ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Syntheses of 5-Trifluoromethyluracil and 5-Trifluoromethyl-2'-deoxyuridine1,2

Cite this: J. Med. Chem. 1964, 7, 1, 1–5
Publication Date (Print):January 1, 1964
https://doi.org/10.1021/jm00331a001
ACS Legacy Archive
Article Views
554
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (712 KB)

Note: In lieu of an abstract, this is the article's first page.

Free first page

Cited By

This article is cited by 123 publications.

  1. Felix Kaspar, Margarita Seeger, Sarah Westarp, Christoph Köllmann, Anna P. Lehmann, Patrick Pausch, Sebastian Kemper, Peter Neubauer, Gert Bange, Anett Schallmey, Daniel B. Werz, Anke Kurreck. Diversification of 4′-Methylated Nucleosides by Nucleoside Phosphorylases. ACS Catalysis 2021, 11 (17) , 10830-10835. https://doi.org/10.1021/acscatal.1c02589
  2. Jadd Shelton, Xiao Lu, Joseph A. Hollenbaugh, Jong Hyun Cho, Franck Amblard, and Raymond F. Schinazi . Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chemical Reviews 2016, 116 (23) , 14379-14455. https://doi.org/10.1021/acs.chemrev.6b00209
  3. Richard B. Silverman and Robert H. Abeles. Mechanism of inactivation of γ-cystathionase by β,β,β-trifluoroalanine. Biochemistry 1977, 16 (25) , 5515-5520. https://doi.org/10.1021/bi00644a019
  4. Daniel V. Santi and Ted T. Sakai. Thymidylate synthetase. Model studies of inhibition by 5-trifluoromethyl-2'-deoxyuridylic acid. Biochemistry 1971, 10 (19) , 3598-3607. https://doi.org/10.1021/bi00795a018
  5. Magda M. F. Ismail, Mohammed Salah Ayoup. Review on fluorinated nucleoside/non-nucleoside FDA-approved antiviral drugs. RSC Advances 2022, 12 (48) , 31032-31045. https://doi.org/10.1039/D2RA05370E
  6. Priyanka Mangla, Yogesh S. Sanghvi, Ashok K. Prasad. Microwave Assisted Cu‐Mediated Trifluoromethylation of Pyrimidine Nucleosides. Current Protocols 2021, 1 (12) https://doi.org/10.1002/cpz1.328
  7. Daisaku Kamiimabeppu, Hiroki Osumi, Eiji Shinozaki, Akira Ooki, Takeru Wakatsuki, Koichiro Yoshino, Taro Sato, Izuma Nakayama, Mariko Ogura, Daisuke Takahari, Keisho Chin, Kensei Yamaguchi. Effect of neutropenia on survival outcomes of patients with metastatic colorectal cancer receiving trifluridine/tipiracil plus bevacizumab. Oncology Letters 2021, 22 (5) https://doi.org/10.3892/ol.2021.13044
  8. Jun Koseki, Masamitsu Konno, Ayumu Asai, Naohiro Horie, Kenta Tsunekuni, Koichi Kawamoto, Satoshi Obika, Yuichiro Doki, Masaki Mori, Hideshi Ishii. Theoretical analyses and experimental validation of the effects caused by the fluorinated substituent modification of DNA. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-57899-7
  9. William H. Gmeiner. Chemistry of Fluorinated Pyrimidines in the Era of Personalized Medicine. Molecules 2020, 25 (15) , 3438. https://doi.org/10.3390/molecules25153438
  10. A. Fernandez Montes, F. Vazquez Rivera, N. Martinez Lago, M. Covela Rúa, A. Cousillas Castiñeiras, P. Gonzalez Villarroel, J. de la Cámara Gómez, J. C. Méndez Méndez, M. Salgado Fernández, S. Candamio Folgar, M. Reboredo López, M. Carmona Campos, E. Gallardo Martín, M. Jorge Fernández, M. L. Pellón Augusto, L. París Bouzas, J. García Gómez. Efficacy and safety of trifluridine/tipiracil in third-line and beyond for the treatment of patients with metastatic colorectal cancer in routine clinical practice: patterns of use and prognostic nomogram. Clinical and Translational Oncology 2020, 22 (3) , 351-359. https://doi.org/10.1007/s12094-019-02130-x
  11. Godefridus J. Peters. Drug resistance in colorectal cancer: General aspects. 2020, 1-33. https://doi.org/10.1016/B978-0-12-819937-4.00001-7
  12. Mohamed E. Salem, Benjamin A. Weinberg, Feras J. Abdul Khalek, Jasmin R. Desai, Eiran A. Warner, Marion L. Hartley, John L. Marshall. Metastatic Colorectal Cancer. 2019, 135-160. https://doi.org/10.1007/978-3-030-18890-0_8
  13. Kazuaki Matsuoka, Fumio Nakagawa, Nozomu Tanaka, Hiroyuki Okabe, Kenichi Matsuo, Teiji Takechi. Effective Sequential Combined Chemotherapy with Trifluridine/Tipiracil and Regorafenib in Human Colorectal Cancer Cells. International Journal of Molecular Sciences 2018, 19 (10) , 2915. https://doi.org/10.3390/ijms19102915
  14. Marçal Pastor‐Anglada, Nerea Urtasun, Sandra Pérez‐Torras. Intestinal Nucleoside Transporters: Function, Expression, and Regulation. 2018, 1003-1017. https://doi.org/10.1002/cphy.c170039
  15. Julia Martinez-Perez, M. Carmen Riesco-Martinez, Rocio Garcia-Carbonero. The safety of trifluridine and tipiracil for the treatment of metastatic colorectal cancer. Expert Opinion on Drug Safety 2018, 17 (6) , 643-650. https://doi.org/10.1080/14740338.2018.1475557
  16. Norihiko Suzuki, Masanobu Ito, Teiji Takechi. Discovery and Development of Trifluridine/Tipiracil (Lonsurf ™). 2018, 417-441. https://doi.org/10.1002/9783527808694.ch15
  17. N. Mulet, I. Matos, A. Noguerido, G. Martini, M. E. Élez, G. Argilés, J. Tabernero. Evaluating trifluridine + tipiracil hydrochloride in a fixed combination (TAS-102) for the treatment of colorectal cancer. Expert Opinion on Pharmacotherapy 2018, 19 (6) , 623-629. https://doi.org/10.1080/14656566.2018.1453497
  18. Kazuaki Matsuoka, Fumio Nakagawa, Takashi Kobunai, Teiji Takechi. Trifluridine/tipiracil overcomes the resistance of human gastric 5-fluorouracil-refractory cells with high thymidylate synthase expression. Oncotarget 2018, 9 (17) , 13438-13450. https://doi.org/10.18632/oncotarget.24412
  19. Vijay Gayakhe, Shatrughn Bhilare, Afsana Yashmeen, Ian J.S. Fairlamb, Anant R. Kapdi. Transition-Metal Catalyzed Modification of Nucleosides. 2018, 167-195. https://doi.org/10.1016/B978-0-12-811292-2.00006-4
  20. Kazuaki Matsuoka, Takashi Kobunai, Mamoru Nukatsuka, Teiji Takechi. Improved chemoradiation treatment using trifluridine in human colorectal cancer cells in vitro. Biochemical and Biophysical Research Communications 2017, 494 (1-2) , 249-255. https://doi.org/10.1016/j.bbrc.2017.10.044
  21. Jae Ho Jeong, Yong Sang Hong, Tae Won Kim. Treatment of Refractory Colorectal Cancer: Regorafenib vs. TAS-102. Current Colorectal Cancer Reports 2017, 13 (4) , 325-333. https://doi.org/10.1007/s11888-017-0381-6
  22. Patrizia Ferraboschi, Samuele Ciceri, Paride Grisenti. Synthesis of Antitumor Fluorinated Pyrimidine Nucleosides. Organic Preparations and Procedures International 2017, 49 (2) , 69-154. https://doi.org/10.1080/00304948.2017.1290994
  23. Alberto Zaniboni, Paola Bertocchi, Sandro Barni, Fausto Petrelli. TAS-102 (Lonsurf) for the Treatment of Metastatic Colorectal Cancer. A Concise Review. Clinical Colorectal Cancer 2016, 15 (4) , 292-297. https://doi.org/10.1016/j.clcc.2016.06.003
  24. Jose Mauricio Mota, Leonardo G. Fonseca, Maria Ignez Braghiroli, Paulo M. Hoff. Review on TAS-102 development and its use for metastatic colorectal cancer. Critical Reviews in Oncology/Hematology 2016, 104 , 91-97. https://doi.org/10.1016/j.critrevonc.2016.05.015
  25. Daphne L. van der Velden, Frans L. Opdam, Emile E. Voest. TAS-102 for Treatment of Advanced Colorectal Cancers That Are No Longer Responding to Other Therapies. Clinical Cancer Research 2016, 22 (12) , 2835-2839. https://doi.org/10.1158/1078-0432.CCR-15-2783
  26. Takayuki Yoshino, Takashi Kojima, Hideaki Bando, Tomoko Yamazaki, Yoichi Naito, Hirofumi Mukai, Nozomu Fuse, Koichi Goto, Yuko Ito, Toshihiko Doi, Atsushi Ohtsu. Effect of food on the pharmacokinetics of TAS ‐102 and its efficacy and safety in patients with advanced solid tumors. Cancer Science 2016, 107 (5) , 659-665. https://doi.org/10.1111/cas.12912
  27. Yuji Miyamoto, Heinz-Josef Lenz, Hideo Baba. A novel antimetabolite: TAS-102 for metastatic colorectal cancer. Expert Review of Clinical Pharmacology 2016, 9 (3) , 355-365. https://doi.org/10.1586/17512433.2016.1133285
  28. Nataliya Uboha, Howard S Hochster. TAS-102: a novel antimetabolite for the 21st century. Future Oncology 2016, 12 (2) , 153-163. https://doi.org/10.2217/fon.15.276
  29. Heinz-Josef Lenz, Sebastian Stintzing, Fotios Loupakis. TAS-102, a novel antitumor agent: A review of the mechanism of action. Cancer Treatment Reviews 2015, 41 (9) , 777-783. https://doi.org/10.1016/j.ctrv.2015.06.001
  30. Godefridus J. Peters. Therapeutic potential of TAS-102 in the treatment of gastrointestinal malignancies. Therapeutic Advances in Medical Oncology 2015, 7 (6) , 340-356. https://doi.org/10.1177/1758834015603313
  31. KAZUKI SAKAMOTO, TATSUSHI YOKOGAWA, HIROYUKI UENO, KEI OGUCHI, HIROMI KAZUNO, KEIJI ISHIDA, NOZOMU TANAKA, AKIKO OSADA, YUKARI YAMADA, HIROYUKI OKABE, KENICHI MATSUO. Crucial roles of thymidine kinase 1 and deoxyUTPase in incorporating the antineoplastic nucleosides trifluridine and 2′-deoxy-5-fluorouridine into DNA. International Journal of Oncology 2015, 46 (6) , 2327-2334. https://doi.org/10.3892/ijo.2015.2974
  32. NOZOMU TANAKA, KAZUKI SAKAMOTO, HIROYUKI OKABE, AKIO FUJIOKA, KEISUKE YAMAMURA, FUMIO NAKAGAWA, HIDEKI NAGASE, TATSUSHI YOKOGAWA, KEI OGUCHI, KEIJI ISHIDA, AKIKO OSADA, HIROMI KAZUNO, YUKARI YAMADA, KENICHI MATSUO. Repeated oral dosing of TAS-102 confers high trifluridine incorporation into DNA and sustained antitumor activity in mouse models. Oncology Reports 2014, 32 (6) , 2319-2326. https://doi.org/10.3892/or.2014.3487
  33. Hiroshi Yasui, Giichiro Tsurita, Kohzoh Imai. DNA synthesis inhibitors for the treatment of gastrointestinal cancer. Expert Opinion on Pharmacotherapy 2014, 15 (16) , 2361-2372. https://doi.org/10.1517/14656566.2014.958074
  34. Maha El-Naggar, Eva Ebbing, Irene Bijnsdorp, Jaap van den Berg, Godefridus J. Peters. Radiosensitization by Thymidine Phosphorylase Inhibitor in Thymidine Phosphorylase Negative and Overexpressing Bladder Cancer Cell Lines. Nucleosides, Nucleotides and Nucleic Acids 2014, 33 (4-6) , 413-421. https://doi.org/10.1080/15257770.2014.892127
  35. Dmitriy M. Volochnyuk, Oleksandr O. Grygorenko, Alina O. Gorlova. Fluorine Containing Diazines. Synthesis and Properties. 2014, 291-575. https://doi.org/10.1007/978-3-319-04435-4_6
  36. Michal Hocek, Miroslava Ćerňová, Radek Pohl, Blanka Klepetářová. C-H Trifluoromethylations of 1,3-Dimethyluracil and Reactivity of the Products in C-H Arylations. HETEROCYCLES 2014, 89 (5) , 1159. https://doi.org/10.3987/COM-14-12958
  37. Domenica Musumeci, Carlo Irace, Rita Santamaria, Daniela Montesarchio. Trifluoromethyl derivatives of canonical nucleosides: synthesis and bioactivity studies. MedChemComm 2013, 4 (10) , 1405. https://doi.org/10.1039/c3md00159h
  38. Yongqiang Li, Pengxiang Zhang, Qiaoqiao Ma, Haibin Song, Yuxiu Liu, Qingmin Wang. The trifluoromethyl transformation synthesis, crystal structure and insecticidal activities of novel 2-pyrrolecarboxamide and 2-pyrrolecarboxlate. Bioorganic & Medicinal Chemistry Letters 2012, 22 (22) , 6858-6861. https://doi.org/10.1016/j.bmcl.2012.09.036
  39. Afsun Sahin, Pedram Hamrah. Acute Herpetic Keratitis: What is the Role for Ganciclovir Ophthalmic Gel?. Ophthalmology and Eye Diseases 2012, 4 , OED.S7267. https://doi.org/10.4137/OED.S7267
  40. M F JONES. The stability of trifluorothymidine: hydrolysis in buffered aqueous solutions. Journal of Pharmacy and Pharmacology 2011, 33 (1) , 274-278. https://doi.org/10.1111/j.2042-7158.1981.tb13780.x
  41. Edward J. Holland, Gary S. Schwartz, Kristiana D. Neff. Herpes Simplex Keratitis. 2011, 953-984. https://doi.org/10.1016/B978-0-323-06387-6.00086-6
  42. NORIHIKO SUZUKI, FUMIO NAKAGAWA, MAMORU NUKATSUKA, MASAKAZU FUKUSHIMA. Trifluorothymidine exhibits potent antitumor activity via the induction of DNA double-strand breaks. Experimental and Therapeutic Medicine 2011, 2 (3) , 393-397. https://doi.org/10.3892/etm.2011.244
  43. Hugh J. Field, Richard J. Whitley. Antiviral Chemotherapy. 2010https://doi.org/10.1002/9780470688618.taw0275
  44. Annelies Bronckaers, Federico Gago, Jan Balzarini, Sandra Liekens. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Medicinal Research Reviews 2009, 29 (6) , 903-953. https://doi.org/10.1002/med.20159
  45. Manju Rajeswaran, Thamarapu Srikrishnan. Crystal and molecular structure of 5-trifluorothymine, a metabolite from human urine: Role of fluorine in stacking and hydrogen bonded interactions. Journal of Fluorine Chemistry 2008, 129 (6) , 493-497. https://doi.org/10.1016/j.jfluchem.2008.03.003
  46. B. C. Saunders. Chemical Characteristics of the Carbon-Fluorine Bond. 2008, 9-32. https://doi.org/10.1002/9780470719855.ch2
  47. Charles Eidelberger. The Nucleotides of Fluorinated Pyrimidines and Their Biological Activities. 2008, 125-140. https://doi.org/10.1002/9780470719855.ch7
  48. . References. 2008, R1-R99. https://doi.org/10.1002/9780470186763.refs
  49. . References. 2008, 1183-1364. https://doi.org/10.1002/9780470187395.refs
  50. Deborah Pavan-Langston, Thomas John. Antivirals. 2008, 215-229. https://doi.org/10.1016/B978-1-4160-0016-7.50023-0
  51. Olaf H. Temmink, Tomohiro Emura, Michiel de Bruin, Masakazu Fukushima, Godefridus J. Peters. Therapeutic potential of the dual-targeted TAS-102 formulation in the treatment of gastrointestinal malignancies. Cancer Science 2007, 98 (6) , 779-789. https://doi.org/10.1111/j.1349-7006.2007.00477.x
  52. Charles Heidelberger, Peter V. Danenberg, Richard G. Moran. Fluorinated Pyrimidines and Their Nucleosides. 2006, 57-119. https://doi.org/10.1002/9780470122990.ch2
  53. David S. Hong, James L. Abbruzzese, Karla Bogaard, Yvonne Lassere, Masakazu Fukushima, Akira Mita, Keizo Kuwata, Paulo M. Hoff. Phase I study to determine the safety and pharmacokinetics of oral administration of TAS-102 in patients with solid tumors. Cancer 2006, 107 (6) , 1383-1390. https://doi.org/10.1002/cncr.22125
  54. R.S. Vardanyan, V.J. Hruby. Antiviral Drugs. 2006, 549-557. https://doi.org/10.1016/B978-044452166-8/50036-4
  55. Raul Salvetti, Arnaud Marchand, Massimo Pregnolato, Annalisa Verri, Silvio Spadari, Federico Focher, Martin Briant, Jean-Pierre Sommadossi, Christophe Mathé, Gilles Gosselin. 5-(Trifluoromethyl)-β-l-2′-deoxyuridine, the l-Enantiomer of Trifluorothymidine: Stereospecific Synthesis and Antiherpetic Evaluations. Bioorganic & Medicinal Chemistry 2001, 9 (7) , 1731-1738. https://doi.org/10.1016/S0968-0896(01)00062-1
  56. Paul Actor, Alfred W. Chow, Frank J. Dutko, Mark A. McKinlay. Chemotherapeutics. 2000https://doi.org/10.1002/14356007.a06_173
  57. Ashok K. Prasad, Smriti Trikha, Virinder S. Parmar. Nucleoside Synthesis Mediated by Glycosyl Transferring Enzymes. Bioorganic Chemistry 1999, 27 (2) , 135-154. https://doi.org/10.1006/bioo.1998.1127
  58. Tomasz Ostrowski, Berthold Wroblowski, Roger Busson, Jozef Rozenski, Erik De Clercq, Matthew S. Bennett, John N. Champness, William C. Summers, Mark R. Sanderson, Piet Herdewijn. 5-Substituted Pyrimidines with a 1,5-Anhydro-2,3-dideoxy- d - arabino -hexitol Moiety at N-1:  Synthesis, Antiviral Activity, Conformational Analysis, and Interaction with Viral Thymidine Kinase. Journal of Medicinal Chemistry 1998, 41 (22) , 4343-4353. https://doi.org/10.1021/jm980287z
  59. A. V. Popov, A. N. Pushin, E. L. Luzina. Polyfluorinated enamines. New methods for the synthesis of 5-trifluoromethyluracil. Russian Chemical Bulletin 1998, 47 (6) , 1232-1233. https://doi.org/10.1007/BF02503508
  60. Peter Andres, Albrecht Marhold. A new synthesis of 5-trifluoromethyluracil. Journal of Fluorine Chemistry 1996, 77 (1) , 93-95. https://doi.org/10.1016/0022-1139(95)03386-6
  61. Kjell Undheim, Tore Benneche. Pyrimidines and their Benzo Derivatives. 1996, 93-231. https://doi.org/10.1016/B978-008096518-5.00118-0
  62. . Volume 6 References. 1996, 1177-1307. https://doi.org/10.1016/B978-008096518-5.00252-5
  63. S. Takatori, A. Matsuda, J.-I. Yamashita, H. Hayatsu, Y. Wataya. Rapid, Stepwise Substitution of Fluorines In 5-Trifluoromethyl-2′-Deoxyuridine by Bisulfite. Nucleosides and Nucleotides 1994, 13 (10) , 2105-2111. https://doi.org/10.1080/15257779408013210
  64. P. A. M. M. Herdewijn. 5-Substituted-2′-deoxyuridines as anti-HSV-1 Agents: Synthesis and Structure Activity Relationship. Antiviral Chemistry and Chemotherapy 1994, 5 (3) , 131-146. https://doi.org/10.1177/095632029400500301
  65. N. Sewald, K. Burger. Reactions of 3,3,3-trifluoropyruvates with amidines ? New trifluoromethyl substituted heterocyclic ?building blocks?. Monatshefte f�r Chemie Chemical Monthly 1993, 124 (8-9) , 899-907. https://doi.org/10.1007/BF00816413
  66. P. Herdewijn, L. Kerremans, R. Snoeck, Aerschot A. Van, E. Esmans, E. De Clercq. Synthesis and anti-herpes activity of 5-trifluorovinyl-2′-deoxyuridine. Bioorganic & Medicinal Chemistry Letters 1992, 2 (9) , 1057-1062. https://doi.org/10.1016/S0960-894X(00)80618-6
  67. Jane R. Hanrahan, David W. Hutchinson. The enzymatic synthesis of antiviral agents. Journal of Biotechnology 1992, 23 (2) , 193-210. https://doi.org/10.1016/0168-1656(92)90092-N
  68. Setsuo Takeda, Konstanty Wierzba, Jun-ichi Yamashita, Hiroshi Matsumoto, Hiroyasu Satake, Yuji Yamada, Norio Unemi, Yusuke Wataya, Hikoya Hayatsu. Potentiation of the antitumor activity of 5-trifluoromethyl-2?-deoxyuridine by the use of depot forms of the parent compound. Cancer Chemotherapy and Pharmacology 1992, 30 (5) , 360-364. https://doi.org/10.1007/BF00689963
  69. Heinrich Wamhoff, Jöurg Dzenis, Kosaku Hirota. Uracils: Versatile Starting Materials in Heterocyclic Synthesis. 1992, 129-259. https://doi.org/10.1016/S0065-2725(08)60222-6
  70. Setsuo Takeda, Jun-ichi Yamashita, Hitoshi Saito, Junji Uchida, Hiroyasu Satake, Yuji Yamada, Norio Unemi, Yusuke Wataya, Hikoya Hayatsu. Antitumor activity of FTC-092, a masked 5-trifluoromethyl-2?-deoxyuridine derivative. Cancer Chemotherapy and Pharmacology 1991, 29 (2) , 122-126. https://doi.org/10.1007/BF00687321
  71. Takeo Akiyama, Kohji Kato, Masatsugu Kajitani, Yoshio Sakaguchi, Junko Nakamura, Hisaharu Hayashi, Akira Sugimori. Photochemical Trifluoromethylation of Some Aromatic and Heteroaromatic Compounds with Trifluoromethyl Bromide. Bulletin of the Chemical Society of Japan 1988, 61 (10) , 3531-3537. https://doi.org/10.1246/bcsj.61.3531
  72. H. E. Kaufman. The Treatment of Herpetic Eye Infections with Trifluridine and Other Anti-Virals. 1988, 25-38. https://doi.org/10.1007/978-1-4613-1715-9_3
  73. William H. Prusoff, Tai-Shun Lin. Experimental Aspects of Antiviral Pharmacology. 1988, 173-202. https://doi.org/10.1007/978-1-4684-7275-2_11
  74. B. Bouzid, A.M.G. Macdonald. Polarographic study of uracil derivatives. Analytica Chimica Acta 1988, 211 , 155-173. https://doi.org/10.1016/S0003-2670(00)83677-6
  75. Donald P. Gustafson. Antiviral Therapy. Veterinary Clinics of North America: Small Animal Practice 1986, 16 (6) , 1181-1189. https://doi.org/10.1016/S0195-5616(86)50136-4
  76. R.P. Quinn, Jeff Scharver, John A. Hill. Synthesis and use of radioactive antiviral agents in radioimmunoassay and metabolism studies. Pharmacology & Therapeutics 1985, 30 (1) , 43-65. https://doi.org/10.1016/0163-7258(85)90047-6
  77. G. Balansard, G. Schwadrohn, E. Vidal, R. Elias. Determination of ophthalmic therapeutic trifluorothymidine and its degradation product by reversed-phase high-performance liquid chromatography. Journal of Chromatography A 1985, 348 , 299-303. https://doi.org/10.1016/S0021-9673(01)92465-3
  78. Takamasa Fuchikami, Akiko Yamanouchi. A FACILE CONVERSION OF 5-TRIFLUOROMETHYL-5,6-DIHYDROURACILS TO 5-TRIFLUOROMETHYLURACILS. Chemistry Letters 1984, 13 (9) , 1595-1598. https://doi.org/10.1246/cl.1984.1595
  79. Te-Wen Chang. Herpes simplex: Historical notes. Clinics in Dermatology 1984, 2 (2) , 5-7. https://doi.org/10.1016/0738-081X(84)90061-0
  80. P. H. Fischer, W. H. Prusoff. Chemotherapy of Ocular Viral Infections and Tumors. 1984, 553-583. https://doi.org/10.1007/978-3-642-69222-2_13
  81. M. John Gill, D. Lome Tyrrell. Resistance to Antiviral Agents. 1984, 369-391. https://doi.org/10.1016/B978-0-12-138120-2.50018-6
  82. P. H. Fischer, W. H. Prusoff. Pyrimidine Nucleosides with Selective Antiviral Activity. 1982, 95-116. https://doi.org/10.1007/978-3-642-68487-6_2
  83. Takamasa Fuchikami, Iwao Ojima. New and direct route to 5-trifluoromethyl-5,6-dihydrouracils by means of palladium complex catalyzed “ureidocarbonylation” of 2-bromo-3,3,3-trifluoropropene. Tetrahedron Letters 1982, 23 (40) , 4099-4100. https://doi.org/10.1016/S0040-4039(00)88357-4
  84. B L Wigdahl, J R Parkhurst. Inhibition of mouse LM cell replication by trifluorothymidine: role of cytosolic deoxythymidine kinase. Antimicrobial Agents and Chemotherapy 1981, 19 (5) , 881-890. https://doi.org/10.1128/AAC.19.5.881
  85. W. Behrens-Baumann, U. Weber, R. Ansorg. Trifluorthymidin und bakterielle Hornhautinfektion. Eine tierexperimentelle Studie. 1981, 291-294. https://doi.org/10.1007/978-3-642-80499-1_46
  86. P. C. Maudgal, L. Missotten. The Herpes Virus. 1981, 93-150. https://doi.org/10.1007/978-94-009-8671-8_8
  87. Peter V. Danenberg, Arnold Lockshin. Fluorinated pyrimidines as tight-binding inhibitors of thymidylate synthetase. Pharmacology & Therapeutics 1981, 13 (1) , 69-90. https://doi.org/10.1016/0163-7258(81)90068-1
  88. William M. Shannon, Frank M. Schabel. Antiviral agents as adjuncts in cancer chemotherapy. Pharmacology & Therapeutics 1980, 11 (2) , 263-390. https://doi.org/10.1016/0163-7258(80)90034-0
  89. R. Cardinaud, J. Holguin. Nucleoside deoxyribosyltransferase-II from Lactobacillus helveticus. Substrate specificity studies. Pyrimidine bases as acceptors. Biochimica et Biophysica Acta (BBA) - Enzymology 1979, 568 (2) , 339-347. https://doi.org/10.1016/0005-2744(79)90301-2
  90. Charles Heidelberger, Dannie H. King. Trifluorothymidine. Pharmacology & Therapeutics 1979, 6 (3) , 427-442. https://doi.org/10.1016/0163-7258(79)90062-7
  91. Daniel V. Santi, Yusuke Wataya, Akira Matsuda. INHIBITORS OF THYMIDYLATE SYNTHETASE. 1979, 43-53. https://doi.org/10.1016/B978-0-08-024384-9.50008-7
  92. Brian L. Wigdahl, J. Rodney Parkhurst. HEp-2 Cell- and Herpes Simplex Virus Type 1- Induced Deoxythymidine Kinases: Inhibition by Derivatives of 5-Trifluoromethyl-2′-Deoxyuridine. Antimicrobial Agents and Chemotherapy 1978, 14 (3) , 470-475. https://doi.org/10.1128/AAC.14.3.470
  93. D. W. Clough, Brian L. Wigdahl, J. Rodney Parkhurst. Biological Effects of 5-Carboxy-2′-Deoxyuridine: Hydrolysis Product of 5-Trifluoromethyl-2′-Deoxyuridine. Antimicrobial Agents and Chemotherapy 1978, 14 (1) , 126-131. https://doi.org/10.1128/AAC.14.1.126
  94. Peter V. Danenberg. Thymidylate synthetase - a target enzyme in cancer chemotherapy. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1977, 473 (2) , 73-92. https://doi.org/10.1016/0304-419X(77)90001-4
  95. J. Stubbe, R.H. Abeles. Biotin carboxylations–concerted or not concerted? That is the question!. Journal of Biological Chemistry 1977, 252 (23) , 8338-8340. https://doi.org/10.1016/S0021-9258(19)75222-3
  96. D. W. Clough, J. Rodney Parkhurst. Experimental Herpes Simplex Virus Type 1 Encephalitis: Treatment with 5-Trifluoromethyl-2′-Deoxyuridine. Antimicrobial Agents and Chemotherapy 1977, 11 (2) , 307-311. https://doi.org/10.1128/AAC.11.2.307
  97. James McGill, F.T. Fraunfelder, B.R. Jones. Current and proposed management of ocular herpes simplex. Survey of Ophthalmology 1976, 20 (5) , 358-365. https://doi.org/10.1016/S0039-6257(96)90004-1
  98. Charles Heidelberger. ON THE MOLECULAR MECHANISM OF THE ANTIVIRAL ACTIVITY OF TRIFLUOROTHYMIDINE. Annals of the New York Academy of Sciences 1975, 255 (1 Chemistry, Bi) , 317-325. https://doi.org/10.1111/j.1749-6632.1975.tb29239.x
  99. Joseph H. Burchenal. From wild fowl to stalking horses: Alchemy in chemotherapy.Fifth annual David A. Karnofsky memorial lecture. Cancer 1975, 35 (4) , 1121-1135. https://doi.org/10.1002/1097-0142(197504)35:4<1121::AID-CNCR2820350416>3.0.CO;2-B
  100. Charles Heidelberger. Fluorinated Pyrimidines and Their Nucleosides. 1975, 193-231. https://doi.org/10.1007/978-3-642-65806-8_12
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE