organomet.1c00211
    10. Nikki J. Bakas, Michael L. Neidig. Additive and Counterion Effects in Iron-Catalyzed Reactions Relevant to C–C Bond Formation. ACS Catalysis 2021, 11 (14) , 8493-8503. https://doi.org/10.1021/acscatal.1c00928
    11. Yu Chen, Hairong Lyu, Yangjian Quan, Zuowei Xie. Fe-Catalyzed Intramolecular B–H/C–H Dehydrogenative Coupling: Synthesis of Carborane-Fused Nitrogen Heterocycles. Organic Letters 2021, 23 (11) , 4163-4167. https://doi.org/10.1021/acs.orglett.1c01104
    12. Carla Magallón, Oriol Planas, Steven Roldán-Gómez, Josep M. Luis, Anna Company, Xavi Ribas. Well-Defined Aryl-FeII Complexes in Cross-Coupling and C–H Activation Processes. Organometallics 2021, 40 (9) , 1195-1200. https://doi.org/10.1021/acs.organomet.1c00100
    13. Cuiju Zhu, Nate W. J. Ang, Tjark H. Meyer, Youai Qiu, Lutz Ackermann. Organic Electrochemistry: Molecular Syntheses with Potential. ACS Central Science 2021, 7 (3) , 415-431. https://doi.org/10.1021/acscentsci.0c01532
    14. Jiayu Mo, Antonis M. Messinis, João C. A. Oliveira, Serhiy Demeshko, Franc Meyer, Lutz Ackermann. Iron-Catalyzed Triazole-Enabled C–H Activation with Bicyclopropylidenes. ACS Catalysis 2021, 11 (3) , 1053-1064. https://doi.org/10.1021/acscatal.0c04748
    15. Antonis M. Messinis, Lars H. Finger, Lianrui Hu, Lutz Ackermann. Allenes for Versatile Iron-Catalyzed C–H Activation by Weak O-Coordination: Mechanistic Insights by Kinetics, Intermediate Isolation, and Computation. Journal of the American Chemical Society 2020, 142 (30) , 13102-13111. https://doi.org/10.1021/jacs.0c04837
    16. Rahul A. Jagtap, Pragnya Paramita Samal, C. P. Vinod, Sailaja Krishnamurty, Benudhar Punji. Iron-Catalyzed C(sp2)–H Alkylation of Indolines and Benzo[h]quinoline with Unactivated Alkyl Chlorides through Chelation Assistance. ACS Catalysis 2020, 10 (13) , 7312-7321. https://doi.org/10.1021/acscatal.0c02030
    17. Daniel Lundberg, Patric Lindqvist-Reis, Krzysztof Łyczko, Lars Eriksson, Ingmar Persson. Coordination chemistry effects of the space-demanding solvent molecule N , N ′-dimethylpropyleneurea. Dalton Transactions 2024, 53 (4) , 1817-1832. https://doi.org/10.1039/D3DT03193D
    18. Silvia Cattani, Gianpiero Cera. Modern Organometallic C−H Functionalizations with Earth‐Abundant Iron Catalysts: An Update. Chemistry – An Asian Journal 2023, https://doi.org/10.1002/asia.202300897
    19. Chandini Pradhan, Rahul A. Jagtap, Pragnya Paramita Samal, Sailaja Krishnamurty, Benudhar Punji. Iron-catalyzed regioselective C–H alkylation of indoles: an additive-free approach in renewable solvent. Green Chemistry 2023, 25 (23) , 9733-9743. https://doi.org/10.1039/D3GC03709F
    20. Lucas Loir-Mongazon, Carmen Antuña-Hörlein, Christophe Deraedt, Yann Cornaton, Jean-Pierre Djukic. Activation Barriers for Cobalt(IV)-Centered Reductive Elimination Correlate with Quantified Interatomic Noncovalent Interactions. Synlett 2023, 34 (10) , 1169-1173. https://doi.org/10.1055/a-1937-9296
    21. Silvia Cattani, Andrea Secchi, Lutz Ackermann, Gianpiero Cera. Triazole-enabled, iron-catalysed linear/branched selective C–H alkylations with alkenes. Organic & Biomolecular Chemistry 2023, 21 (6) , 1264-1269. https://doi.org/10.1039/D2OB02206K
    22. Takahiro Doba. General Introduction. 2023, 1-10. https://doi.org/10.1007/978-981-99-4121-6_1
    23. Catherine E. Housecroft, Edwin C. Constable. Main group metal coordination chemistry. 2023, 19-117. https://doi.org/10.1016/B978-0-12-823144-9.00155-2
    24. Daniel Gallego, Edwin A. Baquero. Mechanistic Understanding on Iron‐Catalyzed CH Activation. 2022, 1-52. https://doi.org/10.1002/9783527834242.chf0050
    25. Michael L. Neidig, Shilpa Bhatia, Joshua C. DeMuth. Iron‐Catalyzed CH Activation/Functionalization to Form CC Bonds. 2022, 1-34. https://doi.org/10.1002/9783527834242.chf0044
    26. Luke Britton, Jamie H. Docherty, Jan Sklyaruk, Jessica Cooney, Gary S. Nichol, Andrew P. Dominey, Stephen P. Thomas. Iron-catalysed alkene and heteroarene H/D exchange by reversible protonation of iron-hydride intermediates. Chemical Science 2022, 13 (35) , 10291-10298. https://doi.org/10.1039/D2SC03802A
    27. Bufan Zhang, Maria Camila Aguilera, Nathalia Cajiao, Michael L. Neidig. Recent Advances in Synthesis, Characterization and Reactivities of Iron-Alkyl and Iron-Aryl Complexes. 2022, 185-209. https://doi.org/10.1016/B978-0-12-820206-7.00084-6
    28. Shilpa Bhatia, Joshua C. DeMuth, Michael L. Neidig. Intermediates and mechanism in iron-catalyzed C–H methylation with trimethylaluminum. Chemical Communications 2021, 57 (95) , 12784-12787. https://doi.org/10.1039/D1CC05607G
    29. Joshua C. DeMuth, Zhihui Song, Stephanie H. Carpenter, Theresa E. Boddie, Aleksa Radović, Tessa M. Baker, Osvaldo Gutierrez, Michael L. Neidig. Experimental and computational studies of the mechanism of iron-catalysed C–H activation/functionalisation with allyl electrophiles. Chemical Science 2021, 12 (27) , 9398-9407. https://doi.org/10.1039/D1SC01661J
    30. Sujoy Rana, Jyoti Prasad Biswas, Sabarni Paul, Aniruddha Paik, Debabrata Maiti. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chemical Society Reviews 2021, 50 (1) , 243-472. https://doi.org/10.1039/D0CS00688B
    31. Francesco Ferlin, Agnese Zangarelli, Simone Lilli, Stefano Santoro, Luigi Vaccaro. Waste-minimized synthesis of C2 functionalized quinolines exploiting iron-catalysed C–H activation. Green Chemistry 2021, 23 (1) , 490-495. https://doi.org/10.1039/D0GC03351K
    32. Michael L. Neidig, Joshua C. DeMuth, Bufan Zhang. C H Activation/Functionalization With Earth Abundant 3d Transition Metals. 2021, 260-310. https://doi.org/10.1016/B978-0-08-102688-5.00009-X
    33. Michael L. Neidig, Nikki J. Bakas, Peter G.N. Neate, Jeffrey D. Sears. Metal-Carbon Bonds of Iron and Manganese. 2021, 82-122. https://doi.org/10.1016/B978-0-08-102688-5.00050-7
    34. Xin-Fang Duan. Iron catalyzed stereoselective alkene synthesis: a sustainable pathway. Chemical Communications 2020, 56 (95) , 14937-14961. https://doi.org/10.1039/D0CC04882H
    35. Peter G. N. Neate, Michael L. Neidig. Open Shell Iron Catalysis: Mechanistic Challenges, Approaches and Pitfalls. 2020, 231-245. https://doi.org/10.1039/9781788012775-00231
    36. Matteo Lanzi, Gianpiero Cera. Iron-Catalyzed C–H Functionalizations under Triazole-Assistance. Molecules 2020, 25 (8) , 1806. https://doi.org/10.3390/molecules25081806
    37. Dominik Munz, Wilma Neumann. Trendbericht Anorganische Chemie: Bioanorganische und Koordinationschemie der d‐ und f‐Block‐Elemente. Nachrichten aus der Chemie 2020, 68 (1) , 65-77. https://doi.org/10.1002/nadc.20204093404
    38. Cuiju Zhu, Maximilian Stangier, João C. A. Oliveira, Leonardo Massignan, Lutz Ackermann. Iron‐Electrocatalyzed C−H Arylations: Mechanistic Insights into Oxidation‐Induced Reductive Elimination for Ferraelectrocatalysis. Chemistry – A European Journal 2019, 25 (71) , 16382-16389. https://doi.org/10.1002/chem.201904018

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect