Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Vapor-liquid equilibrium of methane-propane system at low temperatures and high pressures
My Activity
    Article

    Vapor-liquid equilibrium of methane-propane system at low temperatures and high pressures
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of Chemical and Engineering Data

    Cite this: J. Chem. Eng. Data 1972, 17, 1, 4–9
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je60052a019
    Published January 1, 1972

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 85 publications.

    1. Jean-Noël Jaubert, Yohann Le Guennec, Andrés Piña-Martinez, Nicolas Ramirez-Velez, Silvia Lasala, Bastian Schmid, Ilias K. Nikolaidis, Ioannis G. Economou, Romain Privat. Benchmark Database Containing Binary-System-High-Quality-Certified Data for Cross-Comparing Thermodynamic Models and Assessing Their Accuracy. Industrial & Engineering Chemistry Research 2020, 59 (33) , 14981-15027. https://doi.org/10.1021/acs.iecr.0c01734
    2. Nefeli Novak, Vasiliki Louli, Epaminondas Voutsas. Prediction of Vapor–Liquid Equilibrium and Thermodynamic Properties of Natural Gas and Gas Condensates. Industrial & Engineering Chemistry Research 2019, 58 (17) , 7370-7388. https://doi.org/10.1021/acs.iecr.9b00756
    3. Eric F. May, Jerry Y. Guo, Jordan H. Oakley, Thomas J. Hughes, Brendan F. Graham, Kenneth N. Marsh, and Stanley H. Huang . Reference Quality Vapor–Liquid Equilibrium Data for the Binary Systems Methane + Ethane, + Propane, + Butane, and + 2-Methylpropane, at Temperatures from (203 to 273) K and Pressures to 9 MPa. Journal of Chemical & Engineering Data 2015, 60 (12) , 3606-3620. https://doi.org/10.1021/acs.jced.5b00610
    4. Ilya Polishuk . Standardized Critical Point-Based Numerical Solution of Statistical Association Fluid Theory Parameters: The Perturbed Chain-Statistical Association Fluid Theory Equation of State Revisited. Industrial & Engineering Chemistry Research 2014, 53 (36) , 14127-14141. https://doi.org/10.1021/ie502633e
    5. Vladimir Diky, Robert D. Chirico, Chris D. Muzny, Andrei F. Kazakov, Kenneth Kroenlein, Joseph W. Magee, Ilmutdin Abdulagatov, and Michael Frenkel . ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept. 9. Extensible Thermodynamic Constraints for Pure Compounds and New Model Developments. Journal of Chemical Information and Modeling 2013, 53 (12) , 3418-3430. https://doi.org/10.1021/ci4005699
    6. Mert Atilhan , Santiago Aparicio , Kenneth R. Hall . Optimized Binary Interaction Parameters for VLE Calculations of Natural Gas Mixtures via Cubic and Molecular-Based Equations of State. Industrial & Engineering Chemistry Research 2012, 51 (28) , 9687-9699. https://doi.org/10.1021/ie301012q
    7. Eric W. Lemmon and Mark O. McLinden, Wolfgang Wagner. Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. Journal of Chemical & Engineering Data 2009, 54 (12) , 3141-3180. https://doi.org/10.1021/je900217v
    8. Doris L. Gonzalez,, George J. Hirasaki,, Jeff Creek, and, Walter G. Chapman. Modeling of Asphaltene Precipitation Due to Changes in Composition Using the Perturbed Chain Statistical Associating Fluid Theory Equation of State. Energy & Fuels 2007, 21 (3) , 1231-1242. https://doi.org/10.1021/ef060453a
    9. Santiago Aparicio-Martínez and, Kenneth R. Hall. Use of PC-SAFT for Global Phase Diagrams in Binary Mixtures Relevant to Natural Gases. 1. n-Alkane + n-Alkane. Industrial & Engineering Chemistry Research 2007, 46 (1) , 273-284. https://doi.org/10.1021/ie0607090
    10. Santiago Aparicio Martinez and, Kenneth R. Hall. Thermodynamic Properties of Light Synthetic Natural Gas Mixtures Using the RK−PR Cubic Equation of State. Industrial & Engineering Chemistry Research 2006, 45 (10) , 3684-3692. https://doi.org/10.1021/ie051241o
    11. João Carlos R. Reis,, Nuno Ribeiro, and, Ana Aguiar-Ricardo. Can the Speed of Sound Be Used for Detecting Critical States of Fluid Mixtures?. The Journal of Physical Chemistry B 2006, 110 (1) , 478-484. https://doi.org/10.1021/jp0539831
    12. Martin Wendland,, Bahaa Saleh, and, Johann Fischer. Accurate Thermodynamic Properties from the BACKONE Equation for the Processing of Natural Gas. Energy & Fuels 2004, 18 (4) , 938-951. https://doi.org/10.1021/ef0341015
    13. Felipe J. Blas and, Lourdes F. Vega. Prediction of Binary and Ternary Diagrams Using the Statistical Associating Fluid Theory (SAFT) Equation of State. Industrial & Engineering Chemistry Research 1998, 37 (2) , 660-674. https://doi.org/10.1021/ie970449+
    14. Thomas Kraska and, Keith E. Gubbins. Phase Equilibria Calculations with a Modified SAFT Equation of State. 2. Binary Mixtures of n-Alkanes, 1-Alkanols, and Water. Industrial & Engineering Chemistry Research 1996, 35 (12) , 4738-4746. https://doi.org/10.1021/ie960233s
    15. Jean-Noël Jaubert, Jun-Wei Qian, Silvia Lasala, Romain Privat. The impressive impact of including enthalpy and heat capacity of mixing data when parameterising equations of state. Application to the development of the E-PPR78 (Enhanced-Predictive-Peng-Robinson-78) model.. Fluid Phase Equilibria 2022, 560 , 113456. https://doi.org/10.1016/j.fluid.2022.113456
    16. Sahar Abdolbaghi, Ali Mohamadnazar, Mahdi Hasanipanah, Ali Barati-Harooni. Comparison between a soft computing model and thermodynamic models for prediction of phase equilibria in binary mixtures containing 1-alkanol, n-alkane, and CO2. Fluid Phase Equilibria 2020, 503 , 112307. https://doi.org/10.1016/j.fluid.2019.112307
    17. Pradnya N.P. Ghoderao, Vishwanath H. Dalvi, Mohan Narayan. A five-parameter cubic equation of state for pure fluids and mixtures. Chemical Engineering Science: X 2019, 3 , 100026. https://doi.org/10.1016/j.cesx.2019.100026
    18. Pradnya N.P. Ghoderao, Vishwanath H. Dalvi, Mohan Narayan. A four parameter cubic equation of state with temperature dependent covolume parameter. Chinese Journal of Chemical Engineering 2019, 27 (5) , 1132-1148. https://doi.org/10.1016/j.cjche.2018.08.013
    19. Mohammad Soroush Barhaghi, Korosh Torabi, Younes Nejahi, Loren Schwiebert, Jeffrey J. Potoff. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5025184
    20. Shide Mao, Mengxin Lü, Zeming Shi. Prediction of the PVTx and VLE properties of natural gases with a general Helmholtz equation of state. Part I: Application to the CH4–C2H6–C3H8–CO2–N2 system. Geochimica et Cosmochimica Acta 2017, 219 , 74-95. https://doi.org/10.1016/j.gca.2017.09.025
    21. Kumarini N. Seneviratne, Thomas J. Hughes, Michael L. Johns, Kenneth N. Marsh, Eric F. May. Surface tension and critical point measurements of methane + propane mixtures. The Journal of Chemical Thermodynamics 2017, 111 , 173-184. https://doi.org/10.1016/j.jct.2017.03.002
    22. David Guerrero-Zárate, Alejandro Estrada-Baltazar, Gustavo A. Iglesias-Silva. Calculation of critical points for natural gas mixtures with the GERG-2008 equation of state. Fluid Phase Equilibria 2017, 437 , 69-82. https://doi.org/10.1016/j.fluid.2017.01.012
    23. Humbul Suleman, Abdulhalim Shah Maulud, Zakaria Man. Experimental Measurement and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Aqueous Alkanolamine Solutions in the High Gas Loading Region. International Journal of Thermophysics 2016, 37 (9) https://doi.org/10.1007/s10765-016-2103-8
    24. Mark O. McLinden, Markus Richter. Application of a two-sinker densimeter for phase-equilibrium measurements: A new technique for the detection of dew points and measurements on the (methane + propane) system. The Journal of Chemical Thermodynamics 2016, 99 , 105-115. https://doi.org/10.1016/j.jct.2016.03.035
    25. Ai-Jing Shen, Qiang Liu, Yuan-Yuan Duan, Zhen Yang. Crossover VTSRK equation of state for selected alkane + alkane and CO2 + alkane binary mixtures. Fluid Phase Equilibria 2016, 408 , 180-189. https://doi.org/10.1016/j.fluid.2015.08.033
    26. Tatyana N. Nesterova, Sergey V. Vostrikov, Igor A. Nesterov, Alyanus G. Nazmutdinov, Sergey E. Sosin. Critical and maximum temperatures of coexistence of liquid and gas phase in hydrocarbons binary mixtures. I. Critical (vapour–liquid) temperatures of alkane binary mixtures. Fluid Phase Equilibria 2014, 368 , 14-38. https://doi.org/10.1016/j.fluid.2014.02.008
    27. Lu Qiu, Yue Wang, Qi Jiao, Hu Wang, Rolf D. Reitz. Development of a thermodynamically consistent, robust and efficient phase equilibrium solver and its validations. Fuel 2014, 115 , 1-16. https://doi.org/10.1016/j.fuel.2013.06.039
    28. Rui Sun, Shaocong Lai, Jean Dubessy. Calculation of vapor–liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part III. Extension to water–light hydrocarbons systems. Geochimica et Cosmochimica Acta 2014, 125 , 504-518. https://doi.org/10.1016/j.gca.2013.10.027
    29. Koki Tsukamoto, Guosong Fang, Masahiro Maebayashi, Masaharu Ohba. The shapes of critical loci of binary fluid mixtures on the p–T plane. Journal of Thermal Analysis and Calorimetry 2013, 113 (3) , 1551-1554. https://doi.org/10.1007/s10973-013-3073-8
    30. Jorge F. Estela-Uribe. An improved Helmholtz energy model for non-polar fluids and their mixtures. Part 2: Application to mixtures of non-polar fluids. Fluid Phase Equilibria 2013, 354 , 326-343. https://doi.org/10.1016/j.fluid.2013.05.004
    31. Sai R. Panuganti, Francisco M. Vargas, Doris L. Gonzalez, Anjushri S. Kurup, Walter G. Chapman. PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior. Fuel 2012, 93 , 658-669. https://doi.org/10.1016/j.fuel.2011.09.028
    32. Jorge F. Estela-Uribe. Application to mixtures of non-polar fluids of a three-parameter three-fluid corresponding states model based on reference equations of state. Fluid Phase Equilibria 2012, 313 , 73-90. https://doi.org/10.1016/j.fluid.2011.09.032
    33. Iman Zanganeh, Javad Sargolzaei, Behzad Khodakarami. A modification of Wong-Sandler mixing rule for the prediction of vapor-liquid equilibria in binary asymmetric systems. Korean Journal of Chemical Engineering 2011, 28 (7) , 1613-1618. https://doi.org/10.1007/s11814-010-0534-7
    34. A. Haghtalab, M.J. Kamali, S.H. Mazloumi, P. Mahmoodi. A new three-parameter cubic equation of state for calculation physical properties and vapor–liquid equilibria. Fluid Phase Equilibria 2010, 293 (2) , 209-218. https://doi.org/10.1016/j.fluid.2010.03.029
    35. Ali Haghtalab, Peyman Mahmoodi. Vapor–liquid equilibria of asymmetrical systems using UNIFAC-NRF group contribution activity coefficient model. Fluid Phase Equilibria 2010, 289 (1) , 61-71. https://doi.org/10.1016/j.fluid.2009.11.009
    36. Rongjiao Zhu, Hongling Li, Jishuang Hao, Hesong Li, Yiling Tian. Calculation of gas-liquid critical curves for binary systems containing methane. Transactions of Tianjin University 2009, 15 (4) , 276-282. https://doi.org/10.1007/s12209-009-0049-7
    37. A. Naderifar, B. Khodakarami, I. Zanganeh. New approach for the prediction of vapor–liquid equilibria in asymmetric systems using GE–EOS mixing rules. Fluid Phase Equilibria 2008, 271 (1-2) , 38-42. https://doi.org/10.1016/j.fluid.2008.07.002
    38. Daimler N. Justo-García, Fernando García-Sánchez, Nestor L. Díaz-Ramírez, Ascención Romero-Martínez. Calculation of critical points for multicomponent mixtures containing hydrocarbon and nonhydrocarbon components with the PC-SAFT equation of state. Fluid Phase Equilibria 2008, 265 (1-2) , 192-204. https://doi.org/10.1016/j.fluid.2007.12.006
    39. Ilya Polishuk. Comments on “VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method” by J.-N. Jaubert and F. Mutelet [Fluid Phase Equilibria, 224 (2004) 285–304]. Fluid Phase Equilibria 2006, 249 (1-2) , 198-199. https://doi.org/10.1016/j.fluid.2006.09.002
    40. Ilya Polishuk, Juan H. Vera. A novel EOS that combines van der Waals and Dieterici potentials. AIChE Journal 2005, 51 (7) , 2077-2088. https://doi.org/10.1002/aic.10441
    41. Kyoo Y. Song, Matt Yarrison, Walter Chapman. Experimental low temperature water content in gaseous methane, liquid ethane, and liquid propane in equilibrium with hydrate at cryogenic conditions. Fluid Phase Equilibria 2004, 224 (2) , 271-277. https://doi.org/10.1016/j.fluid.2004.06.058
    42. Jean-Noël Jaubert, Fabrice Mutelet. VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method. Fluid Phase Equilibria 2004, 224 (2) , 285-304. https://doi.org/10.1016/j.fluid.2004.06.059
    43. J.F. Estela-Uribe, A. De Mendoza, J.P.M. Trusler. Helmholtz energy, extended corresponding states and local composition model for fluid mixtures. Fluid Phase Equilibria 2004, 224 (1) , 125-142. https://doi.org/10.1016/j.fluid.2004.04.006
    44. J.F. Estela-Uribe, A. De Mendoza, J.P.M. Trusler. Combined Helmholtz energy, extended corresponding states and local-composition model for fluid mixtures. Fluid Phase Equilibria 2004, 222-223 , 25-30. https://doi.org/10.1016/j.fluid.2004.06.006
    45. J.F. Estela-Uribe, A.De Mendoza, J.P.M. Trusler. Extended corresponding states model for fluids and fluid mixtures. Fluid Phase Equilibria 2004, 216 (1) , 59-84. https://doi.org/10.1016/j.fluid.2003.10.002
    46. Ilya Polishuk, Jaime Wisniak, Hugo Segura. Simultaneous prediction of the critical and sub-critical phase behavior in mixtures using equations of state III. Methane–n-alkanes. Chemical Engineering Science 2003, 58 (19) , 4363-4376. https://doi.org/10.1016/S0009-2509(03)00318-X
    47. Qingyuan Yang, Chongli Zhong. A modified PSRK model for the prediction of the vapor–liquid equilibria of asymmetric systems. Fluid Phase Equilibria 2001, 192 (1-2) , 103-120. https://doi.org/10.1016/S0378-3812(01)00629-X
    48. James C. Rainwater. An asymptotic expression for the critical-region “bird’s beak” isotherm and adjacent isotherms on the vapor–liquid phase diagram of a simple binary mixture. Fluid Phase Equilibria 2001, 183-184 , 41-51. https://doi.org/10.1016/S0378-3812(01)00419-8
    49. Ulrike Weingerl, Martin Wendland, Johann Fischer, Andreas Müller, Jochen Winkelmann. Backone family of equations of state: 2. Nonpolar and polar fluid mixtures. AIChE Journal 2001, 47 (3) , 705-717. https://doi.org/10.1002/aic.690470317
    50. Kh. Nasrifar, Sh. Ayatollahi, M. Moshfeghian. Improving the simplified‐perturbed‐hard‐chain theory equation of state using a new non‐attracting hard‐sphere equation. The Canadian Journal of Chemical Engineering 2000, 78 (6) , 1111-1119. https://doi.org/10.1002/cjce.5450780611
    51. M. Erdogmus, M. A. Adewumi. A Modified Equation of State for Gas-Condensate Systems. 2000https://doi.org/10.2118/65632-MS
    52. A. Keshtkar, F. Jalali, M. Moshfeghian. Development and extension of PSRK/UNIQUAC model to methane and nitrogen gases. Fluid Phase Equilibria 1998, 145 (2) , 225-237. https://doi.org/10.1016/S0378-3812(98)00184-8
    53. DAKE WU, SHULIN CHEN. A MODIFIED PENG-ROBINSON EQUATION OF STATE. Chemical Engineering Communications 1997, 156 (1) , 215-225. https://doi.org/10.1080/00986449708936677
    54. Shi-Fang Chen, Yo-Li Chou, Yan-Ping Chen. A new cubic simplified perturbed hard-body equation of state. Fluid Phase Equilibria 1996, 118 (2) , 201-219. https://doi.org/10.1016/0378-3812(95)02842-0
    55. D. P. L. Poon, B. C.-Y. Lu. Phase Equilibria for Systems Containing Nitrogen, Methane, and Propane. 1995, 292-299. https://doi.org/10.1007/978-1-4613-9847-9_36
    56. Johanna M. H. Levelt Sengers. Critical Behavior of Fluids: Concepts and Applications. 1994, 3-38. https://doi.org/10.1007/978-94-015-8295-7_1
    57. Yin-Chuan Chen, Yan-Ping Chen. Vapor-liquid equilibria from an improved hard convex body expansion method. Fluid Phase Equilibria 1993, 86 , 87-109. https://doi.org/10.1016/0378-3812(93)87170-6
    58. M.H. Shariat, F. Dehghany, M. Moshfeghian. Extension and evaluation of the chain-of-rotator group contribution equation of state for prediction of thermodynamic properties of polar and non-polar compounds. Fluid Phase Equilibria 1993, 85 , 19-40. https://doi.org/10.1016/0378-3812(93)80002-5
    59. Fernando García-Sánchez, José L. Ruiz-Cortina, Carlos Lira-Galeana, Luis Ponce-Ramírez. Critical point calculations for oil reservoir fluid systems using the SPHCT equation of state. Fluid Phase Equilibria 1992, 81 , 39-84. https://doi.org/10.1016/0378-3812(92)85144-W
    60. John J. Lynch, James C. Rainwater. The modified leung-griffiths model of vapor-liquid equilibrium: Extended scaling and binary mixtures of dissimilar fluids. Fluid Phase Equilibria 1992, 75 , 23-37. https://doi.org/10.1016/0378-3812(92)87004-7
    61. Allan H. Harvey, Rosa Crovetto, J. M. H. Levelt Sengers. Limiting vs. apparent critical behavior of Henry's constants and K factors. AIChE Journal 1990, 36 (12) , 1901-1904. https://doi.org/10.1002/aic.690361214
    62. Kazuhiko Suzuki, Haruhusa Sue, Kunio Arai, Shozaburo Saito. Vapor—liquid equilibria for synthetic alcohols process. Fluid Phase Equilibria 1990, 59 (2) , 115-134. https://doi.org/10.1016/0378-3812(90)85030-E
    63. Fuan‐Nan Tsai, Dong‐Syau Jan. A three‐parameter cubic equation of state for fluids and fluid mixtures. The Canadian Journal of Chemical Engineering 1990, 68 (3) , 479-486. https://doi.org/10.1002/cjce.5450680319
    64. G Trappehl, H Knapp. Vapour-liquid equilibria in the ternary mixtures N2CH4C3H8 and CH4C2H6C3H8. Cryogenics 1988, 28 (6) , 398-405. https://doi.org/10.1016/0011-2275(88)90039-2
    65. Giuseppe Ciocca, Isamu Nagata, Vincenzo Brandani. Density dependence of the external degrees of freedom: application to a simplified version of the perturbed hard chain theory. Fluid Phase Equilibria 1988, 41 (1-2) , 59-80. https://doi.org/10.1016/0378-3812(88)80036-0
    66. . Alkanes: Pressure Greater Than 0.2 MPa. 1987, 248-377. https://doi.org/10.1016/B978-0-08-029200-7.50015-1
    67. Choon‐Ho Kim, P. Vimalchand, M. D. Donohue, S. I. Sandler. Local composition model for chainlike molecules: A new simplified version of the perturbed hard chain theory. AIChE Journal 1986, 32 (10) , 1726-1734. https://doi.org/10.1002/aic.690321016
    68. A. Bertucco, M. Fermeglia, I. Kikic. Modified Carnahan—Starling—Van Der Waals equation for supercritical fluid extraction. The Chemical Engineering Journal 1986, 32 (1) , 21-30. https://doi.org/10.1016/0300-9467(86)85003-1
    69. J.M.H. Levelt Sengers. Dilute mixtures and solutions near critical points. Fluid Phase Equilibria 1986, 30 , 31-39. https://doi.org/10.1016/0378-3812(86)80038-3
    70. T. Charoensombut-amon, Riki Kobayashi. Application of the Wilson—Wegner expansion to represent vapor—liquid equilibrium surfaces of binary and ternary systems from the critical locus to the vapor pressure of the heavier component. Fluid Phase Equilibria 1986, 31 (1) , 23-34. https://doi.org/10.1016/S0378-3812(86)87029-7
    71. Vladimír Machát, Tomáš Boublík. Vapour—liquid equilibrium at elevated pressures from the back equation of state. II. Binary systems. Fluid Phase Equilibria 1985, 21 (1-2) , 11-24. https://doi.org/10.1016/0378-3812(85)90057-3
    72. Steen Skjold-Jørgensen. Gas solubility calculations. II. Application of a new group-contribution equation of state. Fluid Phase Equilibria 1984, 16 (3) , 317-351. https://doi.org/10.1016/0378-3812(84)80005-9
    73. Richard Freze, Jean-Louis Chevalier, Andre Peneloux, Evelyne Rauzy. Vapour-liquid equilibria calculations for normal fluid systems using a new cubic equation of state. Fluid Phase Equilibria 1983, 15 (1) , 33-66. https://doi.org/10.1016/0378-3812(83)80021-1
    74. R. A. Mentzer, R. A. Greenkorn, K. C. Chao. The Principle of Corresponding States and Prediction of Gas-Liquid Separation Factors and Thermodynamic Properties: A Review. Separation Science and Technology 1980, 15 (9) , 1613-1678. https://doi.org/10.1080/01496398008055612
    75. Lee E. Baker, Kraemer D. Luks. Critical Point and Saturation Pressure Calculations for Multipoint Systems. Society of Petroleum Engineers Journal 1980, 20 (01) , 15-24. https://doi.org/10.2118/7478-PA
    76. Heinrich P�ll, Hans Huemer, Franz Moser. Eine Apparatur zur Bestimmung von Dampf-Fl�ssigkeits-Gleichgewichten unter erh�htem Druck. Monatshefte f�r Chemie 1980, 111 (5) , 1159-1164. https://doi.org/10.1007/BF00909673
    77. L. Raimondi. A modified Redlich-Kwong equation of state for vapour-liquid equilibrium calculations. Chemical Engineering Science 1980, 35 (6) , 1269-1275. https://doi.org/10.1016/0009-2509(80)85119-0
    78. Jørgen Mollerup. Thermodynamic properties from corresponding states theory. Fluid Phase Equilibria 1980, 4 (1-2) , 11-34. https://doi.org/10.1016/0378-3812(80)80002-1
    79. Lothar Oellrich, Ulf Plöcker, John M. Prausnitz, Helmut Knapp. Methoden zur Berechnung von Phasengleichgewichten und Enthalpien mit Hilfe von Zustandsgleichungen. Chemie Ingenieur Technik 1977, 49 (12) , 955-965. https://doi.org/10.1002/cite.330491206
    80. Jiří Drahoš, Ivan Wichterle, Eduard Hála. A generalized method for calculation and prediction of vapour-liquid equilibria at high pressures. Fluid Phase Equilibria 1977, 1 (3) , 173-184. https://doi.org/10.1016/0378-3812(77)80001-0
    81. Kenneth R. Hall, Philip T. Eubank, Allan S. Myerson, William E. Nixon. A new technique for collecting binary vapor‐liquid equilibrium data without measuring composition: The method of intersecting isochores. AIChE Journal 1975, 21 (6) , 1111-1114. https://doi.org/10.1002/aic.690210610
    82. H Kalra, D.B Robinson. An apparatus for the simultaneous measurement of equilibrium phase composition and refractive index data at low temperatures and high pressures. Cryogenics 1975, 15 (7) , 409-412. https://doi.org/10.1016/0011-2275(75)90009-0
    83. M. J. Hiza, A. J. Kidnay, R. C. Miller. Experimental Properties. 1975, 6-160. https://doi.org/10.1007/978-1-4684-6144-2_3
    84. E.R.G. Eckert, E.M. Sparrow, R.J. Goldstein, C.J. Scott, E. Pfender, W.E. Ibele. Heat transfer — A review of 1973 literature. International Journal of Heat and Mass Transfer 1974, 17 (11) , 1287-1317. https://doi.org/10.1016/0017-9310(74)90132-X
    85. A.J Kidnay, M.J Hiza, R.C Miller. Liquid—vapour equilibria research on systems of interest in cryogenics — a survey. Cryogenics 1973, 13 (10) , 575-599. https://doi.org/10.1016/0011-2275(73)90112-4

    Journal of Chemical and Engineering Data

    Cite this: J. Chem. Eng. Data 1972, 17, 1, 4–9
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je60052a019
    Published January 1, 1972

    Article Views

    526

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.