ACS Publications. Most Trusted. Most Cited. Most Read
Structure–Activity Relationship of Nonacidic Quinazolinone Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGES 1)
My Activity
    Article

    Structure–Activity Relationship of Nonacidic Quinazolinone Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGES 1)
    Click to copy article linkArticle link copied!

    View Author Information
    Johann Wolfgang Goethe-University, Institute of Clinical Pharmacology, pharmazentrum frankfurt, LiFF/ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany
    Johann Wolfgang Goethe-University, Institute of Pharmaceutical Chemistry, LiFF/ZAFES, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
    § ETH Zürich, Department of Chemistry and Applied Biosciences, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
    *Phone: +49 69 6301 6086. Fax: +49 69 6301 7636. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2012, 55, 8, 3792–3803
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm201687d
    Published March 26, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Microsomal prostaglandin E synthase 1 (mPGES-1) is a key enzyme of the arachidonic acid cascade. Its product PGE2 plays an important role in various inflammatory processes, pain, fever, and cancer. Selective inhibition of mPGES-1 might be a promising step to avoid cyclooxygenase-related effects of NSAIDs. We studied a class of quinazolinone derivatives of the lead structure FR20 for their effects on the isolated human and murine enzymes, human HeLa cells, and in various settings of the whole blood assay. Novel compounds with direct enzyme inhibiting activity in the submicromolar range (IC50: 0.13–0.37 μM) were designed using a bioisosteric replacement strategy and proved to be effective in both cells and human whole blood. Furthermore, pharmacological profiling of toxicity and eicosanoid screening with LC/MS-MS was applied to characterize this new class of mPGES-1 inhibitors.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    IC50 dose–response curve of compound 7. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 48 publications.

    1. Zhi-Min Zong, Lizhu Zhang, Gan-Peng Li, Wei Wang, Xiao-Jing Zhao, Yonghui He. Electrochemical-Induced C–N Bond Formation: A New Method to Synthesis (Z)-Quinazolinone Oximes Using Primary Amines and Quinazolin-4(3H)-one. Organic Letters 2024, 26 (6) , 1271-1276. https://doi.org/10.1021/acs.orglett.4c00107
    2. Akhtar Muhammad, Behramand Khan, Zafar Iqbal, Amir Zada Khan, Inamullah Khan, Kashif Khan, Muhammad Alamzeb, Nasir Ahmad, Khalid Khan, Syed Lal Badshah, Asad Ullah, Sayyar Muhammad, Muhammad Tariq Jan, Said Nadeem, Nurul Kabir. Viscosine as a Potent and Safe Antipyretic Agent Evaluated by Yeast-Induced Pyrexia Model and Molecular Docking Studies. ACS Omega 2019, 4 (10) , 14188-14192. https://doi.org/10.1021/acsomega.9b01041
    3. Baljit Kaur, Manpreet Kaur, Navjot Kaur, Saweta Garg, Rajbir Bhatti, Palwinder Singh. Engineered Substrate for Cyclooxygenase-2: A Pentapeptide Isoconformational to Arachidonic Acid for Managing Inflammation. Journal of Medicinal Chemistry 2019, 62 (13) , 6363-6376. https://doi.org/10.1021/acs.jmedchem.9b00823
    4. Lin-Su Wei, Guo-Xue He, Xiang-Fei Kong, Cheng-Xue Pan, Dong-Liang Mo, Gui-Fa Su. Gold(III)-Catalyzed Selective Cyclization of Alkynyl Quinazolinone-Tethered Pyrroles: Synthesis of Fused Quinazolinone Scaffolds. The Journal of Organic Chemistry 2018, 83 (12) , 6719-6727. https://doi.org/10.1021/acs.joc.8b00168
    5. Guo-Hai Zhang, Jing-Mei Yuan, Gang Qian, Chen-Xi Gu, Kai Wei, Dong-Liang Mo, Jiang-Ke Qin, Yan Peng, Zu-Ping Zhou, Cheng-Xue Pan, and Gui-Fa Su . Phthalazino[1,2-b]quinazolinones as p53 Activators: Cell Cycle Arrest, Apoptotic Response and Bak–Bcl-xl Complex Reorganization in Bladder Cancer Cells. Journal of Medicinal Chemistry 2017, 60 (16) , 6853-6866. https://doi.org/10.1021/acs.jmedchem.6b01769
    6. Priyanka Kundu, Amrita Mondal, and Chinmay Chowdhury . A Palladium-Catalyzed Method for the Synthesis of 2-(α-Styryl)-2,3-dihydroquinazolin-4-ones and 3-(α-Styryl)-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide: Access to 2-(α-Styryl)quinazolin-4(3H)-ones and 3-(α-Styryl)-1,2,4-benzothiadiazine-1,1-dioxides. The Journal of Organic Chemistry 2016, 81 (15) , 6596-6608. https://doi.org/10.1021/acs.joc.6b01242
    7. Yizhe Yan, Ying Xu, Bin Niu, Huifang Xie, and Yanqi Liu . I2-Catalyzed Aerobic Oxidative C(sp3)–H Amination/C–N Cleavage of Tertiary Amine: Synthesis of Quinazolines and Quinazolinones. The Journal of Organic Chemistry 2015, 80 (11) , 5581-5587. https://doi.org/10.1021/acs.joc.5b00474
    8. Yajie Bao, Yizhe Yan, Kun Xu, Jihu Su, Zhenggen Zha, and Zhiyong Wang . Copper-Catalyzed Radical Methylation/C–H Amination/Oxidation Cascade for the Synthesis of Quinazolinones. The Journal of Organic Chemistry 2015, 80 (9) , 4736-4742. https://doi.org/10.1021/acs.joc.5b00191
    9. Igor José dos Santos Nascimento, Thiago Mendonça de Aquino, Edeildo Ferreira da Silva Júnior, Ricardo Olimpio de Moura. Insights on Microsomal Prostaglandin E2 Synthase 1 (mPGES-1) Inhibitors using Molecular Dynamics and MM/PBSA Calculations. Letters in Drug Design & Discovery 2024, 21 (6) , 1033-1047. https://doi.org/10.2174/1570180820666230228105833
    10. Jiwei Wu, Mengru Zhang, Jun He, Kaixuan Li, Longqiang Ye, Jie Zhou, Xiaolan Xu, Zirong Li, Huajian Xu. Electrochemical oxidative decarboxylative of α-oxocarboxylic acids towards the synthesis of quinazolines and quinazolinones. RSC Advances 2024, 14 (11) , 7551-7556. https://doi.org/10.1039/D4RA01318B
    11. Devendiran Parthiban. Plant-Based Bronsted Acidic Polyphenol Catalyzed Synthesis of 3'-Phenyl-1' H -Spiro[Cyclohexane-1,2'-Quinazolin]-4'(3' H )-Ones and 3'-Phenyl-1' H -Spiro[Cyclopentane-1,2'-Quinazolin]-4'(3' H )-One Derivatives. Polycyclic Aromatic Compounds 2023, 43 (9) , 8230-8251. https://doi.org/10.1080/10406638.2022.2146728
    12. Simhachalam Gorle, Vaikunta Rao Lakinani, Chiranjeevi Yakkanti, Venkateshwarlu Rapolu, Sridhar Regati, Krishnaji Tadiparthi, Akula Raghunadh. A Simple and Efficient [( n -Bu 3 Sn) 2 MO 4 ] n Catalyzed Synthesis of Quinazolinones and Dihydroquinazolinones. Polycyclic Aromatic Compounds 2022, 42 (9) , 6583-6591. https://doi.org/10.1080/10406638.2021.1986730
    13. Wang Wang, Nan‐Ying Chen, Pei‐Sen Zou, Li Pang, Dong‐Liang Mo, Cheng‐Xue Pan, Gui‐Fa Su. Gold(I)‐Catalyzed Selective Cyclization and 1,2‐Shift to Prepare Pseudorutaecarpine Derivatives. Advanced Synthesis & Catalysis 2022, 364 (4) , 787-793. https://doi.org/10.1002/adsc.202101054
    14. S. Kaping, U. Kalita, S. Rajkumari, A. Sen, J. N. Vishwakarma. Efficient One-Pot Synthesis, Structure Elucidation, and Antibacterial Activities of Novel 3-(Adamantan-1-yl)-1-alkyl(aryl, aralkyl, hydroxyethyl)-7,7-dimethyl-1,2,3,4,5,6,7,8-octahydroquinazolin-5-ones. Russian Journal of Organic Chemistry 2022, 58 (1) , 152-158. https://doi.org/10.1134/S1070428022010213
    15. Mahdieh Sadat Sajadi, Elham Kazemi, Ali Darehkordi. Palladium-catalyzed synthesis of novel trifluoromethylated quinazolinone, N-arylquinazoline and N-benzylquinazoline derivatives. Tetrahedron Letters 2021, 71 , 153053. https://doi.org/10.1016/j.tetlet.2021.153053
    16. Jiewen Chen, En Liang, Jie Shi, Yinrong Wu, Kangmei Wen, Xingang Yao, Xiaodong Tang. Metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates at room temperature. RSC Advances 2021, 11 (9) , 4966-4970. https://doi.org/10.1039/D1RA00324K
    17. Filip Kalčic, Viktor Kolman, Haresh Ajani, Zdeněk Zídek, Zlatko Janeba. Polysubstituted Pyrimidines as mPGES‐1 Inhibitors: Discovery of Potent Inhibitors of PGE 2 Production with Strong Anti‐inflammatory Effects in Carrageenan‐Induced Rat Paw Edema. ChemMedChem 2020, 15 (15) , 1398-1407. https://doi.org/10.1002/cmdc.202000258
    18. T. Krishnaji, V. N. Murthy, A. Raghunadh, L. V. Rao. Simple and Efficient Amberlite 15-catalyzed Synthesis of Dihydroquinazolinones. Russian Journal of Organic Chemistry 2020, 56 (8) , 1468-1475. https://doi.org/10.1134/S1070428020080199
    19. Xiang-Fei Kong, Xiu-Yun Guo, Zi-Yu Gu, Lin-Su Wei, Lu-Lu Liu, Dong-Liang Mo, Cheng-Xue Pan, Gui-Fa Su. Silver( i )-catalyzed selective hydroalkoxylation of C2-alkynyl quinazolinones to synthesize quinazolinone-fused eight-membered N,O-heterocycles. Organic Chemistry Frontiers 2020, 7 (15) , 2055-2062. https://doi.org/10.1039/D0QO00437E
    20. Filip Bergqvist, Ralf Morgenstern, Per-Johan Jakobsson. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins & Other Lipid Mediators 2020, 147 , 106383. https://doi.org/10.1016/j.prostaglandins.2019.106383
    21. Bin Niu, Shaoqing Li, Chang Cui, Yizhe Yan, Lin Tang, Jianyong Wang. New Strategy for the Synthesis of Heterocycles via Copper‐Catalyzed Oxidative Decarboxylative Amination of Glyoxylic Acid. European Journal of Organic Chemistry 2019, 2019 (48) , 7800-7803. https://doi.org/10.1002/ejoc.201901538
    22. Zainab Almarhoon, Kholood A. Dahlous, Rakia Abd Alhameed, Hazem A. Ghabbour, Ayman El-Faham. A Simple, Efficient, and Eco-Friendly Method for the Preparation of 3-Substituted-2,3-dihydroquinazolin-4(1H)-one Derivatives. Molecules 2019, 24 (22) , 4052. https://doi.org/10.3390/molecules24224052
    23. Yizhe Yan, Chang Cui, Jianyong Wang, Shaoqing Li, Lin Tang, Yanqi Liu. Transition metal-free C–F/C–Cl/C–C cleavage of ClCF 2 COONa for the synthesis of heterocycles. Organic & Biomolecular Chemistry 2019, 17 (35) , 8071-8074. https://doi.org/10.1039/C9OB01641D
    24. Swayamsiddha Kar, Gayathri Ramamoorthy, Shweta Sinha, Meera Ramanan, Jeevan Kumar Pola, Nageswara Rao Golakoti, Jagadeesh Babu Nanubolu, Suraj Kumar Sahoo, Rajesh Babu Dandamudi, Mukesh Doble. Synthesis of diarylidenecyclohexanone derivatives as potential anti-inflammatory leads against COX-2/mPGES1 and 5-LOX. New Journal of Chemistry 2019, 43 (23) , 9012-9020. https://doi.org/10.1039/C9NJ00726A
    25. Weikang Zhang, Chong Meng, Yan Liu, Yawen Tang, Feng Li. Auto‐Tandem Catalysis with Ruthenium: From o ‐Aminobenzamides and Allylic Alcohols to Quinazolinones via Redox Isomerization/Acceptorless Dehydrogenation. Advanced Synthesis & Catalysis 2018, 360 (19) , 3751-3759. https://doi.org/10.1002/adsc.201800660
    26. Praveen Kumar Setikam, Narayana Murthy Valavala, Ravi Ganesh Komanduri, Venkateshwarlu Rapolu, Srinivas Rao Golagani, Krishnaji Tadiparthi, Raghunadh Akula. A New Facile Iodine‐Promoted One‐Pot Synthesis of Dihydroquinazolinone Compounds. ChemistrySelect 2018, 3 (24) , 6836-6839. https://doi.org/10.1002/slct.201800695
    27. Chikkanti Jaganmohan, Vinay Kumar K. P., Sandeep Reddy G., Sandeep Mohanty, Jaydeep Kumar, Venkateswara Rao B., Krishnaji Tadiparthi, Akula Raghunadh. De novo synthesis of 2,2- bis (dimethylamino)-3-alkyl or benzyl 2,3-dihydroquinazolin-4(1 H )-one compounds. Synthetic Communications 2018, 48 (2) , 168-174. https://doi.org/10.1080/00397911.2017.1391291
    28. V. Narayana Murthy, Satish P. Nikumbh, Krishnaji Tadiparthi, M. V. Madhubabu, Subba Rao Jammula, L. Vaikunta Rao, Akula Raghunadh. Amberlite-15 promoted an unprecedented aza Michael rearrangement for one pot synthesis of dihydroquinazolinone compounds. RSC Advances 2018, 8 (40) , 22331-22334. https://doi.org/10.1039/C8RA03308K
    29. Anastasia Psarra, Aikaterini Nikolaou, Maroula G Kokotou, Dimitris Limnios, George Kokotos. Microsomal prostaglandin E 2 synthase-1 inhibitors: a patent review. Expert Opinion on Therapeutic Patents 2017, 27 (9) , 1047-1059. https://doi.org/10.1080/13543776.2017.1344218
    30. Zhonghua Xia, Aixia Yan. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors. Molecular Diversity 2017, 21 (3) , 661-675. https://doi.org/10.1007/s11030-017-9743-x
    31. Catarina Pereira‐Leite, Cláudia Nunes, Sarah K. Jamal, Iolanda M. Cuccovia, Salette Reis. Nonsteroidal Anti‐Inflammatory Therapy: A Journey Toward Safety. Medicinal Research Reviews 2017, 37 (4) , 802-859. https://doi.org/10.1002/med.21424
    32. Wei Zhao, Wangjing Ma, Tiancun Xiao, Feng Li. Iridium‐Catalyzed Cyclization of o ‐Aminobenzamides with Unsaturated Aldehydes to Give 2‐Alkylquinazolinones through a Hydrogen Autotransfer Process. ChemistrySelect 2017, 2 (13) , 3608-3612. https://doi.org/10.1002/slct.201700780
    33. Prashant Kumar, Akanksha Matta, Snigdha Singh, Johan Van der Eycken, Christophe Len, Virinder S. Parmar, Erik V. Van der Eycken, Brajendra K. Singh. Facile, catalyst-free, microwave-assisted access toward the synthesis of 2-aryl/alkyl-3-(1 H -benzo[ d ]imidazol-2-yl)-2, 3-dihydroquinazolin-4(1 H )-ones. Synthetic Communications 2017, 47 (8) , 756-763. https://doi.org/10.1080/00397911.2016.1277761
    34. Sabine Grösch, Ellen Niederberger, Gerd Geisslinger. Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. Expert Opinion on Investigational Drugs 2017, 26 (1) , 51-61. https://doi.org/10.1080/13543784.2017.1260544
    35. M.V. Madhubabu, R. Shankar, G. Rajeshwar Reddy, T. Srinivasa Rao, Mandava V. Basaveswara Rao, Raghunadh Akula. Metal–Catalyst-Free Green and efficient synthesis of five and six membered fused N-heterocyclic quinazoline derivatives. Tetrahedron Letters 2016, 57 (46) , 5033-5037. https://doi.org/10.1016/j.tetlet.2016.09.094
    36. Wei Zhao, Pengcheng Liu, Feng Li. Quinazolinones from o ‐Aminobenzonitriles by One‐Pot Sequential Selective Hydration/Condensation/Acceptorless Dehydrogenation Catalyzed by an Iridium Complex. ChemCatChem 2016, 8 (8) , 1523-1530. https://doi.org/10.1002/cctc.201501385
    37. Xiaofeng Zhang, Kenny Pham, Shuai Liu, Marc Legris, Alex Muthengi, Jerry P Jasinski, Wei Zhang. Stereoselective synthesis of fused tetrahydroquinazolines through one-pot double [3 + 2] dipolar cycloadditions followed by [5 + 1] annulation. Beilstein Journal of Organic Chemistry 2016, 12 , 2204-2210. https://doi.org/10.3762/bjoc.12.211
    38. Stefan M. Noha, Katrin Fischer, Andreas Koeberle, Ulrike Garscha, Oliver Werz, Daniela Schuster. Discovery of novel, non-acidic mPGES-1 inhibitors by virtual screening with a multistep protocol. Bioorganic & Medicinal Chemistry 2015, 23 (15) , 4839-4845. https://doi.org/10.1016/j.bmc.2015.05.045
    39. Yuqing Chen, Huaqing Liu, Shuang Xu, Tianlin Wang, Wei Li. Targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MedChemComm 2015, 6 (12) , 2081-2123. https://doi.org/10.1039/C5MD00278H
    40. Rashmi Arora, N.S. Gill, Ashish Kapoor. Synthesis of Quinazolinone Based Schiff Bases as Potential Anti-inflammatory and Analgesic Agents. Journal of Pharmacy and Allied Health Sciences 2014, 4 (1) , 15-23. https://doi.org/10.3923/jpahs.2014.15.23
    41. Javad Safari, Soheila Gandomi-Ravandi. Efficient synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of nanocomposites under microwave irradiation. Journal of Molecular Catalysis A: Chemical 2014, 390 , 1-6. https://doi.org/10.1016/j.molcata.2014.02.013
    42. Malkeet Singh Bahia, Yogesh Kumar Katare, Om Silakari, Bhawna Vyas, Pragati Silakari. Inhibitors of Microsomal Prostaglandin E 2 Synthase‐1 Enzyme as Emerging Anti‐Inflammatory Candidates. Medicinal Research Reviews 2014, 34 (4) , 825-855. https://doi.org/10.1002/med.21306
    43. Suman Kr Ghosh, Rajagopal Nagarajan. NIS-mediated regioselective amidation of indole with quinazolinone and pyrimidone. RSC Adv. 2014, 4 (39) , 20136-20144. https://doi.org/10.1039/C4RA02417F
    44. Thomas Hanke, Florian Rörsch, Theresa M. Thieme, Nerea Ferreiros, Gisbert Schneider, Gerd Geisslinger, Ewgenij Proschak, Sabine Grösch, Manfred Schubert-Zsilavecz. Synthesis and pharmacological characterization of benzenesulfonamides as dual species inhibitors of human and murine mPGES-1. Bioorganic & Medicinal Chemistry 2013, 21 (24) , 7874-7883. https://doi.org/10.1016/j.bmc.2013.10.006
    45. Patrick Leclerc, Helena Idborg, Linda Spahiu, Charlotte Larsson, Natalia Nekhotiaeva, Johan Wannberg, Patric Stenberg, Marina Korotkova, Per-Johan Jakobsson. Characterization of a human and murine mPGES-1 inhibitor and comparison to mPGES-1 genetic deletion in mouse models of inflammation. Prostaglandins & Other Lipid Mediators 2013, 107 , 26-34. https://doi.org/10.1016/j.prostaglandins.2013.09.001
    46. Louise R. Howe, Kotha Subbaramaiah, Claire V. Kent, Xi K. Zhou, Sung-Hee Chang, Timothy Hla, Per-Johan Jakobsson, Clifford A. Hudis, Andrew J. Dannenberg. Genetic deletion of microsomal prostaglandin E synthase-1 suppresses mouse mammary tumor growth and angiogenesis. Prostaglandins & Other Lipid Mediators 2013, 106 , 99-105. https://doi.org/10.1016/j.prostaglandins.2013.04.002
    47. Ramesh Garlapati, Narender Pottabathini, Venkateshwarlu Gurram, Kumara Swamy Kasani, Rambabu Gundla, Chiranjeevi Thulluri, Pavan Kumar Machiraju, Avinash B. Chaudhary, Uma Addepally, Raveendra Dayam, Venkata Rao Chunduri, Balaram Patro. Development of α-glucosidase inhibitors by room temperature C–C cross couplings of quinazolinones. Organic & Biomolecular Chemistry 2013, 11 (29) , 4778. https://doi.org/10.1039/c3ob40636a
    48. E. Manivannan, S.C. Chaturvedi. Analogue-based design, synthesis and docking of non-steroidal anti-inflammatory agents. Part 2: Methyl sulfanyl/methyl sulfonyl substituted 2,3-diaryl-2,3-dihydro-1H-quinazolin-4-ones. Bioorganic & Medicinal Chemistry 2012, 20 (24) , 7119-7127. https://doi.org/10.1016/j.bmc.2012.09.069

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2012, 55, 8, 3792–3803
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm201687d
    Published March 26, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2099

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.