ACS Publications. Most Trusted. Most Cited. Most Read
The structure of osmium tetraoxide-cinchona alkaloid complexes
My Activity

    Article

    The structure of osmium tetraoxide-cinchona alkaloid complexes
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 1989, 54, 10, 2263–2264
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo00271a002
    Published May 1, 1989

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 63 publications.

    1. Sergi Burguera, Antonio Frontera. Osme Bonds in Molecular Crystals: Structural Insights, Substituent Effects, and Energetic Features. Crystal Growth & Design 2025, 25 (11) , 3949-3957. https://doi.org/10.1021/acs.cgd.5c00371
    2. G. K. Surya Prakash, Fang Wang, Martin Rahm, Zhe Zhang, Chuanfa Ni, Jingguo Shen, and George A. Olah . The Trifluoromethyl Group as a Conformational Stabilizer and Probe: Conformational Analysis of Cinchona Alkaloid Scaffolds. Journal of the American Chemical Society 2014, 136 (29) , 10418-10431. https://doi.org/10.1021/ja504376u
    3. Kilian Muñiz and, Martin Nieger. Ferrocenoyl-Substituted Cinchona Alkaloids:  Synthesis, Structure, and Application in Asymmetric Catalytic Oxidation. Organometallics 2003, 22 (22) , 4616-4619. https://doi.org/10.1021/om0304457
    4. James P. Collman,, LeGrande M. Slaughter,, Todd A. Eberspacher,, Thomas Strassner, and, John I. Brauman. Mechanism of Dihydrogen Cleavage by High-Valent Metal Oxo Compounds:  Experimental and Computational Studies. Inorganic Chemistry 2001, 40 (24) , 6272-6280. https://doi.org/10.1021/ic010639j
    5. Michael Gerken,, David A. Dixon, and, Gary J. Schrobilgen. The OsO4F-, OsO4F22-, and OsO3F3- Anions, Their Study by Vibrational and NMR Spectroscopy and Density Functional Theory Calculations, and the X-ray Crystal Structures of [N(CH3)4][OsO4F] and [N(CH3)4][OsO3F3]. Inorganic Chemistry 2000, 39 (19) , 4244-4255. https://doi.org/10.1021/ic000259i
    6. Per-Ola Norrby,, Torben Rasmussen,, Jan Haller,, Thomas Strassner, and, K. N. Houk. Rationalizing the Stereoselectivity of Osmium Tetroxide Asymmetric Dihydroxylations with Transition State Modeling Using Quantum Mechanics-Guided Molecular Mechanics. Journal of the American Chemical Society 1999, 121 (43) , 10186-10192. https://doi.org/10.1021/ja992023n
    7. Derek W. Nelson,, Andreas Gypser,, Pui Tong Ho,, Hartmuth C. Kolb,, Teruyuki Kondo,, Hoi-Lun Kwong,, Dominic V. McGrath,, A. Erik Rubin,, Per-Ola Norrby,, Kevin P. Gable, and, K. Barry Sharpless. Toward an Understanding of the High Enantioselectivity in the Osmium-Catalyzed Asymmetric Dihydroxylation. 4. Electronic Effects in Amine-Accelerated Osmylations. Journal of the American Chemical Society 1997, 119 (8) , 1840-1858. https://doi.org/10.1021/ja961464t
    8. Andrea Daolio, Andrea Pizzi, Miriam Calabrese, Giancarlo Terraneo, Simone Bordignon, Antonio Frontera, Giuseppe Resnati. Molecular Electrostatic Potential and Noncovalent Interactions in Derivatives of Group 8 Elements. Angewandte Chemie 2021, 133 (38) , 20891-20895. https://doi.org/10.1002/ange.202107978
    9. Andrea Daolio, Andrea Pizzi, Miriam Calabrese, Giancarlo Terraneo, Simone Bordignon, Antonio Frontera, Giuseppe Resnati. Molecular Electrostatic Potential and Noncovalent Interactions in Derivatives of Group 8 Elements. Angewandte Chemie International Edition 2021, 60 (38) , 20723-20727. https://doi.org/10.1002/anie.202107978
    10. David J. Ager. Cinchona Alkaloids as Chiral Ligands in Asymmetric Oxidations. 2009, 29-71. https://doi.org/10.1002/9783527628179.ch3
    11. Mariappan Periasamy, Sakilam Satish Kumar, N. Sampath Kumar. Catalytic asymmetric dihydroxylation of substituted trans-stilbene derivatives: implications of the variation of enantioselectivities on the mechanism of OsO4 addition to olefins. Tetrahedron Letters 2008, 49 (28) , 4416-4419. https://doi.org/10.1016/j.tetlet.2008.05.016
    12. Jennifer A. Bodkin, George B. Bacskay, Malcolm D. McLeod. The Sharpless asymmetric aminohydroxylation reaction: optimising ligand/substrate control of regioselectivity for the synthesis of 3- and 4-aminosugars. Organic & Biomolecular Chemistry 2008, 6 (14) , 2544. https://doi.org/10.1039/b803310b
    13. Mark C. Noe, Michael A. Letavic, Sheri L. Snow, . Asymmetric Dihydroxylation of Alkenes. 2005, 109-625. https://doi.org/10.1002/0471264180.or066.02
    14. Kilian Muñiz. The development of asymmetric diamination of alkenes with imido-osmium reagents. New Journal of Chemistry 2005, 29 (11) , 1371. https://doi.org/10.1039/b506221g
    15. Hartmuth C. Kolb, K. Barry Sharpless. Asymmetric Dihydroxylation. 2004, 275-307. https://doi.org/10.1002/9783527619405.ch5e
    16. Herbert Waldmann. Enantioselective cis ‐Dihydroxylation. 2003, 9-18. https://doi.org/10.1002/9783527620784.ch2a
    17. Peter Fristrup, David Tanner, Per‐Ola Norrby. Updating the asymmetric osmium‐catalyzed dihydroxylation (AD) mnemonic: Q2MM modeling and new kinetic measurements. Chirality 2003, 15 (4) , 360-368. https://doi.org/10.1002/chir.10214
    18. Chi-Ming Che, Tai-Chu Lau. Ruthenium and Osmium: High Oxidation States. 2003, 733-847. https://doi.org/10.1016/B0-08-043748-6/04215-8
    19. Hans‐Ulrich Blaser, Benoit Pugin, Felix Spindler. Special Products: 3.3.1–3.3.6.5. 2002, 1131-1240. https://doi.org/10.1002/9783527618231.ch3e
    20. Roland Hubel, Kurt Polborn, Wolfgang Beck. Cinchona Alkaloids as Versatile Ambivalent Ligands – Coordination of Transition Metals to the Four Potential Donor Sites of Quinine. European Journal of Inorganic Chemistry 1999, 1999 (3) , 471-482. https://doi.org/10.1002/(SICI)1099-0682(199903)1999:3<471::AID-EJIC471>3.0.CO;2-H
    21. Feliu Maseras. Hybrid Quantum Mechanics/Molecular Mechanics Methods in Transition Metal Chemistry. 1999, 165-191. https://doi.org/10.1007/3-540-69707-1_5
    22. Hartmuth C. Kolb, K. Barry Sharpless. Asymmetric Dihydroxylation. 1998, 219-242. https://doi.org/10.1002/9783527619399.ch5e
    23. Wolfgang A. Herrmann, Fritz E. Kühn, Mike R. Mattner, Georg R.J. Artus, Martin R. Geisberger, João D.G. Correia. Multiple bonds between transition metals and main-group elements, 163 nitrogen-donor adducts of organorhenium(VII) oxides: Structural and catalytic aspects. Journal of Organometallic Chemistry 1997, 538 (1-2) , 203-209. https://doi.org/10.1016/S0022-328X(96)06919-7
    24. Ulrich Pidun, Christian Boehme, Gernot Frenking. Theoretische Untersuchungen schließen eine [2 + 2]‐Addition als einleitenden Schritt der Osmiumtetroxid‐katalysierten Dihydroxylierung von Alkenen aus. Angewandte Chemie 1996, 108 (23-24) , 3008-3011. https://doi.org/10.1002/ange.19961082330
    25. Ulrich Pidun, Christian Boehme, Gernot Frenking. Theory Rules Out a [2 + 2] Addition of Osmium Tetroxide to Olefins as Initial Step of the Dihydroxylation Reaction. Angewandte Chemie International Edition in English 1996, 35 (23-24) , 2817-2820. https://doi.org/10.1002/anie.199628171
    26. Hans‐Ulrich Blaser, Benoît Pugin, Felix Spindler, M. Beller, K. B. Sharpless, P. W. Jolly, G. Wilke, E. Dinjus, R. Fornika. Special Products: Sections 3.3.1–3.3.4. 1996, 992-1072. https://doi.org/10.1002/9783527619351.ch3d
    27. Gregori Ujaque, Febu Maseras, Agustí Lledós. A theoretical evaluation of steric and electronic effects on the structure of [OSO4 (NR3)] (NR3 = bulky chiral alkaloid derivative) complexes. Theoretica Chimica Acta 1996, 94 (2) , 67-73. https://doi.org/10.1007/BF00194932
    28. Christina Moberg, Hans Adolfsson, Kenneth Wärnmark, Per‐Ola Norrby, Karl‐Magnus Marstokk, Harald Møllendal. Conformational Preference of 2‐(Halomethyl)‐ and 2‐(Oxymethyl)Pyridines: Microwave Spectrum, Ab Initio, and MM3 Studies of 2‐(Fluoromethyl)Pyridine. Chemistry – A European Journal 1996, 2 (5) , 516-522. https://doi.org/10.1002/chem.19960020510
    29. Christopher Missling, Shahram Mihan, Kurt Polborn, Wolfgang Beck. Metal Complexes of Biologically Important Ligands, LXXXVI. Organometallic Complexes of Ruthenium(II), Rhodium(III), Iridium(III), and Gold(I) with Cinchona Alkaloids. Chemische Berichte 1996, 129 (3) , 331-335. https://doi.org/10.1002/cber.19961290314
    30. Gernot Frenking, Iris Antes, Marlis Böhme, Stefan Dapprich, Andreas W. Ehlers, Volker Jonas, Arndt Neuhaus, Michael Otto, Ralf Stegmann, Achim Veldkamp, Sergei F. Vyboishchikov. Pseudopotential Calculations of Transition Metal Compounds: Scope and Limitations. 1996, 63-144. https://doi.org/10.1002/9780470125854.ch2
    31. Herbert Waldmann. Enantioselective cis ‐Dihydroxylation. 1995, 9-18. https://doi.org/10.1002/9783527619948.ch2
    32. Gilbert G. A. Balavoine, Eric Manoury. Organometallic compounds in asymmetric synthesis: Oxygen atom transfer. Applied Organometallic Chemistry 1995, 9 (3) , 199-225. https://doi.org/10.1002/aoc.590090305
    33. Per‐Ola Norrby, Kenneth Wärnmark, Björn Åkermark, Christina Moberg. Unusual conformational‐determining interactions in oxymethylpyridines: An ab initio study and an improved method for refining molecular mechanics parameters. Journal of Computational Chemistry 1995, 16 (5) , 620-627. https://doi.org/10.1002/jcc.540160510
    34. Sigeru Torii, Ping Liu, Hideo Tanaka. Electrochemical Os-Catalyzed Asymmetric Dihydroxylation of Olefins with Sharpless’ Ligand. Chemistry Letters 1995, 24 (4) , 319-320. https://doi.org/10.1246/cl.1995.319
    35. Joseph B. Sweeney. Alkyl Chalcogenides: Oxygen-based Functional Groups. 1995, 37-112. https://doi.org/10.1016/B0-08-044705-8/00250-8
    36. . References to Volume 2. 1995, 1103-1295. https://doi.org/10.1016/B0-08-044705-8/09010-5
    37. . References. 1994, 315-356. https://doi.org/10.1002/9783527615698.refs
    38. Antonio Togni, Luigi M. Venanzi. Nitrogen Donors in Organometallic Chemistry and Homogeneous Catalysis. Angewandte Chemie International Edition in English 1994, 33 (5) , 497-526. https://doi.org/10.1002/anie.199404971
    39. Klaus Stingl, Jürgen Martens. Verwertung industrieller Abfallstoffe, 1. Synthese neuer, chiraler primärer und sekundärer, 1,2‐Diamine. Liebigs Annalen der Chemie 1994, 1994 (3) , 243-250. https://doi.org/10.1002/jlac.199419940304
    40. Antonio Togni, Luigi M. Venanzi. Stickstoffdonoren in der Organometallchemie und in der Homogenkatalyse. Angewandte Chemie 1994, 106 (5) , 517-547. https://doi.org/10.1002/ange.19941060504
    41. Yasuhiko Sawaki. Epoxidation and hydroxylation. 1993, 587-656. https://doi.org/10.1002/9780470772515.ch11
    42. Árpád Molnár. Diols and polyols. 1993, 937-1018. https://doi.org/10.1002/9780470772515.ch18
    43. Makoto Nakajima, Kiyoshi Tomioka, Koga Kenji. Highly enantioselective dihydroxylation of olefins by osmium tetroxide with chiral diamines. Tetrahedron 1993, 49 (47) , 10793-10806. https://doi.org/10.1016/S0040-4020(01)80234-9
    44. Braj B. Lohray. Recent advances in the asymmetric dihydroxylation of alkenes. Tetrahedron: Asymmetry 1992, 3 (11) , 1317-1349. https://doi.org/10.1016/0957-4166(92)80002-E
    45. Suhan Tang, Robert M. Kennedy. Stereocontrolled oxidation of 5-hydroxyalkenes with rhenium oxide. III. Tetrahedron Letters 1992, 33 (37) , 5299-5302. https://doi.org/10.1016/S0040-4039(00)79077-0
    46. Braj.B. Lohray, Vidya Bhushan. On the mechanism of osmium catalyzed asymmetric dihydroxylation (ADH) of alkenes. Tetrahedron Letters 1992, 33 (35) , 5113-5116. https://doi.org/10.1016/S0040-4039(00)61205-4
    47. . Enantioselektive cis‐Hydroxylierungen. Nachrichten aus Chemie, Technik und Laboratorium 1992, 702-708. https://doi.org/10.1002/nadc.19920400610
    48. Robert M. Kennedy, Suhan Tang. Directed oxidative cyclization of 5-hydroxyalkenes with rhenium oxide. Tetrahedron Letters 1992, 33 (26) , 3729-3732. https://doi.org/10.1016/0040-4039(92)80010-H
    49. Maciej Kubicki, Teresa Borowiak, Marian Gawron. Structure and molecular chirality of the acetonitrile adduct of the 2:1 salt of quinidine with biphenyl 5,5?-dinitro-2,2?-dicarboxylic acid (5,5?-dinitrodiphenic acid). Journal of Crystallographic and Spectroscopic Research 1992, 22 (2) , 205-211. https://doi.org/10.1007/BF01186258
    50. David J. Ager, Michael B. East. Methodology to establish 1,2- and 1,3-difunctionality for the synthesis of carbohydrate derivates. Tetrahedron 1992, 48 (14) , 2803-2894. https://doi.org/10.1016/S0040-4020(01)90970-6
    51. Chi-Ming Che, Vivian Wing-Wah Yam. High-Valent Complexes of Ruthenium and Osmium. 1992, 233-325. https://doi.org/10.1016/S0898-8838(08)60261-5
    52. László Markó. Transition metals in organic synthesis: hydroformylation, reduction, and oxidation. Journal of Organometallic Chemistry 1991, 404 (1-3) , 325-504. https://doi.org/10.1016/0022-328X(91)80238-F
    53. Antony J. Fairbanks, George W.J. Fleet, Aled H. Jones, Ian Bruce, Samer Al Daher, Isabelle Cenci di Bello, Bryan Winchester. Synthesis from a heptonolactone and effect on glycosidases of (1S,2R,6R,7S)-1,2,6,7-tetrahydroxypyrrolizidine. Tetrahedron 1991, 47 (1) , 131-138. https://doi.org/10.1016/0040-4020(91)80015-T
    54. Peter A. Lay, W. Dean Harman. Recent Advances in Osmium Chemistry. 1991, 219-379. https://doi.org/10.1016/S0898-8838(08)60008-2
    55. Karl Anker Jørgensen. A mechanistic approach to the asymmetric epoxidation of allylic alcohols and osmylation of alkenes. Tetrahedron: Asymmetry 1991, 2 (7) , 515-532. https://doi.org/10.1016/S0957-4166(00)86105-4
    56. Dieter Enders, Shiro Nakai. Regio‐, Diastereo‐, and Enantioselective Synthesis of Vicinal Diols via α‐Silyl Ketones. Helvetica Chimica Acta 1990, 73 (7) , 1833-1836. https://doi.org/10.1002/hlca.19900730704
    57. Maciej Kubicki, Teresa Borowiak, Marian Gawron, Małgorzata Giel, Jacek Gawroński. Structure and molecular chirality of the 2∶1 salt of quinine with biphenyl 2,2′-dicarboxylic acid (diphenic acid). Journal of Crystallographic and Spectroscopic Research 1990, 20 (5) , 447-455. https://doi.org/10.1007/BF01180112
    58. Ronald M. Pearlstein, Brent K. Blackburn, William M. Davis, K. Barry Sharpless. Strukturelle Charakterisierung pseudoenantiomerer cis ‐Dioxoosmium(VI)‐Komplexe mit chiralen Diolen und Cinchona‐Alkaloid‐Liganden. Angewandte Chemie 1990, 102 (6) , 710-712. https://doi.org/10.1002/ange.19901020630
    59. Ronald M. Pearlstein, Brent K. Blackburn, William M. Davis, K. Barry Sharpless. Structural Characterization of the Pseudoenantiomeric cis ‐Dioxo Osmium( VI ) Esters of Chiral Diols with Cinchona Alkaloid Ligands. Angewandte Chemie International Edition in English 1990, 29 (6) , 639-641. https://doi.org/10.1002/anie.199006391
    60. W. P. Griffith. Organic oxidations by osmium and ruthenium oxo complexes. Transition Metal Chemistry 1990, 15 (3) , 251-256. https://doi.org/10.1007/BF01038387
    61. T. Ross Kelly, Qun Li, Vidya Bhushan. Intramolecular biaryl coupling: Asymmetric synthesis of the chiral b-ring diol unit of pradimicinone. Tetrahedron Letters 1990, 31 (2) , 161-164. https://doi.org/10.1016/S0040-4039(00)94359-4
    62. E.J. Corey, Gerald I. Lotto. The origin of enantioselectivity in the dihydroxylation of olefins by osmium tetroxide and cinchona alkaloid derivatives. Tetrahedron Letters 1990, 31 (19) , 2665-2668. https://doi.org/10.1016/S0040-4039(00)94667-7
    63. Karl Anker Jøgensen. On the mechanism of the enantioselectivity in the dihydroxylation of alkenes by osmium tetraoxide-chiral ligand complexes.. Tetrahedron Letters 1990, 31 (44) , 6417-6420. https://doi.org/10.1016/S0040-4039(00)97080-1

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 1989, 54, 10, 2263–2264
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo00271a002
    Published May 1, 1989

    Article Views

    461

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.