ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Metabolic Fate of Tolbutamide in Man and in the Rat

Cite this: J. Med. Chem. 1966, 9, 4, 507–510
Publication Date (Print):July 1, 1966
https://doi.org/10.1021/jm00322a014
    ACS Legacy Archive

    Article Views

    409

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 108 publications.

    1. Jinli Zhang, Anyuan Liu, You Han, Yan Ren, Junbo Gong, Wei Li, and Jingkang Wang . Effects of Self-Assembled Monolayers on Selective Crystallization of Tolbutamide. Crystal Growth & Design 2011, 11 (12) , 5498-5506. https://doi.org/10.1021/cg201083r
    2. Dennis A. Smith and R. Scott Obach . Metabolites in Safety Testing (MIST): Considerations of Mechanisms of Toxicity with Dose, Abundance, and Duration of Treatment. Chemical Research in Toxicology 2009, 22 (2) , 267-279. https://doi.org/10.1021/tx800415j
    3. John E. Toth,, Gerald B. Grindey,, William J. Ehlhardt,, James E. Ray,, George B. Boder,, Jesse R. Bewley,, Kim K. Klingerman,, Susan B. Gates,, Sharon M. Rinzel,, Richard M. Schultz,, Leonard C. Weir, and, John F. Worzalla. Sulfonimidamide Analogs of Oncolytic Sulfonylureas,1. Journal of Medicinal Chemistry 1997, 40 (6) , 1018-1025. https://doi.org/10.1021/jm960673l
    4. . NONRODENT ANIMAL STUDIES. 2023, 293-330. https://doi.org/10.1002/9781119755883.ch14
    5. Gianluca Catucci, Gianfranco Gilardi, Sheila J. Sadeghi. Drug Metabolism: Other Phase I Enzymes. 2022, 509-562. https://doi.org/10.1016/B978-0-12-820472-6.00106-7
    6. Shotaro Uehara, Hiroshi Suemizu, Hiroshi Yamazaki. Cytochrome P450s in chimeric mice with humanized liver. 2022, 307-328. https://doi.org/10.1016/bs.apha.2022.05.004
    7. Shotaro Uehara, Nao Yoneda, Yuichiro Higuchi, Hiroshi Yamazaki, Hiroshi Suemizu. Methyl-hydroxylation and subsequent oxidation to produce carboxylic acid is the major metabolic pathway of tolbutamide in chimeric TK-NOG mice transplanted with human hepatocytes. Xenobiotica 2021, 51 (5) , 582-589. https://doi.org/10.1080/00498254.2021.1875515
    8. Deepak K. Dalvie, Bernard Testa. Principles of Drug Metabolism. 2021, 1-139. https://doi.org/10.1002/0471266949.bmc033.pub3
    9. Li Di, Amanda Balesano, Samantha Jordan, Sophia M. Shi. The Role of Alcohol Dehydrogenase in Drug Metabolism: Beyond Ethanol Oxidation. The AAPS Journal 2021, 23 (1) https://doi.org/10.1208/s12248-020-00536-y
    10. Babiker M. El-Haj, Samrein B.M. Ahmed. Metabolic-Hydroxy and Carboxy Functionalization of Alkyl Moieties in Drug Molecules: Prediction of Structure Influence and Pharmacologic Activity. Molecules 2020, 25 (8) , 1937. https://doi.org/10.3390/molecules25081937
    11. Muhammad Imran, Abdul Hameed, Shafiullah  , Rahman M. Hafizur, Imdad Ali, Talat Roome, Muhammad Raza Shah. Fabrication of Xanthan stabilized green gold nanoparticles based tolbutamide delivery system for enhanced insulin secretion in mice pancreatic islets. Journal of Macromolecular Science, Part A 2018, 55 (11-12) , 729-735. https://doi.org/10.1080/10601325.2018.1510290
    12. Shuhei Fukuno, Katsuhito Nagai, Ayano Horii, Kohei Yamamoto, Hiroki Konishi. Pharmacokinetics and metabolic elimination of tolbutamide in female rats: Comparison with male rats. Biopharmaceutics & Drug Disposition 2018, 39 (7) , 321-327. https://doi.org/10.1002/bdd.2148
    13. Everett J. Perkins, Maria Posada, P. Kellie Turner, Jill Chappell, Wee Teck Ng, Chris Twelves. Physiologically Based Pharmacokinetic Modelling of Cytochrome P450 2C9-Related Tolbutamide Drug Interactions with Sulfaphenazole and Tasisulam. European Journal of Drug Metabolism and Pharmacokinetics 2018, 43 (3) , 355-367. https://doi.org/10.1007/s13318-017-0447-5
    14. Guo-Fu Li, Qing-Shan Zheng. Modeling Drug Disposition and Drug–Drug Interactions Through Hypothesis-Driven Physiologically Based Pharmacokinetics: a Reversal Translation Perspective. European Journal of Drug Metabolism and Pharmacokinetics 2018, 43 (3) , 369-371. https://doi.org/10.1007/s13318-017-0452-8
    15. Yi-an Bi, Sumathy Mathialagan, Laurie Tylaska, Myra Fu, Julie Keefer, Anna Vildhede, Chester Costales, A. David Rodrigues, Manthena V. S. Varma. Organic Anion Transporter 2 Mediates Hepatic Uptake of Tolbutamide, a CYP2C9 Probe Drug. Journal of Pharmacology and Experimental Therapeutics 2018, 364 (3) , 390-398. https://doi.org/10.1124/jpet.117.245951
    16. T. E. Ballard, S. Wang, L. M. Cox, M. A. Moen, S. Krzyzewski, O. Ukairo, R. S. Obach. Application of a Micropatterned Cocultured Hepatocyte System To Predict Preclinical and Human-Specific Drug Metabolism. Drug Metabolism and Disposition 2016, 44 (2) , 172-179. https://doi.org/10.1124/dmd.115.066688
    17. Xinmin Wang, Yunru Peng, Xinyue Jing, Dawei Qian, Yuping Tang, Jin-ao Duan. In vitro and in vivo assessment of CYP2C9-mediated herb–herb interaction of Euphorbiae Pekinensis Radix and Glycyrrhizae Radix. Frontiers in Pharmacology 2014, 5 https://doi.org/10.3389/fphar.2014.00186
    18. Jiangbo Du. Tolbutamide. 2013, 1-4. https://doi.org/10.1002/9781118541203.xen508
    19. Jian Yin, Qin Meng. Use of primary rat hepatocytes in the gel entrapment culture to predict in vivo biliary excretion. Xenobiotica 2012, 42 (5) , 417-428. https://doi.org/10.3109/00498254.2011.633716
    20. P. Subra-Paternault, D. Vrel, C. Roy. Coprecipitation on slurry to prepare drug–silica-polymer formulations by compressed antisolvent. The Journal of Supercritical Fluids 2012, 63 , 69-80. https://doi.org/10.1016/j.supflu.2012.01.003
    21. Scott R. Obach, Deepak K. Dalvie, Gregory S. Walker. Identification of Drug Metabolites. 2012, 1-55. https://doi.org/10.1002/9780470921920.edm052
    22. Amanda J. Jenkins, Jimmie L. Valentine. Antimicrobial Drugs. 2012, 385-411. https://doi.org/10.1007/978-1-61779-222-9_10
    23. Zenzaburo Tozuka, Shinsuke Aoyama, Kohei Nozawa, Shoji Akita, Toshinari Oh-Hara, Yasuhisa Adachi, Shin-Ichi Ninomiya. Comprehensive Quantitative and Qualitative Liquid Chromatography–Radioisotope–Mass Spectrometry Analysis for Safety Testing of Tolbutamide Metabolites Without Standard Samples. Journal of Pharmaceutical Sciences 2011, 100 (9) , 4024-4036. https://doi.org/10.1002/jps.22646
    24. Arlington A Forist, Ray W Judy. 1-(Hexahydroazepin-1-yl)-3- p -carboxyphenylsulphonylurea — a metabolite of tolazamide in man. Journal of Pharmacy and Pharmacology 2011, 26 (7) , 565-565. https://doi.org/10.1111/j.2042-7158.1974.tb09344.x
    25. Kanetoshi Washio, Osami Makaya, Hitoshi Sasaki, Koyo Nishida, Junzo Nakamura, Juichiro Shibasaki. A new aspect of tolbutamide metabolism in the rabbit: the role of 1-butyl-3-( p -formylphenyl)sulphonylurea. Journal of Pharmacy and Pharmacology 2011, 45 (3) , 231-233. https://doi.org/10.1111/j.2042-7158.1993.tb05541.x
    26. S Toon, B L Holt, F G P Mullins, A Khan. Effects of Cimetidine, Ranitidine and Omeprazole on Tolbutamide Pharmacokinetics. Journal of Pharmacy and Pharmacology 2011, 47 (1) , 85-88. https://doi.org/10.1111/j.2042-7158.1995.tb05740.x
    27. Kazuhisa Ishihara, Hirotaka Kushida, Mitsutoshi Yuzurihara, Yoko Wakui, Toshihiko Yanagisawa, Hideo Kamei, Shigeru Ohmori, Mitsukazu Kitada. Interaction of Drugs and Chinese Herbs: Pharmacokinetic Changes of Tolbutamide and Diazepam Caused by Extract of Angelica dahurica. Journal of Pharmacy and Pharmacology 2010, 52 (8) , 1023-1029. https://doi.org/10.1211/0022357001774750
    28. Gen Hasegawa, Takao Komasaka, Rui Bando, Yasuo Yoshihashi, Etsuo Yonemochi, Kotaro Fujii, Hidehiro Uekusa, Katsuhide Terada. Reevaluation of solubility of tolbutamide and polymorphic transformation from Form I to unknown crystal form. International Journal of Pharmaceutics 2009, 369 (1-2) , 12-18. https://doi.org/10.1016/j.ijpharm.2008.10.018
    29. P. Subra-Paternault, C. Roy, D. Vrel, A. Vega-Gonzalez, C. Domingo. Solvent effect on tolbutamide crystallization induced by compressed CO2 as antisolvent. Journal of Crystal Growth 2007, 309 (1) , 76-85. https://doi.org/10.1016/j.jcrysgro.2007.09.010
    30. H. Umesha Shetty, Sami S. Zoghbi, Jeih-San Liow, Masanori Ichise, Jinsoo Hong, John L. Musachio, Christer Halldin, Jurgen Seidel, Robert B. Innis, Victor W. Pike. Identification and regional distribution in rat brain of radiometabolites of the dopamine transporter PET radioligand [11C]PE2I. European Journal of Nuclear Medicine and Molecular Imaging 2007, 34 (5) , 667-678. https://doi.org/10.1007/s00259-006-0277-1
    31. William A. Arnold, Kristopher McNeill. Chapter 3.2 Transformation of pharmaceuticals in the environment: Photolysis and other abiotic processes. 2007, 361-385. https://doi.org/10.1016/S0166-526X(07)50011-5
    32. Simon Constable. Pharmacogenetics and Metabolic Disease. 2006, 243-272. https://doi.org/10.3109/9781420016697-13
    33. Toshiro Niwa, Shinji Honda, Kiyoharu Shirakawa, Yasushi Imamura, Sadayuki Osaki, Akira Takagi. Drug interaction of fluvoxamine, a selective serotonin reuptake inhibitor. Folia Pharmacologica Japonica 2006, 128 (2) , 93-103. https://doi.org/10.1254/fpj.128.93
    34. Julia Kirchheiner, Ivar Roots, Mark Goldammer, Bernd Rosenkranz, J??rgen Brockm??ller. Effect of Genetic Polymorphisms in Cytochrome P450 (CYP) 2C9 and CYP2C8 on the Pharmacokinetics of Oral Antidiabetic Drugs. Clinical Pharmacokinetics 2005, 44 (12) , 1209-1225. https://doi.org/10.2165/00003088-200544120-00002
