ACS Publications. Most Trusted. Most Cited. Most Read
Caseins and Casein Hydrolysates. 1. Lipoxygenase Inhibitory Properties
My Activity

Figure 1Loading Img
    Article

    Caseins and Casein Hydrolysates. 1. Lipoxygenase Inhibitory Properties
    Click to copy article linkArticle link copied!

    View Author Information
    Agrotechnological Research Institute (ATO), P.O. Box 17, 6700 AA Wageningen, The Netherlands
    Other Access Options

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2001, 49, 1, 287–294
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf000392t
    Published December 1, 2000
    Copyright © 2001 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Whole casein from bovine origin, the different casein subtypes α, β, and κ, and the related dephosphorylated proteins were assayed as modulators of soybean lipoxygenase 1 activity and were found to inhibit it. To define the lipoxygenase inhibitory domain, whole casein and β-casein were digested by proteases (trypsin, clostripain, and subtilisin). The β-casein tryptic digest and the tryptic and subtilisin digests of whole casein retained their inhibitory properties. The tryptic β-casein digest was the most potent inhibitor of lipoxygenase activity and was further fractionated by FPLC or HPLC. The collected peptides inhibited the lipoxygenase-catalyzed reaction to different extents. The active fractions were analyzed by ESI-MS, and the sequences of several lipoxygenase inhibitory peptides, corresponding mainly to the C-terminal moiety of β-casein, were identified.

    Keywords: Soybean lipoxygenase 1; Lox-1 inhibitory β-casein peptides; FPLC; RP-HPLC; ESI-MS

    Copyright © 2001 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author (fax 31.317.475347; e-mail [email protected]).

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 113 publications.

    1. Bikram Upadhyaya, Regis Moreau, Kaustav Majumder. Antioxidant and Anti-Inflammatory Capacities of Three Dry Bean Varieties after Cooking and In Vitro Gastrointestinal Digestion. Journal of Agricultural and Food Chemistry 2024, 72 (33) , 18445-18454. https://doi.org/10.1021/acs.jafc.4c02215
    2. Shanglin Xin, Haiyang Zhang, Jianan Sun, Xiangzhao Mao. Characterization and Hydrolysis Mechanism Analysis of a Cold-Adapted Trypsin-Like Protease from Antarctic Krill. Journal of Agricultural and Food Chemistry 2024, 72 (17) , 9955-9966. https://doi.org/10.1021/acs.jafc.4c00322
    3. Hao Wang, Xinhui Zhou, Yuxue Sun, Xiaomeng Sun, Mingruo Guo. Differences in Protein Profiles of Kefir Grains from Different Origins When Subcultured in Goat Milk. Journal of Agricultural and Food Chemistry 2022, 70 (24) , 7515-7524. https://doi.org/10.1021/acs.jafc.2c01391
    4. Chongzhen Sun, Xin Tang, Yao Ren, Erpei Wang, Lei Shi, Xiyang Wu, Hui Wu. Novel Antioxidant Peptides Purified from Mulberry (Morus atropurpurea Roxb.) Leaf Protein Hydrolysates with Hemolysis Inhibition Ability and Cellular Antioxidant Activity. Journal of Agricultural and Food Chemistry 2019, 67 (27) , 7650-7659. https://doi.org/10.1021/acs.jafc.9b01115
    5. Jin Xue, Chen Tan, Xiaoming Zhang, Biao Feng, and Shuqin Xia . Fabrication of Epigallocatechin-3-gallate Nanocarrier Based on Glycosylated Casein: Stability and Interaction Mechanism. Journal of Agricultural and Food Chemistry 2014, 62 (20) , 4677-4684. https://doi.org/10.1021/jf405157x
    6. Kazuhito Ohsawa, Hideo Satsu, Kohji Ohki, Masashi Enjoh, Toshiaki Takano and Makoto Shimizu. Producibility and Digestibility of Antihypertensive β-Casein Tripeptides, Val-Pro-Pro and Ile-Pro-Pro, in the Gastrointestinal Tract: Analyses Using an in Vitro Model of Mammalian Gastrointestinal Digestion. Journal of Agricultural and Food Chemistry 2008, 56 (3) , 854-858. https://doi.org/10.1021/jf072671n
    7. , Luis Guillermo González Olivares, Laura Olvera Rosales, , Paula Andrea Santana Sepúlveda, , Carlos Esteban Jara Gutiérrez, , Joan Villena García, . Capítulo 3: Antioxidantes de alimentos de origen animal. 2024, 69-108. https://doi.org/10.59899/impo-anti-C3
    8. Haiyang Liu, Lulu Zhang, Jingmou Yu, Shengwen Shao. Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Frontiers in Immunology 2024, 15 https://doi.org/10.3389/fimmu.2024.1413179
    9. María Fernanda Escamilla Rosales, Laura Olvera Rosales, Carlos E. Jara Gutiérrez, Judith Jaimez Ordaz, Paula Andrea Santana Sepúlveda, Luis Guillermo González Olivares. Proteins of Milk, Egg and Fish as a Source of Antioxidant Peptides: Production, Mechanism of Action and Health Benefits. Food Reviews International 2024, 40 (6) , 1600-1620. https://doi.org/10.1080/87559129.2023.2227974
    10. Wanshuang Yang. Evaluation of the antioxidant activity and identification of potential antioxidant peptides in commercially available probiotic Cheddar cheese. LWT 2024, 205 , 116486. https://doi.org/10.1016/j.lwt.2024.116486
    11. Muke Han, Kaifeng Li, Yuehui Fang, Baorong Chen, Han Sun, Qinggang Xie, Shuwen Zhang, Shilong Jiang, Jiaping Lv, Yajun Xu. Characteristics of casein phosphopeptides in Chinese human milk and its correlation with infant growth: A cross-sectional study. Food Chemistry 2024, 447 , 139007. https://doi.org/10.1016/j.foodchem.2024.139007
    12. Tianfei Yu, Tianshuo Hu, Kai Na, Li Zhang, Shuang Lu, Xiaohua Guo. Glutamine‐derived peptides: Current progress and future directions. Comprehensive Reviews in Food Science and Food Safety 2024, 23 (4) https://doi.org/10.1111/1541-4337.13386
    13. Linda Monaci, Rosa Pilolli, Laura Quintieri, Leonardo Caputo, Anna Luparelli, Elisabetta De Angelis. Casein: allergenicity and molecular properties. 2024, 363-382. https://doi.org/10.1016/B978-0-443-15836-0.00008-1
    14. Bibiana Juan, Ahmed A.K. Salama, Suha Serhan, Xavier Such, Gerardo Caja, Laura Pont, Fernando Benavente, Buenaventura Guamis, Antonio-José Trujillo. β-Casein: type A1 and A2. 2024, 99-121. https://doi.org/10.1016/B978-0-443-15836-0.00010-X
    15. Athina Kalle, Ioannis Lambropoulos, Konstantinos Bourazas, Ioannis G. Roussis. Antioxidant Activity and Peptide Levels of Water-Soluble Extracts of Feta, Metsovone and Related Cheeses. Applied Sciences 2024, 14 (1) , 265. https://doi.org/10.3390/app14010265
    16. Fai-Chu Wong, Tsun-Thai Chai. Bioactive Peptides and Protein Hydrolysates as Lipoxygenase Inhibitors. Biology 2023, 12 (7) , 917. https://doi.org/10.3390/biology12070917
    17. Dapeng Li, Jianxin Cao, Jin Zhang, Tong Mu, Rubin Wang, Huanhuan Li, Honggang Tang, Lihong Chen, Xiuyu Lin, Xinyan Peng, Ke Zhao. The Effects and Regulatory Mechanism of Casein-Derived Peptide VLPVPQK in Alleviating Insulin Resistance of HepG2 Cells. Foods 2023, 12 (13) , 2627. https://doi.org/10.3390/foods12132627
    18. Samir Mahgoub, Mahmoud Alagawany, Maha Nader, Safaa M. Omar, Mohamed E. Abd El-Hack, Ayman Swelum, Shaaban S. Elnesr, Asmaa F. Khafaga, Ayman E. Taha, Mayada R. Farag, Ruchi Tiwari, Gopi Marappan, Ashraf S. El-Sayed, Shailesh K. Patel, Mamta Pathak, Izabela Michalak, Etab S. Al-Ghamdi, Kuldeep Dhama. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. Food Reviews International 2023, 39 (1) , 511-536. https://doi.org/10.1080/87559129.2021.1923027
    19. Moses Madende, Primrose Madende. Application of enzymes in producing bioactive oligosaccharides and peptides for the beverage industry. 2023, 235-250. https://doi.org/10.1016/B978-0-323-85683-6.00014-4
    20. Jue Xu, Yingyan Chen, Xiankang Fan, Zihang Shi, Mingzhen Liu, Xiaoqun Zeng, Zhen Wu, Daodong Pan. Isolation, identification, and characterization of corn-derived antioxidant peptides from corn fermented milk by Limosilactobacillus fermentum. Frontiers in Nutrition 2022, 9 https://doi.org/10.3389/fnut.2022.1041655
    21. Jodhani Keyur Ashokbhai, Bethsheba Basaiawmoit, Amar Sakure, Sujit Das, G. B. Patil, Maunil Mankad, Subrota Hati. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. Journal of Food Science and Technology 2022, 59 (11) , 4262-4272. https://doi.org/10.1007/s13197-022-05493-2
    22. Chopada Kevalkumar Dineshbhai, Bethsheba Basaiawmoit, Amar A. Sakure, Ruchika Maurya, Mahendra Bishnoi, Kanthi Kiran Kondepudi, G.B. Patil, Maunil Mankad, Zhenbin Liu, Subrota Hati. Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. Food Bioscience 2022, 48 , 101758. https://doi.org/10.1016/j.fbio.2022.101758
    23. Na Zhou, Fei Pan, Xin Ai, Tuohetisayipu Tuersuntuoheti, Lei Zhao, Liang Zhao, Yong Wang. Preparation, characterization and antioxidant activity of sinapic acid grafted chitosan and its application with casein as a nanoscale delivery system for black rice anthocyanins. International Journal of Biological Macromolecules 2022, 210 , 33-43. https://doi.org/10.1016/j.ijbiomac.2022.05.010
    24. Magdalena Stobiecka, Jolanta Król, Aneta Brodziak. Antioxidant Activity of Milk and Dairy Products. Animals 2022, 12 (3) , 245. https://doi.org/10.3390/ani12030245
    25. Eduardo Lopez-Huertas, Juan M. Alcaide-Hidalgo. Characterisation of Endogenous Peptides Present in Virgin Olive Oil. International Journal of Molecular Sciences 2022, 23 (3) , 1712. https://doi.org/10.3390/ijms23031712
    26. Fu-jia YANG, Xu CHEN, Mu-chen HUANG, Qian YANG, Xi-xi CAI, Xuan CHEN, Ming DU, Jian-lian HUANG, Shao-yun WANG. Molecular characteristics and structure–activity relationships of food-derived bioactive peptides. Journal of Integrative Agriculture 2021, 20 (9) , 2313-2332. https://doi.org/10.1016/S2095-3119(20)63463-3
    27. Xiao Zhao, Ya-Juan Cui, Sha-Sha Bai, Zhi-Jie Yang, Miao-Cai, Sarah Megrous, Tariq Aziz, Abid Sarwar, Dong Li, Zhen-Nai Yang. Antioxidant Activity of Novel Casein-Derived Peptides with Microbial Proteases as Characterized via Keap1-Nrf2 Pathway in HepG2 Cells. Journal of Microbiology and Biotechnology 2021, 31 (8) , 1163-1174. https://doi.org/10.4014/jmb.2104.04013
    28. Jian Zhu, Hongsheng Liu, Xingzhe Cai, Wei Wu, Zhiyi Zhu, Long Yu. Preparation and Characterization of Instant Casein Phosphopeptide by Supercritical Fluid Assisted Atomization. Foods 2021, 10 (7) , 1555. https://doi.org/10.3390/foods10071555
    29. Xianbao Sun, Xuejiao Wu, Xiangyu Chen, Rui Guo, Yuxing Kou, Xujiao Li, Yi Sheng, Yan Wu. Casein-maltodextrin Maillard conjugates encapsulation enhances the antioxidative potential of proanthocyanidins: An in vitro and in vivo evaluation. Food Chemistry 2021, 346 , 128952. https://doi.org/10.1016/j.foodchem.2020.128952
    30. Katarzyna Skrzypczak, Emilia Fornal, Dorota Domagała, Waldemar Gustaw, Ewa Jabłońska-Ryś, Aneta Sławińska, Wojciech Radzki, Anna Kononiuk, Adam Waśko, . Use of α-Lactalbumin and Caseinoglycomacropeptide as Biopeptide Precursors and as Functional Additives in Milk Beverages Fermented by L. helveticus. International Journal of Food Science 2021, 2021 , 1-15. https://doi.org/10.1155/2021/8822161
    31. Mathilde Foisy Sauvé, Schohraya Spahis, Edgard Delvin, Emile Levy. Glycomacropeptide: A Bioactive Milk Derivative to Alleviate Metabolic Syndrome Outcomes. Antioxidants & Redox Signaling 2021, 34 (3) , 201-222. https://doi.org/10.1089/ars.2019.7994
    32. Priyanka Singh Rao, Rajesh Bajaj, Bimlesh Mann. Impact of sequential enzymatic hydrolysis on antioxidant activity and peptide profile of casein hydrolysate. Journal of Food Science and Technology 2020, 57 (12) , 4562-4575. https://doi.org/10.1007/s13197-020-04495-2
    33. Xiao Hai, Guo-Qiang Liu, Jian-Xing Luo, Yuan-Sheng Guo, Jun-Ping Qian, Mei Ya, Liang Guo. Triplex real-time PCR assay for the authentication of camel-derived dairy and meat products. Journal of Dairy Science 2020, 103 (11) , 9841-9850. https://doi.org/10.3168/jds.2019-17245
    34. Aristidis Veskoukis, Efthalia Kerasioti, Konstantinos Sidiropoulos, Ilektra Maragou, Zoi Skaperda, Demetrios Kouretas. Nutritional habits and free grazing regimen of productive animals along with specific ingredients are influential factors for the antioxidant properties of milk: From farm to market. Biomedical Reports 2020, 13 (1) , 31-36. https://doi.org/10.3892/br.2020.1301
    35. Federica Tonolo, Alessandra Folda, Luca Cesaro, Valeria Scalcon, Oriano Marin, Stefania Ferro, Alberto Bindoli, Maria Pia Rigobello. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. Journal of Functional Foods 2020, 64 , 103696. https://doi.org/10.1016/j.jff.2019.103696
    36. Imran Taj Khan, Muhammad Nadeem, Muhammad Imran, Rahman Ullah, Muhammad Ajmal, Muhammad Hayat Jaspal. Antioxidant properties of Milk and dairy products: a comprehensive review of the current knowledge. Lipids in Health and Disease 2019, 18 (1) https://doi.org/10.1186/s12944-019-0969-8
    37. Davide Tagliazucchi, Serena Martini, Lisa Solieri. Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. Fermentation 2019, 5 (4) , 96. https://doi.org/10.3390/fermentation5040096
    38. Yong‐Eun Kim, Jae Whan Kim, Seonghye Cheon, Myoung Soo Nam, Kee K. Kim. Alpha‐Casein and Beta‐Lactoglobulin from Cow Milk Exhibit Antioxidant Activity: A Plausible Link to Antiaging Effects. Journal of Food Science 2019, 84 (11) , 3083-3090. https://doi.org/10.1111/1750-3841.14812
    39. Mengshi Pan, Yanjiao Huo, Chengtao Wang, Yanchun Zhang, Zhiyong Dai, Bo Li. Positively charged peptides from casein hydrolysate show strong inhibitory effects on LDL oxidation and cellular lipid accumulation in Raw264.7 cells. International Dairy Journal 2019, 91 , 119-128. https://doi.org/10.1016/j.idairyj.2018.09.011
    40. Maolin Tu, Hanxiong Liu, Ruyi Zhang, Hui Chen, Fengjiao Fan, Pujie Shi, Xianbing Xu, Weihong Lu, Ming Du. Bioactive hydrolysates from casein: generation, identification, and in silico toxicity and allergenicity prediction of peptides. Journal of the Science of Food and Agriculture 2018, 98 (9) , 3416-3426. https://doi.org/10.1002/jsfa.8854
    41. P. V. Padghan, B. Mann, Subrota Hati. Purification and Characterization of Antioxidative Peptides Derived From Fermented Milk (Lassi) by Lactic Cultures. International Journal of Peptide Research and Therapeutics 2018, 24 (2) , 235-249. https://doi.org/10.1007/s10989-017-9608-2
    42. Hao Cui, Yang Zhang, Haiping Tian, Wanchen Zhai, Yu Jiang, Hongli Zhou. Antioxidant potential of protein‐rich serum from farmed swan goose ( Anser cygnoides ): in vitro and in vivo evaluation of antioxidant effects. International Journal of Food Science & Technology 2018, 53 (5) , 1149-1156. https://doi.org/10.1111/ijfs.13689
    43. Parminder Singh, Tarun pal Singh, Neeraj Gandhi. Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review. Food Reviews International 2018, 34 (3) , 226-247. https://doi.org/10.1080/87559129.2016.1261297
    44. F. Tonolo, M. Sandre, S. Ferro, A. Folda, V. Scalcon, G. Scutari, E. Feller, O. Marin, A. Bindoli, M. P. Rigobello. Milk-derived bioactive peptides protect against oxidative stress in a Caco-2 cell model. Food & Function 2018, 9 (2) , 1245-1253. https://doi.org/10.1039/C7FO01646H
    45. Yanyan Wu, Jing Wang, Laihao Li, Xianqing Yang, Jinxu Wang, Xiao Hu. Purification and identification of an antioxidant peptide from Pinctada fucata muscle. CyTA - Journal of Food 2018, 16 (1) , 11-19. https://doi.org/10.1080/19476337.2017.1332099
    46. A. Smialowska, L. Matia-Merino, A.J. Carr. Oxidative stability of iron fortified goat and cow milk and their peptide isolates. Food Chemistry 2017, 237 , 1021-1024. https://doi.org/10.1016/j.foodchem.2017.06.006
    47. A. A. Torkova, K. A. Ryazantseva, E. Yu. Agarkova, A. G. Kruchinin, M. Yu. Tsentalovich, T. V. Fedorova. Rational design of enzyme compositions for the production of functional hydrolysates of cow milk whey proteins. Applied Biochemistry and Microbiology 2017, 53 (6) , 669-679. https://doi.org/10.1134/S0003683817060138
    48. Cichosz Grażyna, Czeczot Hanna, Ambroziak Adam, Bielecka Marika Magdalena. Natural antioxidants in milk and dairy products. International Journal of Dairy Technology 2017, 70 (2) , 165-178. https://doi.org/10.1111/1471-0307.12359
    49. Marzia Albenzio, Antonella Santillo, Mariangela Caroprese, Antonella Della Malva, Rosaria Marino. Bioactive Peptides in Animal Food Products. Foods 2017, 6 (5) , 35. https://doi.org/10.3390/foods6050035
    50. Rajeev Kapila, Suman Kapila, Rishika Vij. Efficacy of Milk-Derived Bioactive Peptides on Health by Cellular and Animal Models. 2017, 303-311. https://doi.org/10.1016/B978-0-12-809762-5.00023-1
    51. Ines Jemil, Ola Abdelhedi, Leticia Mora, Rim Nasri, Maria-Concepción Aristoy, Mourad Jridi, Mohamed Hajji, Fidel Toldrá, Moncef Nasri. Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry 2016, 51 (12) , 2186-2197. https://doi.org/10.1016/j.procbio.2016.08.021
    52. José Lorenzo, Ruben Domínguez, Javier Carballo. Control of Lipid Oxidation in Muscle Food by Active Packaging Technology. 2016, 343-382. https://doi.org/10.1201/9781315365916-10
    53. Annamaria Perna, Amalia Simonetti, Emilio Gambacorta. Short communication: Effect of casein haplotype on angiotensin-converting enzyme inhibitory and antioxidant capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes. Journal of Dairy Science 2016, 99 (9) , 6922-6926. https://doi.org/10.3168/jds.2016-11035
    54. Miroljub Barac, Mirjana Pesic, Slađana Zilic, Milenko Smiljanic, Slađana Stanojevic, Milena Vasic, Sasa Despotovic, Tanja Vucic, Aleksandar Kostic. Protein profiles and total antioxidant capacity of water‐soluble and water‐insoluble fractions of white brined goat cheese at different stages of ripening. International Journal of Food Science & Technology 2016, 51 (5) , 1140-1149. https://doi.org/10.1111/ijfs.13091
    55. Chan Wang, Bo Wang, Bo Li. Bioavailability of peptides from casein hydrolysate in vitro: Amino acid compositions of peptides affect the antioxidant efficacy and resistance to intestinal peptidases. Food Research International 2016, 81 , 188-196. https://doi.org/10.1016/j.foodres.2015.12.013
    56. Ye Zou, Wei Wang, Qian Li, Yao Chen, Daheng Zheng, Yanmin Zou, Min Zhang, Ting Zhao, Guanghua Mao, Weiwei Feng, Xiangyang Wu, Liuqing Yang. Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochemistry 2016, 51 (3) , 431-443. https://doi.org/10.1016/j.procbio.2015.12.011
    57. Z. F. Bhat, Sunil Kumar, Hina Fayaz Bhat. Bioactive peptides of animal origin: a review. Journal of Food Science and Technology 2015, 52 (9) , 5377-5392. https://doi.org/10.1007/s13197-015-1731-5
    58. Go Eun Ha, Oun Ki Chang, Gi Sung Han, Jun Sang Ham, Beom-Young Park, Seok-Geun Jeong. Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain. Korean Journal for Food Science of Animal Resources 2015, 35 (3) , 360-369. https://doi.org/10.5851/kosfa.2015.35.3.360
    59. Ru Song, Rongbian Wei, Hongyu Luo. Biochemical Properties and Stability of Antioxidative Activity of Half-Fin Anchovy ( Setipinna taty ) Fermented Product. Journal of Aquatic Food Product Technology 2015, 24 (4) , 397-410. https://doi.org/10.1080/10498850.2013.782519
    60. Aurora García-Tejedor, Laura Sánchez-Rivera, Isidra Recio, Juan B. Salom, Paloma Manzanares. Dairy Debaryomyces hansenii strains produce the antihypertensive casein-derived peptides LHLPLP and HLPLP. LWT - Food Science and Technology 2015, 61 (2) , 550-556. https://doi.org/10.1016/j.lwt.2014.12.019
    61. Sami Saadi, Nazamid Saari, Farooq Anwar, Azizah Abdul Hamid, Hasanah Mohd Ghazali. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnology Advances 2015, 33 (1) , 80-116. https://doi.org/10.1016/j.biotechadv.2014.12.003
    62. Cristian De Gobba, Gorazd Tompa, Jeanette Otte. Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacterium ikkense. Food Chemistry 2014, 165 , 205-215. https://doi.org/10.1016/j.foodchem.2014.05.082
    63. Francisco Gilberto Herrera Chalé, Jorge Carlos Ruiz Ruiz, Juan José Acevedo Fernández, David Abram Betancur Ancona, Maira Rubi Segura Campos. ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins. Process Biochemistry 2014, 49 (10) , 1691-1698. https://doi.org/10.1016/j.procbio.2014.06.021
    64. Giovanna Di Pierro, Martina B. O’Keeffe, Alexey Poyarkov, Giovanna Lomolino, Richard J. FitzGerald. Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase. Food Chemistry 2014, 156 , 305-311. https://doi.org/10.1016/j.foodchem.2014.01.080
    65. A. Pauciullo, I.J. Giambra, L. Iannuzzi, G. Erhardt. The β-casein in camels: molecular characterization of the CSN2 gene, promoter analysis and genetic variability. Gene 2014, 547 (1) , 159-168. https://doi.org/10.1016/j.gene.2014.06.055
    66. Kyu-Ho Han, Kenichiro Shimada, Toru Hayakawa, Taek Joon Yoon, Michihiro Fukushima. Porcine Splenic Hydrolysate has Antioxidant Activity in vivo and in vitro. Korean Journal for Food Science of Animal Resources 2014, 34 (3) , 325-332. https://doi.org/10.5851/kosfa.2014.34.3.325
    67. Nayereh Sabokbar, Faramarz Khodaiyan, Marzieh Moosavi-Nasab. Optimization of processing conditions to improve antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains. Journal of Food Science and Technology 2014, 78 https://doi.org/10.1007/s13197-014-1397-4
    68. Bimlesh Mann, Anuradha Kumari, Rajesh Kumar, Rajan Sharma, Kishore Prajapati, Shaik Mahboob, S. Athira. Antioxidant activity of whey protein hydrolysates in milk beverage system. Journal of Food Science and Technology 2014, 230 https://doi.org/10.1007/s13197-014-1361-3
    69. Tawipat Vijitpunyaruk, Chockchai Theerakulkait. Preparation of alcalase hydrolysed rice bran protein concentrate and its inhibitory effect on soybean lipoxygenase activity. International Journal of Food Science & Technology 2014, 49 (2) , 501-507. https://doi.org/10.1111/ijfs.12329
    70. Xin-Huai Zhao, Yu Fu, Nan Yue. In vitro cytoprotection of modified casein hydrolysates by plastein reaction on rat hepatocyte cells. CyTA - Journal of Food 2014, 12 (1) , 40-47. https://doi.org/10.1080/19476337.2013.792296
    71. Cid Gonzalez-Gonzalez, Trevor Gibson, Paula Jauregi. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. International Journal of Food Microbiology 2013, 167 (2) , 131-137. https://doi.org/10.1016/j.ijfoodmicro.2013.09.002
    72. O.K. Chang, K.-H. Seol, S.-G. Jeong, M.-H. Oh, B.-Y. Park, C. Perrin, J.-S. Ham. Casein hydrolysis by Bifidobacterium longum KACC91563 and antioxidant activities of peptides derived therefrom. Journal of Dairy Science 2013, 96 (9) , 5544-5555. https://doi.org/10.3168/jds.2013-6687
    73. Dereck E.W. Chatterton, Duc Ninh Nguyen, Stine Brandt Bering, Per Torp Sangild. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. The International Journal of Biochemistry & Cell Biology 2013, 45 (8) , 1730-1747. https://doi.org/10.1016/j.biocel.2013.04.028
    74. Fatemeh Bamdad, Lingyun Chen. Antioxidant capacities of fractionated barley hordein hydrolysates in relation to peptide structures. Molecular Nutrition & Food Research 2013, 57 (3) , 493-503. https://doi.org/10.1002/mnfr.201200252
    75. Neda Khatib, Mahdi Kadivar. WITHDRAWN: Bioactive peptides derived from meat proteins. Peptides 2012, 18 https://doi.org/10.1016/j.peptides.2012.07.007
    76. Ignacio Ricci-Cabello, Manuel Olalla Herrera, Reyes Artacho. Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutrition Reviews 2012, 70 (4) , 241-255. https://doi.org/10.1111/j.1753-4887.2011.00448.x
    77. Bartłomiej Dziuba, Piotr Minkiewicz, Małgorzata Darewicz. Database of Biologically Active Proteins and Peptides. 2012, 331-374. https://doi.org/10.1201/b11768-14
    78. Maryam Salami, Ali Akbar Moosavi-Movahedi, Faezeh Moosavi-Movahedi, Mohammad Reza Ehsani, Reza Yousefi, Mohammad Farhadi, Amir Niasari-Naslaji, Ali Akbar Saboury, Jean-Marc Chobert, Thomas Haertlé. Biological activity of camel milk casein following enzymatic digestion. Journal of Dairy Research 2011, 78 (4) , 471-478. https://doi.org/10.1017/S0022029911000628
    79. Anusha G.P. Samaranayaka, Eunice C.Y. Li-Chan. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods 2011, 3 (4) , 229-254. https://doi.org/10.1016/j.jff.2011.05.006
    80. Małgorzata Darewicz, Bartłomiej Dziuba, Piotr Minkiewicz, Jerzy Dziuba. The Preventive Potential of Milk and Colostrum Proteins and Protein Fragments. Food Reviews International 2011, 27 (4) , 357-388. https://doi.org/10.1080/87559129.2011.563396
    81. Himali Samaraweera, Wan‐gang Zhang, Eun Joo Lee, Dong U Ahn. Egg Yolk Phosvitin and Functional Phosphopeptides—Review. Journal of Food Science 2011, 76 (7) https://doi.org/10.1111/j.1750-3841.2011.02291.x
    82. S. Mills, C. Stanton, C. Hill, R.P. Ross. New Developments and Applications of Bacteriocins and Peptides in Foods. Annual Review of Food Science and Technology 2011, 2 (1) , 299-329. https://doi.org/10.1146/annurev-food-022510-133721
    83. Carmela De Simone, Pasquale Ferranti, Gianluca Picariello, Ilaria Scognamiglio, Alessandra Dicitore, Francesco Addeo, Lina Chianese, Paola Stiuso. Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line. Molecular Nutrition & Food Research 2011, 55 (2) , 229-238. https://doi.org/10.1002/mnfr.201000074
    84. ZongWen Wang, WenJian Wang, Wei Wang, LiangJun Xu, GuoNan Chen, FengFu Fu. Separation and determination of β‐casomorphins by using glass microfluidic chip electrophoresis together with laser‐induced fluorescence detection. Journal of Separation Science 2011, 34 (2) , 196-201. https://doi.org/10.1002/jssc.201000634
    85. Xin Huai Zhao, Dan Wu, Tie Jing Li. Preparation and radical scavenging activity of papain-catalyzed casein plasteins. Dairy Science & Technology 2010, 90 (5) , 521-535. https://doi.org/10.1051/dst/2009054
    86. Adriena Dryáková, Anne Pihlanto, Pertti Marnila, Ladislav Čurda, Hannu J. T. Korhonen. Antioxidant properties of whey protein hydrolysates as measured by three methods. European Food Research and Technology 2010, 230 (6) , 865-874. https://doi.org/10.1007/s00217-010-1231-9
    87. Martha Phelan, Aisling Aherne, Richard J. FitzGerald, Nora M. O'Brien. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal 2009, 19 (11) , 643-654. https://doi.org/10.1016/j.idairyj.2009.06.001
    88. A. Santillo, A.L. Kelly, C. Palermo, A. Sevi, M. Albenzio. Role of indigenous enzymes in proteolysis of casein in caprine milk. International Dairy Journal 2009, 19 (11) , 655-660. https://doi.org/10.1016/j.idairyj.2009.06.011
    89. Young W. Park. Bioactive Components in Goat Milk. 2009, 43-81. https://doi.org/10.1002/9780813821504.ch3
    90. A. Zulueta, A. Maurizi, A. Frígola, M.J. Esteve, R. Coli, G. Burini. Antioxidant capacity of cow milk, whey and deproteinized milk. International Dairy Journal 2009, 19 (6-7) , 380-385. https://doi.org/10.1016/j.idairyj.2009.02.003
    91. Martha Phelan, S. Aisling Aherne-Bruce, Dara O'Sullivan, Richard J. FitzGerald, Nora M. O'Brien. Potential bioactive effects of casein hydrolysates on human cultured cells. International Dairy Journal 2009, 19 (5) , 279-285. https://doi.org/10.1016/j.idairyj.2008.12.004
    92. E. Haque, R. Chand, S. Kapila. Biofunctional Properties of Bioactive Peptides of Milk Origin. Food Reviews International 2008, 25 (1) , 28-43. https://doi.org/10.1080/87559120802458198
    93. Kati Erdmann, Belinda W.Y. Cheung, Henning Schröder. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of Nutritional Biochemistry 2008, 19 (10) , 643-654. https://doi.org/10.1016/j.jnutbio.2007.11.010
    94. José Ángel Gómez-Ruiz, Iván López-Expósito, Anne Pihlanto, Mercedes Ramos, Isidra Recio. Antioxidant activity of ovine casein hydrolysates: identification of active peptides by HPLC–MS/MS. European Food Research and Technology 2008, 227 (4) , 1061-1067. https://doi.org/10.1007/s00217-008-0820-3
    95. Niels Peter Möller, Katharina Elisabeth Scholz-Ahrens, Nils Roos, Jürgen Schrezenmeir. Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition 2008, 47 (4) , 171-182. https://doi.org/10.1007/s00394-008-0710-2
    96. Ryan J. Elias, Sarah S. Kellerby, Eric A. Decker. Antioxidant Activity of Proteins and Peptides. Critical Reviews in Food Science and Nutrition 2008, 48 (5) , 430-441. https://doi.org/10.1080/10408390701425615
    97. Juliet Lobo-Alfonso, Paul Price, David Jayme. Benefits and Limitations of Protein Hydrolysates as Components of Serum-Free Media for Animal Cell Culture Applications. 2008, 55-78. https://doi.org/10.1007/978-1-4020-6674-0_4
    98. GUAN-WEN CHEN, JENN-SHOU TSAI, BONNIE SUN PAN. CARDIOVASCULAR EFFECTS OF WHEY FROM PROZYME 6-FACILITATED LACTIC ACID BACTERIA FERMENTATION OF MILK. Journal of Food Biochemistry 2007, 31 (5) , 639-655. https://doi.org/10.1111/j.1745-4514.2007.00135.x
    99. Christian E.H. Schmelzer, Regina Schöps, Lucy Reynell, Renate Ulbrich-Hofmann, Reinhard H.H. Neubert, Klaus Raith. Peptic digestion of β-casein. Journal of Chromatography A 2007, 1166 (1-2) , 108-115. https://doi.org/10.1016/j.chroma.2007.08.015
    100. Maria Hayes, Catherine Stanton, Gerald F. Fitzgerald, R. Paul Ross. Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnology Journal 2007, 2 (4) , 435-449. https://doi.org/10.1002/biot.200700045
    Load all citations

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2001, 49, 1, 287–294
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf000392t
    Published December 1, 2000
    Copyright © 2001 American Chemical Society

    Article Views

    949

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.