ACS Publications. Most Trusted. Most Cited. Most Read
Distribution coefficients of chlorinated hydrocarbons in dilute air-water systems for groundwater contamination applications
My Activity

Figure 1Loading Img
    Article

    Distribution coefficients of chlorinated hydrocarbons in dilute air-water systems for groundwater contamination applications
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of Chemical and Engineering Data

    Cite this: J. Chem. Eng. Data 1981, 26, 4, 382–385
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je00026a010
    Published October 1, 1981

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 70 publications.

    1. Nirala Singh, Charles T. Campbell. A Simple Bond-Additivity Model Explains Large Decreases in Heats of Adsorption in Solvents Versus Gas Phase: A Case Study with Phenol on Pt(111) in Water. ACS Catalysis 2019, 9 (9) , 8116-8127. https://doi.org/10.1021/acscatal.9b01870
    2. Ruben Spitz Steinberg, Michelle Cruz, Naser G. A. Mahfouz, Yang Qiu, and Robert H. Hurt . Breathable Vapor Toxicant Barriers Based on Multilayer Graphene Oxide. ACS Nano 2017, 11 (6) , 5670-5679. https://doi.org/10.1021/acsnano.7b01106
    3. Robin Helburn, John Albritton, Gary Howe, Larry Michael and Deborah Franke . Henry’s Law Constants for Fragrance and Organic Solvent Compounds in Aqueous Industrial Surfactants. Journal of Chemical & Engineering Data 2008, 53 (5) , 1071-1079. https://doi.org/10.1021/je700418a
    4. R. De Lisi,, M. Gradzielski,, G. Lazzara,, S. Milioto,, N. Muratore, and, S. Prevost. Aqueous Block Copolymer−Surfactant Mixtures and Their Ability in Solubilizing Chlorinated Organic Compounds. A Thermodynamic and SANS Study. The Journal of Physical Chemistry B 2006, 110 (51) , 25883-25894. https://doi.org/10.1021/jp065035l
    5. Tsutomu Shimotori and, William A. Arnold. Measurement and Estimation of Henry's Law Constants of Chlorinated Ethylenes in Aqueous Surfactant Solutions. Journal of Chemical & Engineering Data 2003, 48 (2) , 253-261. https://doi.org/10.1021/je025553z
    6. Tsutomu Shimotori and, William A. Arnold. Henry's Law Constants of Chlorinated Ethylenes in Aqueous Alcohol Solutions:  Measurement, Estimation, and Thermodynamic Analysis. Journal of Chemical & Engineering Data 2002, 47 (2) , 183-190. https://doi.org/10.1021/je010132n
    7. Elizabeth C. Butler and, Kim F. Hayes. Factors Influencing Rates and Products in the Transformation of Trichloroethylene by Iron Sulfide and Iron Metal. Environmental Science & Technology 2001, 35 (19) , 3884-3891. https://doi.org/10.1021/es010620f
    8. Elizabeth C. Butler and, Kim F. Hayes. Kinetics of the Transformation of Halogenated Aliphatic Compounds by Iron Sulfide. Environmental Science & Technology 2000, 34 (3) , 422-429. https://doi.org/10.1021/es980946x
    9. Elizabeth C. Butler and, Kim F. Hayes. Kinetics of the Transformation of Trichloroethylene and Tetrachloroethylene by Iron Sulfide. Environmental Science & Technology 1999, 33 (12) , 2021-2027. https://doi.org/10.1021/es9809455
    10. Elizabeth C. Butler and, Kim F. Hayes. Effects of Solution Composition and pH on the Reductive Dechlorination of Hexachloroethane by Iron Sulfide. Environmental Science & Technology 1998, 32 (9) , 1276-1284. https://doi.org/10.1021/es9706864
    11. Gorm Heron,, Thomas H. Christensen, and, Carl G. Enfield. Henry's Law Constant for Trichloroethylene between 10 and 95 °C. Environmental Science & Technology 1998, 32 (10) , 1433-1437. https://doi.org/10.1021/es9707015
    12. Jian Peng and, Aroma Wan. Measurement of Henry's Constants of High-Volatility Organic Compounds Using a Headspace Autosampler. Environmental Science & Technology 1997, 31 (10) , 2998-3003. https://doi.org/10.1021/es970240n
    13. Lin Chen, Pei Xu, Yanyan Zhang, Darrious Betts, Ganesh L. Ghurye, Huiyao Wang. Au-TiO2 nanoparticles enabled catalytic treatment of oil and gas produced water in slurry and vacuum membrane distillation systems. Journal of Water Process Engineering 2024, 65 , 105745. https://doi.org/10.1016/j.jwpe.2024.105745
    14. Ruixue Xiao, Kefan Chao, Ju Liu, Li Wang, Muhua Chen, Xinbao Zhu, Bo Fu. Simulation of Rayleigh convection during dichloromethane absorption by water using lattice Boltzmann method. Process Safety and Environmental Protection 2023, 177 , 416-426. https://doi.org/10.1016/j.psep.2023.07.006
    15. Rolf Sander. Compilation of Henry's law constants (version 5.0.0) for water as solvent. Atmospheric Chemistry and Physics 2023, 23 (19) , 10901-12440. https://doi.org/10.5194/acp-23-10901-2023
    16. Maarja Kask, Marina Krichevskaya, Sergei Preis, Juri Bolobajev. Oxidation of Aqueous Toluene by Gas-Phase Pulsed Corona Discharge in Air-Water Mixtures Followed by Photocatalytic Exhaust Air Cleaning. Catalysts 2021, 11 (5) , 549. https://doi.org/10.3390/catal11050549
    17. Charel Wohl, David Capelle, Anna Jones, William T. Sturges, Philip D. Nightingale, Brent G. T. Else, Mingxi Yang. Segmented flow coil equilibrator coupled to a proton-transfer-reaction mass spectrometer for measurements of a broad range of volatile organic compounds in seawater. Ocean Science 2019, 15 (4) , 925-940. https://doi.org/10.5194/os-15-925-2019
    18. T. Di Lorenzo, R. Borgoni, R. Ambrosini, M. Cifoni, D.M.P. Galassi, M. Petitta. Occurrence of volatile organic compounds in shallow alluvial aquifers of a Mediterranean region: Baseline scenario and ecological implications. Science of The Total Environment 2015, 538 , 712-723. https://doi.org/10.1016/j.scitotenv.2015.08.077
    19. R. Sander. Compilation of Henry's law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics 2015, 15 (8) , 4399-4981. https://doi.org/10.5194/acp-15-4399-2015
    20. Scott J. Kenner, David A. Bender, James F. Pankow, John S. Zogorski. The Atmosphere can be a Source of Certain Water Soluble Volatile Organic Compounds in Urban Streams. JAWRA Journal of the American Water Resources Association 2014, 50 (5) , 1124-1137. https://doi.org/10.1111/jawr.12181
    21. Yong-Hyun Kim, Ki-Hyun Kim. Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: Application to the accurate determination of Henry's law constant. Journal of Chromatography A 2014, 1342 , 78-85. https://doi.org/10.1016/j.chroma.2014.03.040
    22. István Bácsi, Tamás Török, Viktória B-Béres, Péter Török, Béla Tóthmérész, Alex Sándor Nagy, Gábor Vasas. Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages. Hydrobiologia 2013, 710 (1) , 189-203. https://doi.org/10.1007/s10750-012-1364-x
    23. Daniel Ondo, Vladimír Dohnal. Limiting activity coefficients of 1-chlorobutane in water and in aqueous solutions of substances involved in synthesis of ionic liquids. Fluid Phase Equilibria 2010, 299 (2) , 266-271. https://doi.org/10.1016/j.fluid.2010.09.026
    24. Thomas Mohr. Environmental Fate and Transport of Solvent-Stabilizer Compounds. 2010, 115-190. https://doi.org/10.1201/EBK1566706629-c3
    25. Hu-Sheng Hu. Determination of vapour–liquid and vapour–liquid–liquid equilibrium of the chloroform–water and trichloroethylene–water binary mixtures. Fluid Phase Equilibria 2010, 289 (1) , 80-89. https://doi.org/10.1016/j.fluid.2009.11.006
    26. Peter Warneck. A review of Henry’s law coefficients for chlorine-containing C1 and C2 hydrocarbons. Chemosphere 2007, 69 (3) , 347-361. https://doi.org/10.1016/j.chemosphere.2007.04.088
    27. . References. 2007, 1577-1701. https://doi.org/10.1201/9781420009132.bmatt1
    28. . Contents. 2007, i-xliii. https://doi.org/10.1201/9781420009132.fmatt
    29. Hajime Miyaguchi, Manabu Tokeshi, Yoshikuni Kikutani, Akihide Hibara, Hiroyuki Inoue, Takehiko Kitamori. Microchip-based liquid–liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine. Journal of Chromatography A 2006, 1129 (1) , 105-110. https://doi.org/10.1016/j.chroma.2006.06.107
    30. R. De Lisi, G. Lazzara, S. Milioto, N. Muratore. A thermodynamic study to evidence the -dichloroalkane/ block copolymer mixed aggregates formation: Effect of the copolymer architecture. Journal of Colloid and Interface Science 2006, 300 (1) , 368-374. https://doi.org/10.1016/j.jcis.2006.03.076
    31. . Introduction. 2006, 1-59. https://doi.org/10.1201/9781420044393.ch1
    32. . Mononuclear Aromatic Hydrocarbons. 2006, 405-616. https://doi.org/10.1201/9781420044393.ch3
    33. . Halogenated Aliphatic Hydrocarbons. 2006, 921-1256. https://doi.org/10.1201/9781420044393.ch5
    34. . Chlorobenzenes and Other Halogenated Mononuclear Aromatics. 2006, 1258-1477. https://doi.org/10.1201/9781420044393.ch6
    35. S.V. Satyanarayana, A. Sharma, P.K. Bhattacharya. Composite membranes for hydrophobic pervaporation: study with the toluene–water system. Chemical Engineering Journal 2004, 102 (2) , 171-184. https://doi.org/10.1016/j.cej.2004.05.005
    36. Mohamed Khayet, Takeshi Matsuura. Pervaporation and vacuum membrane distillation processes: Modeling and experiments. AIChE Journal 2004, 50 (8) , 1697-1712. https://doi.org/10.1002/aic.10161
    37. Gunaseelan Alagappan, Robert M. Cowan. Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere 2004, 54 (8) , 1255-1265. https://doi.org/10.1016/j.chemosphere.2003.09.013
    38. Andrey V. Plyasunov, Everett L. Shock. Prediction of the vapor–liquid distribution constants for volatile nonelectrolytes in water up to its critical temperature. Geochimica et Cosmochimica Acta 2003, 67 (24) , 4981-5009. https://doi.org/10.1016/j.gca.2003.08.003
    39. Hassan Mahmud, Ashwani Kumar, Roberto M. Narbaitz, Takeshi Matsuura. Mass transport in the membrane air-stripping process using microporous polypropylene hollow fibers: effect of toluene in aqueous feed. Journal of Membrane Science 2002, 209 (1) , 207-219. https://doi.org/10.1016/S0376-7388(02)00320-4
    40. Shari A. Yvon‐Lewis, James H. Butler. Effect of oceanic uptake on atmospheric lifetimes of selected trace gases. Journal of Geophysical Research: Atmospheres 2002, 107 (D20) https://doi.org/10.1029/2001JD001267
    41. Jeff Staudinger, Paul V Roberts. A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 2001, 44 (4) , 561-576. https://doi.org/10.1016/S0045-6535(00)00505-1
    42. Montgomery. CAS Registry Number Index. 2000https://doi.org/10.1201/9781420032765.bmatt1
    43. . Contents. 2000https://doi.org/10.1201/9781420032765.fmatt
    44. Donald Mackay, W Shiu, K Ma. Henry’s Law Constant. 2000https://doi.org/10.1201/9781420026283.pt2
    45. I Abou-Nemeh, A Das, A Saraf, K.K Sirkar. A composite hollow fiber membrane-based pervaporation process for separation of VOCs from aqueous surfactant solutions. Journal of Membrane Science 1999, 158 (1-2) , 187-209. https://doi.org/10.1016/S0376-7388(99)00011-3
    46. Jo Dewulf, Herman Van Langenhove, Philip Everaert. Determination of Henry's law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques. Journal of Chromatography A 1999, 830 (2) , 353-363. https://doi.org/10.1016/S0021-9673(98)00877-2
    47. R.A. Brennan, N. Nirmalakhandan, R.E. Speece. Comparison of predictive methods for Henrys Law Coefficients of organic chemicals. Water Research 1998, 32 (6) , 1901-1911. https://doi.org/10.1016/S0043-1354(97)00402-8
    48. Jian Peng, Aroma Wan. Effect of ionic strength on Henry's constants of volatile organic compound. Chemosphere 1998, 36 (13) , 2731-2740. https://doi.org/10.1016/S0045-6535(97)10232-6
    49. Jeff Staudinger, Paul V. Roberts. A critical review of Henry's law constants for environmental applications. Critical Reviews in Environmental Science and Technology 1996, 26 (3) , 205-297. https://doi.org/10.1080/10643389609388492
    50. Jordi Grifoll, Yoram Cohen. Contaminant migration in the unsaturated soil zone: the effect of rainfall and evapotranspiration. Journal of Contaminant Hydrology 1996, 23 (3) , 185-211. https://doi.org/10.1016/0169-7722(95)00086-0
    51. Louis H. Turner, Yee C. Chiew, Robert C. Ahlert, David S. Kosson. Measuring vapor‐liquid equilibrium for aqueous‐organic systems: Review and a new technique. AIChE Journal 1996, 42 (6) , 1772-1788. https://doi.org/10.1002/aic.690420629
    52. R.M. Moore, C.E. Geen, V.K. Tait. Determination of Henry's Law constants for a suite of naturally occurring halogenated methanes in seawater. Chemosphere 1995, 30 (6) , 1183-1191. https://doi.org/10.1016/0045-6535(95)00009-W
    53. Wenchang Ji, Subhas K. Sikdar, Sun-Tak Hwang. Modeling of multicomponent pervaporation for removal of volatile organic compounds from water. Journal of Membrane Science 1994, 93 (1) , 1-19. https://doi.org/10.1016/0376-7388(94)85011-9
    54. Jan Dolfing, Dick B. Janssen. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation 1994, 5 (1) , 21-28. https://doi.org/10.1007/BF00695210
    55. Eric J. Freiburger, Timothy L. Jacobs, William P. Ball. Probabilistic Evaluation of Packed‐Tower Aeration Designs for VOC Removal. Journal AWWA 1993, 85 (10) , 73-86. https://doi.org/10.1002/j.1551-8833.1993.tb06081.x
    56. Arjan J. van den Wijngaard, Richèle D. Wind, Dick B. Janssen. Kinetics of Bacterial Growth on Chlorinated Aliphatic Compounds. Applied and Environmental Microbiology 1993, 59 (7) , 2041-2048. https://doi.org/10.1128/aem.59.7.2041-2048.1993
    57. D.P. Harrison, K.T. Valsaraj, D.M. Wetzel. Air stripping of organics from ground water. Waste Management 1993, 13 (5-7) , 417-429. https://doi.org/10.1016/0956-053X(93)90074-7
    58. Patrick A. Ryan, Yoram Cohen. One‐dimensional subsurface transport of a nonaqueous phase liquid containing sparingly water soluble organics: A front‐tracking model. Water Resources Research 1991, 27 (7) , 1487-1500. https://doi.org/10.1029/91WR00128
    59. John C. Little, Robert E. Selleck. Evaluating the Performance of Two Plastic Packings in a Crossflow Aeration Tower. Journal AWWA 1991, 83 (6) , 88-95. https://doi.org/10.1002/j.1551-8833.1991.tb07168.x
    60. R. M. M. Diks, S. P. P. Ottengraf. Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter. Bioprocess Engineering 1991, 6 (4) , 131-140. https://doi.org/10.1007/BF00369249
    61. Jeffery Staudinger, William R. Knocke, Clifford W. Randall. Evaluating the Onda Mass Transfer Correlation for the Design of Packed‐Column Air Stripping. Journal AWWA 1990, 82 (1) , 73-79. https://doi.org/10.1002/j.1551-8833.1990.tb06908.x
    62. Yoram Cohen, Patrick A. Ryan. Chemical transport in the top soil zone — the role of moisture and temperature gradients. Journal of Hazardous Materials 1989, 22 (3) , 283-304. https://doi.org/10.1016/0304-3894(89)80002-0
    63. Gary A. Robbins, Robert D. Bristol, Valerie D. Roe. A Field Screening Method for Gasoline Contamination Using a Polyethylene Bag Sampling System. Groundwater Monitoring & Remediation 1989, 9 (4) , 87-97. https://doi.org/10.1111/j.1745-6592.1989.tb01018.x
    64. Christoph Munz, Paul V. Roberts. Gas- and liquid-phase mass transfer resistances of organic compounds during mechanical surface aeration. Water Research 1989, 23 (5) , 589-601. https://doi.org/10.1016/0043-1354(89)90026-2
    65. S. Lopez, J. H. Topalian, S. K. Mitra, D. C. Montague. Absorption and desorption of dichloromethane vapor by water drops in air. An experimental test of scavenging theory. Journal of Atmospheric Chemistry 1989, 8 (2) , 175-188. https://doi.org/10.1007/BF00053722
    66. Richard A. Ashworth, Gary B. Howe, Michael E. Mullins, Tony N. Rogers. Air-water partitioning coefficients of organics in dilute aqueous solutions. Journal of Hazardous Materials 1988, 18 (1) , 25-36. https://doi.org/10.1016/0304-3894(88)85057-X
    67. Christoph Munz, Paul V. Roberts. Air‐Water Phase Equilibria of Volatile Organic Solutes. Journal AWWA 1987, 79 (5) , 62-69. https://doi.org/10.1002/j.1551-8833.1987.tb02844.x
    68. T.F. Jenkins, D.C. Leggett, L.V. Parker, J.L. Oliphant. Toxic organics removal kinetics in overland flow land treatment. Water Research 1985, 19 (6) , 707-718. https://doi.org/10.1016/0043-1354(85)90117-4
    69. Andrew H. Lincoff, James M. Gossett. The Determination of Henry’s Constant for Volatile Organics by Equilibrium Partitioning in Closed Systems. 1984, 17-25. https://doi.org/10.1007/978-94-017-1660-4_2
    70. Carty T. Chiou, Rodger L. Kohnert, Virgil H. Freed, Russell G. Tonkyn. Predictions of evaporative loss rates of solutes in stagnant and turbulent waters in relation to rates of reference materials. Environment International 1983, 9 (1) , 13-17. https://doi.org/10.1016/0160-4120(83)90109-5

    Journal of Chemical and Engineering Data

    Cite this: J. Chem. Eng. Data 1981, 26, 4, 382–385
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je00026a010
    Published October 1, 1981

    Article Views

    393

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.