    35. J.L.C.M Dorne, K Walton, A.G Renwick. Human variability for metabolic pathways with limited data (CYP2A6, CYP2C9, CYP2E1, ADH, esterases, glycine and sulphate conjugation). Food and Chemical Toxicology 2004, 42 (3) , 397-421. https://doi.org/10.1016/j.fct.2003.10.003
    36. Amanda J. Jenkins, Jimmie L. Valentine. Antimicrobial Drugs. 2004, 295-318. https://doi.org/10.1007/978-1-59259-654-6_8
    37. U. I. Schwarz. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. European Journal of Clinical Investigation 2003, 33 (s2) , 23-30. https://doi.org/10.1046/j.1365-2362.33.s2.6.x
    38. Craig R. Lee, John A. Pieper, Alan L. Hinderliter, Reginald F. Frye, Joyce A. Blaisdell, Joyce A. Goldstein. Tolbutamide, Flurbiprofen, and Losartan as Probes of CYP2C9 Activity in Humans. The Journal of Clinical Pharmacology 2003, 43 (1) , 84-91. https://doi.org/10.1177/0091270002239710
    39. Julia Kirchheiner, Steffen Bauer, Ingolf Meineke, Wolfgang Rohde, Verena Prang, Christian Meisel, Ivor Roots, Jurgen Brockmoller. . Pharmacogenetics 2002, 12 (2) , 101-109. https://doi.org/10.1097/00008571-200203000-00004
    40. David J. Carlile, Nancy Hakooz, Martin K. Bayliss, J. Brian Houston. Microsomal prediction of in vivo clearance of CYP2C9 substrates in humans. British Journal of Clinical Pharmacology 1999, 47 (6) , 625-635. https://doi.org/10.1046/j.1365-2125.1999.00935.x
    41. Kenya Kimura, Fumitoshi Hirayama, Kaneto Uekama. Characterization of tolbutamide polymorphs (burger's forms II and IV) and polymorphic transition behavior. Journal of Pharmaceutical Sciences 1999, 88 (4) , 385-391. https://doi.org/10.1021/js980376z
    42. John O. Miners, Donald J. Birkett. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. British Journal of Clinical Pharmacology 1998, 45 (6) , 525-538. https://doi.org/10.1046/j.1365-2125.1998.00721.x
    43. K. Ito, T. Iwatsubo, S. Kanamitsu, Y. Nakajima, Y. Sugiyama. QUANTITATIVE PREDICTION OF IN VIVO DRUG CLEARANCE AND DRUG INTERACTIONS FROM IN VITRO DATA ON METABOLISM, TOGETHER WITH BINDING AND TRANSPORT. Annual Review of Pharmacology and Toxicology 1998, 38 (1) , 461-499. https://doi.org/10.1146/annurev.pharmtox.38.1.461
    44. L. Groop, G. Neugebauer. Clinical Pharmacology of Sulfonylureas. 1996, 199-259. https://doi.org/10.1007/978-3-662-09127-2_9
    45. John O. Miners, Donald J. Birkett. [15] Use of tolbutamide as a substrate probe for human hepatic cytochrome P450 2C9. 1996, 139-145. https://doi.org/10.1016/S0076-6879(96)72017-7
    46. William J. Ehlhardt, Hugh R. Sullivan, Paul G. Wood, Joseph M. Woodland, Marta Hamilton, Cristi Hamilton, David Cornpropst, Gerald B. Grindey, John F. Worzalla, Jesse R. Bewley, Glen C. Todd, J. Jeffry Howbert. Pharmacokinetics of the Anticancer Agent Sulofenur in Mice, Rats, Monkeys, and Dogs. Journal of Pharmaceutical Sciences 1993, 82 (7) , 683-688. https://doi.org/10.1002/jps.2600820703
    47. John W. Ho, David E. Moody. Determination of tolbutamide hydroxylation in rat liver microsomes by high-performance liquid chromatography: Effect of psychoactive drugs on in vitro activity. Life Sciences 1993, 52 (1) , 21-28. https://doi.org/10.1016/0024-3205(93)90284-A
    48. Milo Gibaldi. Drug Interactions: Part II. Annals of Pharmacotherapy 1992, 26 (6) , 829-834. https://doi.org/10.1177/106002809202600616
    49. Maurice E. Veronese, Peter I. Mackenzie, Christopher J. Doecke, Michael E. McManus, John O. Miners, Donald J. Birkett. Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochemical and Biophysical Research Communications 1991, 175 (3) , 1112-1118. https://doi.org/10.1016/0006-291X(91)91680-B
    50. CJ Doecke, ME Veronese, SM Pond, JO Miners, DJ Birkett, LN Sansom, ME McManus. Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes.. British Journal of Clinical Pharmacology 1991, 31 (2) , 125-130. https://doi.org/10.1111/j.1365-2125.1991.tb05499.x
    51. Satish I. Rao, Michael W. Duffel. Benzylic alcohols as stereospecific substrates and inhibitors for aryl sulfotransferase. Chirality 1991, 3 (2) , 104-111. https://doi.org/10.1002/chir.530030205
    52. Günter Seyffart. T. 1991, 558-603. https://doi.org/10.1007/978-94-011-3804-8_20
    53. Diane E. Matthew, J.Brian Houston. Drug metabolizing capacity in vitro and in vivo—II. Biochemical Pharmacology 1990, 40 (4) , 751-758. https://doi.org/10.1016/0006-2952(90)90311-8
    54. Juzar S. Kaka, Khalil Al-Khamis, Musbah O. M. Tanira. Evaluation of hepatic dysfunction in endotoxin pretreated rats using tolbutamide as a marker. European Journal of Drug Metabolism and Pharmacokinetics 1990, 15 (3) , 203-209. https://doi.org/10.1007/BF03190205
    55. A. K. Miller, J. Adir, R. E. Vestal. Excretion of tolbutamide metabolites in young and old subjects. European Journal of Clinical Pharmacology 1990, 38 (5) , 523-524. https://doi.org/10.1007/BF02336696
    56. M. Barry, J. Feely. Enzyme induction and inhibition. Pharmacology & Therapeutics 1990, 48 (1) , 71-94. https://doi.org/10.1016/0163-7258(90)90019-X
    57. B. K. Park, N. R. Kitteringham. Assessment of enzyme induction and enzyme inhibition in humans: toxicological implications. Xenobiotica 1990, 20 (11) , 1171-1185. https://doi.org/10.3109/00498259009046837
    58. Serge St-Hilaire, Pierre M. Belanger. Simultaneous Determinations of Tolbutamide and its Hydroxy and Carboxy Metabolites in Serum and Urine: Application to Pharmacokinetic Studies of Tolbutamide in the Rat. Journal of Pharmaceutical Sciences 1989, 78 (10) , 863-866. https://doi.org/10.1002/jps.2600781017
    59. D.J. Back, M.L'E. Orme. Genetic factors influencing the metabolism of tolbutamide. Pharmacology & Therapeutics 1989, 44 (2) , 147-155. https://doi.org/10.1016/0163-7258(89)90064-8
    60. John O. Miners, Kerry J. Smith, Richard A. Robson, Michael E. McManus, Maurice E. Veronese, Donald J. Birkett. Tolbutamide hydroxylation by human liver microsomes. Biochemical Pharmacology 1988, 37 (6) , 1137-1144. https://doi.org/10.1016/0006-2952(88)90522-9
    61. G. I. Adebayo, H. A. B. Coker. Lack of efficacy of cimetidine and ranitidine as inhibitors of tolbutamide metabolism. European Journal of Clinical Pharmacology 1988, 34 (6) , 653-656. https://doi.org/10.1007/BF00615234
    62. HS Purba, DJ Back, ML Orme. Tolbutamide 4‐hydroxylase activity of human liver microsomes: effect of inhibitors.. British Journal of Clinical Pharmacology 1987, 24 (2) , 230-234. https://doi.org/10.1111/j.1365-2125.1987.tb03167.x
    63. G.A. Cook. The hypoglycemic sulfonylureas glyburide and tolbutamide inhibit fatty acid oxidation by inhibiting carnitine palmitoyltransferase.. Journal of Biological Chemistry 1987, 262 (11) , 4968-4972. https://doi.org/10.1016/S0021-9258(18)61140-8
    64. G. F. Peart, J. Boutagy, G. M. Shenfield. Lack of relationship between tolbutamide metabolism and debrisoquine oxidation phenotype. European Journal of Clinical Pharmacology 1987, 33 (4) , 397-402. https://doi.org/10.1007/BF00637637
    65. Teruo Shiba, Hiroshi Kajinuma, Kazuo Suzuki, Ryoko Hagura, Atsuo Kawai, Hideaki Katagiri, Hiroyuki Sando, Wataru Shirakawa, Kinori Kosaka, Nobusada Kuzuya. Serum gliclazide concentration in diabetic patients. Diabetes Research and Clinical Practice 1986, 2 (5) , 301-306. https://doi.org/10.1016/S0168-8227(86)80007-9
    66. Emily W. Cate, John F. Rogers, J. Robert Powell. Inhibition of Tolbutamide Elimination by Cimetidine but not Ranitidine. The Journal of Clinical Pharmacology 1986, 26 (5) , 372-377. https://doi.org/10.1002/j.1552-4604.1986.tb03540.x
    67. Julie Keal, Creina Stockley, Andrew Somogyi. Simultaneous determination of tolbutamide and its hydroxy and carboxy metabolites in plasma and urine by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications 1986, 378 , 237-241. https://doi.org/10.1016/S0378-4347(00)80719-7
    68. LM Wing, JO Miners. Cotrimoxazole as an inhibitor of oxidative drug metabolism: effects of trimethoprim and sulphamethoxazole separately and combined on tolbutamide disposition.. British Journal of Clinical Pharmacology 1985, 20 (5) , 482-485. https://doi.org/10.1111/j.1365-2125.1985.tb05102.x
    69. J. O. MINERS, L. M. H. WING, D. J. BIRKETT. NORMAL METABOLISM OF DEBRISOQUINE AND THEOPHYLLINE IN A SLOW TOLBUTAMIDE METABOLISER. Australian and New Zealand Journal of Medicine 1985, 15 (3) , 348-349. https://doi.org/10.1111/j.1445-5994.1985.tb04052.x
    70. T. Oida, K. Yoshida, A. Kagemoto, Y. Sekine, T. Higashijima. The metabolism of gliclazide in man. Xenobiotica 1985, 15 (1) , 87-96. https://doi.org/10.3109/00498258509045338
    71. JO Miners, LM Wing, KJ Lillywhite, KJ Smith. Failure of ‘therapeutic’ doses of beta‐adrenoceptor antagonists to alter the disposition of tolbutamide and lignocaine.. British Journal of Clinical Pharmacology 1984, 18 (6) , 853-860. https://doi.org/10.1111/j.1365-2125.1984.tb02555.x
    72. D.J. Back, F. Sutcliffe, J.F. Tjia. Tolbutamide as a model drug for the study of enzyme induction and enzyme inhibition in the rat. British Journal of Pharmacology 1984, 81 (3) , 557-562. https://doi.org/10.1111/j.1476-5381.1984.tb10109.x
    73. William L. Schary, Malcolm Rowland. Protein binding and hepatic clearance: Studies with tolbutamide, a drug of low intrinsic clearance, in the isolated perfused rat liver preparation. Journal of Pharmacokinetics and Biopharmaceutics 1983, 11 (3) , 225-243. https://doi.org/10.1007/BF01061866
    74. Hisashi Miyazaki, Toshihiko Fujii, Koji Yoshida, Satoshi Arakawa, Hideo Furukawa, Hirosato Suzuki, Akira Kagemoto, Masahisa Hashimoto, Nanaya Tamaki. Disposition and metabolism of [3H]gliclazide in rats. European Journal of Drug Metabolism and Pharmacokinetics 1983, 8 (2) , 117-131. https://doi.org/10.1007/BF03188737
    75. BK Park. Assessment of the drug metabolism capacity of the liver.. British Journal of Clinical Pharmacology 1982, 14 (5) , 631-651. https://doi.org/10.1111/j.1365-2125.1982.tb04950.x
    76. J. O. Miners, T. Foenander, S. Wanwimolruk, A. S. Gallus, D. J. Birkett. The effect of sulphinpyrazone on oxidative drug metabolism in man: Inhibition of tolbutamide elimination. European Journal of Clinical Pharmacology 1982, 22 (4) , 321-326. https://doi.org/10.1007/BF00548400
    77. Osamu Sugita, Yasufumi Sawada, Yuichi Sugiyama, Tatsuji Iga, Manabu Hanano. Prediction of drug-drug interaction from In vitro plasma protein binding and metabolism. Biochemical Pharmacology 1981, 30 (24) , 3347-3354. https://doi.org/10.1016/0006-2952(81)90611-0
    78. Gursharan Raghow, Marvin C. Meyer. High-performance Liquid Chromatographic Assay of Tolbutamide and Carboxytolbutamide in Human Plasma. Journal of Pharmaceutical Sciences 1981, 70 (10) , 1166-1168. https://doi.org/10.1002/jps.2600701022
    79. G. Sartor, A. Melander, B. Scherst�n, E. W�hlin-Boll. Serum glibenclamide in diabetic patients, and influence of food on the kinetics and effects of glibenclamide. Diabetologia 1980, 18 (1) , 17-22. https://doi.org/10.1007/BF01228296
    80. T.G. Geary, B.N. La Du. GENETIC AND ENVIRONMENTAL INFLUENCES ON TOLBUTAMIDE METABOLISM. 1980, 837-840. https://doi.org/10.1016/B978-0-12-187702-6.50043-8
    81. J. Scott, A. D. Henderson, P. L. Poffenbarger. Genetic Control of Tolbutamide Metabolism in Humans. 1979, 361-370. https://doi.org/10.1007/978-1-4615-9110-8_53
    82. R. Kato. Characteristics and differences in the hepatic mixed function oxidase of different species. Pharmacology & Therapeutics 1979, 6 (1) , 41-98. https://doi.org/10.1016/0163-7258(79)90056-1
    83. B. Gach�lyi, A. K�ldor, Sz. Szeber�nyi. m-trifluoromethyl-?-ethylbenzhydrol: A new enzyme inducer. European Journal of Clinical Pharmacology 1978, 13 (4) , 299-302. https://doi.org/10.1007/BF00716366
    84. J.J. Thiessen, M. Rowland. Kinetics of Drug-Drug Interactions in Sheep: Tolbutarnide and Sulfadimethoxine. Journal of Pharmaceutical Sciences 1977, 66 (8) , 1063-1070. https://doi.org/10.1002/jps.2600660803
    85. E. J�hnchen, T. Meinertz, H. -J. Gilfrich, U. Groth. Pharmacokinetic analysis of the interaction between dicoumarol and tolbutamide in man. European Journal of Clinical Pharmacology 1976, 10 (5) , 349-356. https://doi.org/10.1007/BF00565625
    86. N. Carulli, F. Manenti, M. Ponz De Leon, A. Ferrari, G. Salvioli, M. Gallo. Alteration of Drug Metabolism During Cholestasis in Man*. European Journal of Clinical Investigation 1975, 5 (6) , 455-462. https://doi.org/10.1111/j.1365-2362.1975.tb02309.x
    87. Martin I. Blake, Henry L. Crespi, Joseph J. Katz. Studies with Deuterated Drugs. Journal of Pharmaceutical Sciences 1975, 64 (3) , 367-391. https://doi.org/10.1002/jps.2600640306
    88. N. Carulli, F. Manenti, M. Ponz de Leon, A. Ferrari, G. Salvioli, M. Gallo. Alteration of Drug Metabolism During Cholestasis in Man*. European Journal of Clinical Investigation 1975, 5 (1) , 455-462. https://doi.org/10.1111/j.1365-2362.1975.tb00477.x
    89. W. Zilly, D. D. Breimer, E. Richter. Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. European Journal of Clinical Pharmacology 1975, 9 (2-3) , 219-227. https://doi.org/10.1007/BF00614021
    90. Shaikh B. Matin, James B. Knight. The use of solid probe chemical ionization mass spectrometry and gas chromatography-chemical ionization mass spectrometry in quantitation of drugs in biological fluids. Determination of tolbutamide and its metabolites in human plasma. Biological Mass Spectrometry 1974, 1 (5) , 323-328. https://doi.org/10.1002/bms.1200010506
    91. W. Zilly, E. Bopp, B. Bürkl, E. Richter. Der Einfluß von Rifampicin auf die Pharmakokinetik von Tolbutamid bei Gesunden. 1974, 1538-1540. https://doi.org/10.1007/978-3-642-85449-1_482
    92. H. Lackner, G. Döring, K. Garre. NMR spectroscopic identification of sulfonamides from urine. Forensic Science 1974, 4 , 219-231. https://doi.org/10.1016/0300-9432(74)90111-3
    93. Malcolm Rowland, Shaikh B. Matin. Kinetics of drug-drug interactions. Journal of Pharmacokinetics and Biopharmaceutics 1973, 1 (6) , 553-567. https://doi.org/10.1007/BF01059791
    94. Harry Wesseling, Ineke Thurkow, Gerard J. Mulder. Effect of sulphonylureas (tolazamide, tolbutamide and chlorpropamide) on the metabolism of diphenylhydantoin in the rat. Biochemical Pharmacology 1973, 22 (23) , 3033-3040. https://doi.org/10.1016/0006-2952(73)90190-1
    95. S. B. Matin, M. Rowland. Simultaneous Determination of Tolbutamide and its Metabolites in Biological Fluids. Analytical Letters 1973, 6 (10) , 865-876. https://doi.org/10.1080/00032717308058164
    96. F.J. Darby, R.K. Grundy. The metabolism of [UREYL-14C] tolbutamide and in man. Life Sciences 1973, 13 (2) , 97-105. https://doi.org/10.1016/0024-3205(73)90184-7
    97. Roger P. Maickel. Techniques for the Microassay of Drugs in Biological Materials. CRC Critical Reviews in Clinical Laboratory Sciences 1973, 4 (4) , 383-420. https://doi.org/10.3109/10408367309151560
    98. Malcolm Rowland. Kinetics of Drug-Drug Interactions. 1972, 321-337. https://doi.org/10.1007/978-1-4684-2055-5_20
    99. S. Nistrup Madsen, F. Fog-Møller, I. Persson. Distribution of tolbutamide and chlorpropamide after administration to non-diabetic rats. European Journal of Pharmacology 1971, 13 (3) , 374-380. https://doi.org/10.1016/0014-2999(71)90229-9
    100. Vincent T. Oliverio, Anthony M. Guarino. Isotope Dilution Analysis. 1971, 160-177. https://doi.org/10.1007/978-3-642-65177-9_11
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect