ACS Publications. Most Trusted. Most Cited. Most Read
Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.
My Activity

Figure 1Loading Img
    Article

    Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of Chemical and Engineering Data

    Cite this: J. Chem. Eng. Data 1963, 8, 3, 371–381
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je60018a027
    Published July 1, 1963

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 93 publications.

    1. D. H. Bowskill, B. I. Tan, A. Keates, I. J. Sugden, C. S. Adjiman, C. C. Pantelides. Large-Scale Parameter Estimation for Crystal Structure Prediction. Part 1: Dataset, Methodology, and Implementation. Journal of Chemical Theory and Computation 2024, 20 (22) , 10288-10315. https://doi.org/10.1021/acs.jctc.4c01091
    2. Morad M. El-Hendawy, Ibtesam M. Desoky, Mahmoud M. A. Mohamed, Henry J. Curran. Pyridinium-Inspired Organocatalysts for Carbon Dioxide Fixation: A Density Functional Theory Inspection. The Journal of Physical Chemistry A 2023, 127 (1) , 29-37. https://doi.org/10.1021/acs.jpca.2c05931
    3. Ziqiu Chen, Alexander L. Paterson, Frédéric A. Perras, Baron Peters. Polyethylene in Dead-End Silica Nanopores: Forces and Mobility from Non-Equilibrium Statistical Mechanics and Exchange Spectroscopy Nuclear Magnetic Resonance. The Journal of Physical Chemistry C 2023, 127 (1) , 788-796. https://doi.org/10.1021/acs.jpcc.2c07510
    4. Mengke Zhang, Kyle Yamada, Stephen Bourguet, Jennifer Guelfo, Eric M. Suuberg. Vapor Pressure of Nine Perfluoroalkyl Substances (PFASs) Determined Using the Knudsen Effusion Method. Journal of Chemical & Engineering Data 2020, 65 (5) , 2332-2342. https://doi.org/10.1021/acs.jced.9b00922
    5. Riffat Parveen, Thomas R. Cundari, Jarod M. Younker, George Rodriguez, Laughlin McCullough. DFT and QSAR Studies of Ethylene Polymerization by Zirconocene Catalysts. ACS Catalysis 2019, 9 (10) , 9339-9349. https://doi.org/10.1021/acscatal.9b02925
    6. A. Daniel Boese and Joachim Sauer . Embedded and DFT Calculations on the Crystal Structures of Small Alkanes, Notably Propane. Crystal Growth & Design 2017, 17 (4) , 1636-1646. https://doi.org/10.1021/acs.cgd.6b01654
    7. Lynn Mandeltort, De-Li Chen, Wissam A. Saidi, J. Karl Johnson, Milton W. Cole, and John T. Yates, Jr. . Experimental and Theoretical Comparison of Gas Desorption Energies on Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society 2013, 135 (20) , 7768-7776. https://doi.org/10.1021/ja402928s
    8. Cláudio M. Lousada,, Susana S. Pinto,, José N. Canongia Lopes,, M. Fátima Minas da Piedade,, Hermínio P. Diogo, and, Manuel E. Minas da Piedade. Experimental and Molecular Dynamics Simulation Study of the Sublimation and Vaporization Energetics of Iron Metalocenes. Crystal Structures of Fe(η5-C5H4CH3)2 and Fe[(η5-(C5H5)(η5-C5H4CHO)]. The Journal of Physical Chemistry A 2008, 112 (13) , 2977-2987. https://doi.org/10.1021/jp7107818
    9. Shaoxin Feng and, Tonglei Li. Predicting Lattice Energy of Organic Crystals by Density Functional Theory with Empirically Corrected Dispersion Energy. Journal of Chemical Theory and Computation 2006, 2 (1) , 149-156. https://doi.org/10.1021/ct050189a
    10. A. J. Bordner,, C. N. Cavasotto, and, R. A. Abagyan. Direct Derivation of van der Waals Force Field Parameters from Quantum Mechanical Interaction Energies. The Journal of Physical Chemistry B 2003, 107 (35) , 9601-9609. https://doi.org/10.1021/jp034164o
    11. Yelena A. Arnautova,, Anna Jagielska,, Jaroslaw Pillardy, and, Harold A. Scheraga. Derivation of a New Force Field for Crystal-Structure Prediction Using Global Optimization:  Nonbonded Potential Parameters for Hydrocarbons and Alcohols. The Journal of Physical Chemistry B 2003, 107 (29) , 7143-7154. https://doi.org/10.1021/jp0301498
    12. Seung Soon Jang,, Mario Blanco, and, William A. Goddard III, , Gregg Caldwell and, Richard B. Ross. The Source of Helicity in Perfluorinated N-Alkanes. Macromolecules 2003, 36 (14) , 5331-5341. https://doi.org/10.1021/ma025645t
    13. Yelena A. Arnautova,, Jaroslaw Pillardy,, Cezary Czaplewski, and, Harold A. Scheraga. Global Optimization-Based Method for Deriving Intermolecular Potential Parameters for Crystals. The Journal of Physical Chemistry B 2003, 107 (3) , 712-723. https://doi.org/10.1021/jp0220433
    14. Manuel J. S. Monte and, Dorothea M. Hillesheim. Thermodynamic Study on the Sublimation of Six Substituted Quinoxalines. Journal of Chemical & Engineering Data 2000, 45 (6) , 1088-1092. https://doi.org/10.1021/je0001577
    15. David S. Coombes,, Sarah L. Price,, David J. Willock, and, Maurice Leslie. Role of Electrostatic Interactions in Determining the Crystal Structures of Polar Organic Molecules. A Distributed Multipole Study. The Journal of Physical Chemistry 1996, 100 (18) , 7352-7360. https://doi.org/10.1021/jp960333b
    16. Yu-Sheng Chen, Wangyun Won, Bor-Yih Yu. Unraveling a novel biphasic CO2 capture process through rigorous modeling. Separation and Purification Technology 2025, 356 , 129966. https://doi.org/10.1016/j.seppur.2024.129966
    17. Young Hyun Choi, Septia Eka Marsha Putra, Yuichiro Shiozawa, Shunsuke Tanaka, Kozo Mukai, Ikutaro Hamada, Yoshitada Morikawa, Jun Yoshinobu. The quantitative study of methane adsorption on the Pt(997) step surface as the initial process for reforming reactions. Surface Science 2023, 732 , 122284. https://doi.org/10.1016/j.susc.2023.122284
    18. Boris A. Grigoriev, Anatoly A. Gerasimov, Igor S. Alexandrov, Boris V. Nemzer. Thermodynamic properties on the phase equilibrium lines. 2022, 251-322. https://doi.org/10.1016/B978-0-323-95217-0.00002-6
    19. Xinting 婷 Yu 余馨, Sarah M. Hörst, Chao He, Patricia McGuiggan, Kai Kristiansen, Xi Zhang. Surface Energy of the Titan Aerosol Analog “Tholin”. The Astrophysical Journal 2020, 905 (2) , 88. https://doi.org/10.3847/1538-4357/abc55d
    20. Yensil Park, Barbara E. Wyslouzil. CO 2 condensation onto alkanes: unconventional cases of heterogeneous nucleation. Physical Chemistry Chemical Physics 2019, 21 (16) , 8295-8313. https://doi.org/10.1039/C9CP00967A
    21. T. Suhasaria, J. D. Thrower, H. Zacharias. Thermal desorption of astrophysically relevant molecules from forsterite(010). Monthly Notices of the Royal Astronomical Society 2017, 472 (1) , 389-399. https://doi.org/10.1093/mnras/stx1965
    22. Svetlana Blokhina, Angelica Sharapova, Marina Ol’khovich, Tatyana Volkova, German Perlovich, Alexey N. Proshin. Sublimation enthalpy of 1,3-thiazine structural analogues: Experimental determination and estimation based on structural clusterization. Thermochimica Acta 2017, 656 , 10-15. https://doi.org/10.1016/j.tca.2017.08.004
    23. William Acree, James S. Chickos. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11–C192. Journal of Physical and Chemical Reference Data 2017, 46 (1) https://doi.org/10.1063/1.4970519
    24. Peter Meyerhofer, Jason W. Hartwig. In-situ Nitrogen Harvesting for the Titan Submarine. 2017https://doi.org/10.2514/6.2017-0649
    25. William Acree, James S. Chickos. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C 1 − C 10. Journal of Physical and Chemical Reference Data 2016, 45 (3) , 033101. https://doi.org/10.1063/1.4948363
    26. , Iryna Sobechko. Calculation Method of Heat Capacity Change during Organic Compounds Vaporization and Sublimation. Chemistry & Chemical Technology 2016, 10 (1) , 27-33. https://doi.org/10.23939/chcht10.01.027
    27. R. Luna, C. Millán, M. Domingo, C. Santonja, M.Á. Satorre. Experimental study of the frequency factor in the Polanyi–Wigner equation: The case of C2H6. Vacuum 2015, 122 , 154-160. https://doi.org/10.1016/j.vacuum.2015.09.021
    28. Mohammad Hossein Keshavarz, Behroz Bashavard, Ali Goshadro, Zeynab Dehghan, Mohammad Jafari. Prediction of heats of sublimation of energetic compounds using their molecular structures. Journal of Thermal Analysis and Calorimetry 2015, 120 (3) , 1941-1951. https://doi.org/10.1007/s10973-015-4543-y
    29. Jianmin Tao, Yuan Fang, Pan Hao, G. E. Scuseria, Adrienn Ruzsinszky, John P. Perdew. Van der Waals coefficients beyond the classical shell model. The Journal of Chemical Physics 2015, 142 (2) https://doi.org/10.1063/1.4905259
    30. Elena Badea, Bożenna Nowicka, Giuseppe Della Gatta. Thermodynamics of fusion and sublimation for a homologous series of eleven alkane-α,ω-diols HO-(CH2)n-OH: Structure-related odd–even effect. The Journal of Chemical Thermodynamics 2014, 68 , 90-97. https://doi.org/10.1016/j.jct.2013.08.019
    31. Andrew J. Bordner. Assessing the Accuracy of SAPT(DFT) Interaction Energies by Comparison with Experimentally Derived Noble Gas Potentials and Molecular Crystal Lattice Energies. ChemPhysChem 2012, 13 (17) , 3981-3988. https://doi.org/10.1002/cphc.201200469
    32. Simi Gunaseelan, Philippe A. Gallay, Michael D. Bobardt, Charlene S. Dezzutti, Timothy Esch, Richard Maskiewicz. Sustained Local Delivery of Structurally Diverse HIV-1 Microbicides Released from Sublimation Enthalpy Controlled Matrices. Pharmaceutical Research 2012, 29 (11) , 3156-3168. https://doi.org/10.1007/s11095-012-0811-8
    33. Tamás Kovács, Hugo K. Christenson. A two-step mechanism for crystal nucleation without supersaturation. Faraday Discussions 2012, 159 , 123. https://doi.org/10.1039/c2fd20053h
    34. Yelena A. Arnautova, Ruben A. Abagyan, Maxim Totrov. Development of a new physics‐based internal coordinate mechanics force field and its application to protein loop modeling. Proteins: Structure, Function, and Bioinformatics 2011, 79 (2) , 477-498. https://doi.org/10.1002/prot.22896
    35. Kenneth E. Maly, Eric Gagnon, James D. Wuest. Engineering molecular crystals with abnormally weak cohesion. Chemical Communications 2011, 47 (18) , 5163. https://doi.org/10.1039/c1cc10866b
    36. Pinchas Aped, Hanoch Senderowitz. Molecular Mechanics Calculations. 2009https://doi.org/10.1002/9780470682531.pat0071
    37. D.W. Van Krevelen, K. Te Nijenhuis. Cohesive Properties and Solubility. 2009, 189-227. https://doi.org/10.1016/B978-0-08-054819-7.00007-8
    38. M.V. Roux, M. Temprado. Thermochemistry. 2008, 539-578. https://doi.org/10.1016/S1573-4374(08)80017-9
    39. M. A. Kuznetsov. Enthalpy of n-alkanes C7–C11 over a wide range of state parameters on the boundary curve and in the vicinity of the critical point. Theoretical Foundations of Chemical Engineering 2006, 40 (2) , 209-214. https://doi.org/10.1134/S004057950602014X
    40. R. Céolin, D.O. López, M. Barrio, J.Ll. Tamarit, P. Espeau, B. Nicolaï, H. Allouchi, R. Papoular. Solid state studies on C60 solvates formed with n-alcanes: orthorhombic C60·2/3 n-nonane. Chemical Physics Letters 2004, 399 (4-6) , 401-405. https://doi.org/10.1016/j.cplett.2004.10.034
    41. A.K. Sikder, G. Maddala, J.P. Agrawal, H. Singh. Important aspects of behaviour of organic energetic compounds: a review. Journal of Hazardous Materials 2001, 84 (1) , 1-26. https://doi.org/10.1016/S0304-3894(01)00178-9
    42. S. Toscani, H. Allouchi, J.Ll. Tamarit, D.O. López, M. Barrio, V. Agafonov, A. Rassat, H. Szwarc, R. Céolin. Decagonal C60 crystals grown from n-hexane solutions: solid-state and aging studies. Chemical Physics Letters 2000, 330 (5-6) , 491-496. https://doi.org/10.1016/S0009-2614(00)01148-9
    43. Ernst-Udo Wallenborn, Epameinondas Leontidis, Krystyna Palewska, Ulrich W. Suter, Urs P. Wild. The Shpol’skii system perylene in n -hexane: A computational study of inclusion sites. The Journal of Chemical Physics 2000, 112 (4) , 1995-2002. https://doi.org/10.1063/1.480759
    44. S. S. Pesetskii, V. D. Fedorov, B. Jurkowski, N. D. Polosmak. Blends of thermoplastic polyurethanes and polyamide 12: Structure, molecular interactions, relaxation, and mechanical properties. Journal of Applied Polymer Science 1999, 74 (5) , 1054-1070. https://doi.org/10.1002/(SICI)1097-4628(19991031)74:5<1054::AID-APP3>3.0.CO;2-M
    45. D.W. VAN KREVELEN. COHESIVE PROPERTIES AND SOLUBILITY. 1997, 189-225. https://doi.org/10.1016/B978-0-444-82877-4.50014-7
    46. William J. Welsh, Weida Tong, Elizabeth R. Collantes, James S. Chickos, Sergei G. Gagarin. Enthalpies of sublimation and formation of polycyclic aromatic hydrocarbons (PAHs) derived from comparative molecular field analysis (CoMFA): Application of moment of inertia for molecular alignment. Thermochimica Acta 1997, 290 (1) , 55-64. https://doi.org/10.1016/S0040-6031(96)03048-1
    47. E. A. Arnautova, M. V. Zakharova, T. S. Pivina, E. A. Smolenskii, D. V. Sukhachev, V. V. Shcherbukhin. Methods for calculating the enthalpies of sublimation of organic molecular crystals. Russian Chemical Bulletin 1996, 45 (12) , 2723-2732. https://doi.org/10.1007/BF01430630
    48. D. Bougeard, J.R. Burie, Nguyen Quy Dao, B. Hennion. Lattice dynamical study of an internal charge transfer molecular crystal: 4-nitropyridine N-oxide and its deuterated derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 1995, 51 (1) , 21-31. https://doi.org/10.1016/0584-8539(94)E0043-A
    49. Joan Font, Joaquim Muntasell. Comparative study on solid crystalline–plastic–vapour equilibrium in plastic crystals from pentaerythritol series. J. Mater. Chem. 1995, 5 (8) , 1137-1140. https://doi.org/10.1039/JM9950501137
    50. J. Font, J. Muntasell. Sublimation measurements on plastic crystals. Influence of the hydroxyl group on the sublimation enthalpy and vapour pressure. Materials Research Bulletin 1994, 29 (10) , 1091-1100. https://doi.org/10.1016/0025-5408(94)90092-2
    51. Yoshiaki Akutsu, Renhao Che, Masamitsu Tamura. Calculations of heats of formation for nitramines and alkyl nitrates with PM3 and Mm2. Journal of Energetic Materials 1993, 11 (3) , 195-203. https://doi.org/10.1080/07370659308227810
    52. Yoshiaki Akutsu, Masamitsu Tamura. Calculations of heats of formation for azoles with Pm3. Journal of Energetic Materials 1993, 11 (3) , 205-217. https://doi.org/10.1080/07370659308227811
    53. Yoshiaki Akutsu, Masamitsu Tamura. Calculations of heats of formation for nitroalkanes with PM3 and MM2'. Journal of Energetic Materials 1993, 11 (1) , 39-46. https://doi.org/10.1080/07370659308018637
    54. James S. Chickos, Donald G. Hesse, Joel F. Liebman. Estimating Enthalpies of Sublimation of Hydrocarbons. 1992, 159-169. https://doi.org/10.1007/978-94-011-2466-9_10
    55. Teruo HORI. Sublimation and Thermal Properties of Coloring Matters. Journal of the Japan Society of Colour Material 1991, 64 (2) , 83-91. https://doi.org/10.4011/shikizai1937.64.83
    56. Daniel Bougeard. Lattice dynamics and intermolecular forces in P 4 Se 3 derived from the Raman spectra. Journal of Raman Spectroscopy 1989, 20 (9) , 605-608. https://doi.org/10.1002/jrs.1250200910
    57. D. Bougeard. Lattice dynamics and intermolecular forces in α-P4S3. Chemical Physics 1989, 134 (2-3) , 317-322. https://doi.org/10.1016/0301-0104(89)87166-6
    58. Daniel Bougeard, Emil J. Samuelsen. Crystal Dynamics and Phase Transition of Glutaric Acid. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 1988, 156 (1) , 175-183. https://doi.org/10.1080/00268948808070566
    59. Torn Shimizu, Shigeyasu Ohkubo, Mitsuo Kimura, Isao Tabata, Teruo Hori. The vapour pressures and heats of sublimation of model disperse dyes. Journal of the Society of Dyers and Colourists 1987, 103 (3) , 132-137. https://doi.org/10.1111/j.1478-4408.1987.tb01103.x
    60. B. Woost, D. Bougeard. Vibrational spectra, crystal dynamics and phase transitions of crystalline hexabromoethane and trichlorotribromoethane. Journal of Physics and Chemistry of Solids 1986, 47 (12) , 1139-1145. https://doi.org/10.1016/0022-3697(86)90145-9
    61. Iraj Moradinia, Amyn S. Teja. Solubilities of solid n-octacosane, n-triacontane and n-dotriacontane in supercritical ethane. Fluid Phase Equilibria 1986, 28 (2) , 199-209. https://doi.org/10.1016/0378-3812(86)85079-8
    62. Steven W. Govorchin, Adli S. Kana'an. Sublimation study of triphenyl aluminum. The Journal of Chemical Thermodynamics 1984, 16 (5) , 437-443. https://doi.org/10.1016/0021-9614(84)90200-3
    63. D. Bougeard. A crystal-dynamical approach to squaric acid. Chemical Physics 1984, 83 (3) , 303-308. https://doi.org/10.1016/0301-0104(84)85006-5
    64. M. Muniz-Miranda, E. Castellucci, N. Neto, G. Sbrana. Normal mode analysis of 2,2′-bipyridine—II. Crystal vibrations. Spectrochimica Acta Part A: Molecular Spectroscopy 1983, 39 (2) , 107-113. https://doi.org/10.1016/0584-8539(83)80064-6
    65. P.K. Banerjee, B.C. Srivastava, Shravan Kumar. Cohesive-energy density of shellac. Polymer 1982, 23 (3) , 417-421. https://doi.org/10.1016/0032-3861(82)90345-7
    66. Tetsuro Oie, Gerald M. Maggiora, Ralph E. Christoffersen, David J. Duchamp. Development of a flexible intra- and intermolecular empirical potential function for large molecular systems. International Journal of Quantum Chemistry 1981, 20 (S8) , 1-47. https://doi.org/10.1002/qua.560200703
    67. R. M. Joshi. Bond Energy Scheme for Estimating Heats of Formation of Monomers and Polymers. VI. Sulfur Compounds. Journal of Macromolecular Science: Part A - Chemistry 1979, 13 (7) , 1015-1044. https://doi.org/10.1080/00222337908066625
    68. Husain Ahmad, M. Yaseen. Application of a chemical group contribution technique for calculating solubility parameters of polymers. Polymer Engineering & Science 1979, 19 (12) , 858-863. https://doi.org/10.1002/pen.760191208
    69. D. Bougeard, R. Righini, S. Califano. Lattice vibrations of succinic anhydride. Chemical Physics 1979, 40 (1-2) , 19-23. https://doi.org/10.1016/0301-0104(79)85114-9
    70. Oswald Riedel, Heinz Vogi. COMBUSTION CALORIMETRY AS A TECHNOLOGICAL SERVICE. 1979, 361-380. https://doi.org/10.1016/B978-0-08-020923-4.50024-0
    71. C.V. Berney, Don Spickerman. Enthalpy of sublimation of trifluoroacetamide. The Journal of Chemical Thermodynamics 1978, 10 (7) , 637-640. https://doi.org/10.1016/0021-9614(78)90104-0
    72. K. Mirsky, M.D. Cohen. Chlorine atoms in molecular crystals: Potential energy calculations. Chemical Physics 1978, 28 (1-2) , 193-204. https://doi.org/10.1016/0301-0104(78)85050-2
    73. R. Lochmann. Problems of the calculation of intermolecular interactions on complexes with strong delocalized π‐bonds within the PCILO framework. International Journal of Quantum Chemistry 1977, 12 (5) , 795-803. https://doi.org/10.1002/qua.560120503
    74. R. Righini, S. Califano. The vibrational optical spectrum of ethylenediamine crystal. Calculation of the one-phonon spectrum of the high-temperature crystal form. Chemical Physics 1976, 17 (1) , 45-57. https://doi.org/10.1016/0301-0104(76)85006-9
    75. T. B. MacRury, W. A. Steele, Bruce J. Berne. Intermolecular potential models for anisotropic molecules, with applications to N2, CO2, and benzene. The Journal of Chemical Physics 1976, 64 (4) , 1288-1299. https://doi.org/10.1063/1.432395
    76. R. M. Joshi. A New Generalized Bond Energy/Group Contribution Scheme for Calculating the Standard Heat of Formation of Monomers and Polymers. Part V. Oxygen Compounds. Journal of Macromolecular Science: Part A - Chemistry 1975, 9 (8) , 1309-1383. https://doi.org/10.1080/10601327508056940
    77. A.S. Carson, J. Franklin, P.G. Laye, H. Morris. The enthalpy of combustion of organometallic compounds measured with a vacuum-jacketed aneroid calorimeter. The enthalpies of formation of triphenyl tin hydroxide and bis(triphenyl tin) oxide. The Journal of Chemical Thermodynamics 1975, 7 (8) , 763-766. https://doi.org/10.1016/0021-9614(75)90251-7
    78. M. L. Cangeloni, V. Schettino. Infrared and Raman Spectra and Polymorphism in Crystal n -Butane. Molecular Crystals and Liquid Crystals 1975, 31 (3-4) , 219-231. https://doi.org/10.1080/15421407508082874
    79. Luz M Calle, Adli S Kana'an. Enthalpies and entropies of sublimation of tetraphenyl silane and hexaphenyl disilane. The bond dissociation energies of SiC and SiSi. The Journal of Chemical Thermodynamics 1974, 6 (10) , 935-942. https://doi.org/10.1016/0021-9614(74)90214-6
    80. K. V. Mirskaya, I. E. Kozlova, V. F. Bereznitskaya. Optimal CC, CH, and HH Potential Curves for the Naphthalene Crystal. physica status solidi (b) 1974, 62 (1) , 291-294. https://doi.org/10.1002/pssb.2220620131
    81. Adli S. Kana'an. Enthalpies and entropies of sublimation of germanium tetraphenyl and di-germanium hexaphenyl. The bond dissociation energy of GeC and GeGe. The Journal of Chemical Thermodynamics 1974, 6 (2) , 191-199. https://doi.org/10.1016/0021-9614(74)90262-6
    82. . Accuracy and Refinemen of the Potential Functions. 1973, 132-161. https://doi.org/10.1016/B978-0-12-355550-2.50008-9
    83. Adli S. Kana'an. Sublimation pressures of tetraphenylmethane and associated bond energies. The Journal of Chemical Thermodynamics 1972, 4 (6) , 893-901. https://doi.org/10.1016/0021-9614(72)90011-0
    84. Ernst Morawetz. Correlation of sublimation enthalpies at 298.15 K with molecular structure for planar aromatic hydrocarbons. The Journal of Chemical Thermodynamics 1972, 4 (3) , 461-467. https://doi.org/10.1016/0021-9614(72)90030-4
    85. R. M. Joshi. Bond Energy/Group Contribution Methods of Calculating the Standard Heat of Formation: Development of a New Generalized Bond-Energy Scheme for Monomers and Polymers. Part III. Alicyclic Hydrocarbons. Journal of Macromolecular Science: Part A - Chemistry 1972, 6 (3) , 595-629. https://doi.org/10.1080/10601327208056861
    86. R. M. Joshi. Thermodynamic properties of some monomeric compounds in the standard ideal gas state. Journal of Polymer Science Part A-2: Polymer Physics 1970, 8 (5) , 679-687. https://doi.org/10.1002/pol.1970.160080502
    87. Dino R. Ferro, Jan Hermans. Nonbonded Interatomic Potential Functions and Crystal Structure: Non Hydrogen-Bonded Organic Molecules. 1970, 259-275. https://doi.org/10.1007/978-1-4684-8214-0_19
    88. Shashanka S. Mitra. Infrared and Raman Spectra Due to Lattice Vibrations. 1969, 333-451. https://doi.org/10.1007/978-1-4757-1123-3_14
    89. Ye.I. Finkel'shtein, A.D. Abkin. Low-temperature radiation polymerization of acrolein in solid-state post-polymerization. Polymer Science U.S.S.R. 1969, 11 (4) , 968-975. https://doi.org/10.1016/0032-3950(69)90322-0
    90. A. Bondi. Rotational Diffusion Rates in Molecular Crystals Relations to Molecular Structure and to Crystal Packing Density. Molecular Crystals 1968, 3 (4) , 479-492. https://doi.org/10.1080/15421406808082893
    91. A. Bondi. Elastic moduli of simple and polymeric crystals and molecular structure. Journal of Physics and Chemistry of Solids 1967, 28 (4) , 649-655. https://doi.org/10.1016/0022-3697(67)90096-0
    92. A. Bondi. Thermal Properties of Molecular Crystals. I. Heat Capacity and Thermal Expansion. Journal of Applied Physics 1966, 37 (13) , 4643-4647. https://doi.org/10.1063/1.1708111
    93. A. Bondi. Thermal Properties of Molecular Crystals. II. Thermal Conductivity. Journal of Applied Physics 1966, 37 (13) , 4648-4648. https://doi.org/10.1063/1.1708112

    Journal of Chemical and Engineering Data

    Cite this: J. Chem. Eng. Data 1963, 8, 3, 371–381
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je60018a027
    Published July 1, 1963

    Article Views

    455

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.