ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis and Activity of Histidine-Containing Catalytic Peptide Dendrimers
My Activity
    Article

    Synthesis and Activity of Histidine-Containing Catalytic Peptide Dendrimers
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry & Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland, and Chemspeed Technologies AG, Rheinstrasse 32, 4302 Augst, Switzerland
    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2006, 71, 12, 4468–4480
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo060273y
    Published May 6, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Peptide dendrimers built by iteration of the diamino acid dendron Dap-His-Ser (His = histidine, Ser = Serine, Dap = diamino propionic acid) display a strong positive dendritic effect for the catalytic hydrolysis of 8-acyloxypyrene 1,3,6-trisulfonates, which proceeds with enzyme-like kinetics in aqueous medium (Delort, E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126, 15642−3). Thirty-two mutants of the original third generation dendrimer A3 ((Ac-His-Ser)8(Dap-His-Ser)4(Dap-His-Ser)2Dap-His-Ser-NH2) were prepared by manual synthesis or by automated synthesis with use of a Chemspeed PSW1100 peptide synthesizer. Dendrimer catalysis was specific for 8-acyloxypyrene 1,3,6-trisulfonates, and there was no activity with other types of esters. While dendrimers with hydrophobic residues at the core and histidine residues at the surface only showed weak activity, exchanging serine residues in dendrimer A3 against alanine (A3A), β-alanine (A3B), or threonine (A3C) improved catalytic efficiency. Substrate binding was correlated with the total number of histidines per dendrimer, with an average of three histidines per substrate binding site. The catalytic rate constant kcat depended on the placement of histidines within the dendrimers and the nature of the other amino acid residues. The fastest catalyst was the threonine mutant A3C ((Ac−His-Thr)8(Dap-His-Thr)4(Dap-His-Thr)2Dap-His-Thr-NH2), with kcat = 1.3 min-1, kcat/kuncat = 90‘000, KM = 160 μM for 8-bytyryloxypyrene 1,3,6-trisulfonate, corresponding to a rate acceleration of 18‘000 per catalytic site and a 5-fold improvement over the original sequence A3.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     University of Berne.

     Chemspeed Technologies AG.

    *

     Address correspondence to this author. Fax:  +41 31 631 80 57.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Procedures for dendrimer synthesis, HPLC, and MS data of all dendrimers synthesized, procedures for kinetic measurements, and ITC and pH studies. This material is available free of charge via the Internet at http:// pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 74 publications.

    1. Ryan J. Smith, Srivatsan Ramesh, Eduardo Barbieri, Juliana N. O’Brien, Veenasri Vallem, Michael D. Dickey, Saad A. Khan, Jan Genzer, Christopher B. Gorman, Stefano Menegatti. DendriPep Nanocoats: Substrate-Agnostic, Self-Assembling Constructs with Shear-Controlled Thickness and Permeability. Langmuir 2025, 41 (18) , 11314-11326. https://doi.org/10.1021/acs.langmuir.4c04607
    2. Luís C. S. Filipe, Miguel Machuqueiro, Tamis Darbre, and António M. Baptista . Exploring the Structural Properties of Positively Charged Peptide Dendrimers. The Journal of Physical Chemistry B 2016, 120 (43) , 11323-11330. https://doi.org/10.1021/acs.jpcb.6b09156
    3. Luís C. S. Filipe, Sara R. R. Campos, Miguel Machuqueiro, Tamis Darbre, and António M. Baptista . Structuring Peptide Dendrimers through pH Modulation and Substrate Binding. The Journal of Physical Chemistry B 2016, 120 (38) , 10138-10152. https://doi.org/10.1021/acs.jpcb.6b05905
    4. Yingfeng Tu, Fei Peng, Alaa Adawy, Yongjun Men, Loai K. E. A. Abdelmohsen, and Daniela A. Wilson . Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chemical Reviews 2016, 116 (4) , 2023-2078. https://doi.org/10.1021/acs.chemrev.5b00344
    5. Łukasz Szyrwiel, Łukasz Szczukowski, József S. Pap, Bartosz Setner, Zbigniew Szewczuk, and Wiesław Malinka . The Cu2+ Binding Properties of Branched Peptides Based on l-2,3-Diaminopropionic Acid. Inorganic Chemistry 2014, 53 (15) , 7951-7959. https://doi.org/10.1021/ic5007428
    6. Luís C. S. Filipe, Miguel Machuqueiro, Tamis Darbre, and António M. Baptista . Unraveling the Conformational Determinants of Peptide Dendrimers Using Molecular Dynamics Simulations. Macromolecules 2013, 46 (23) , 9427-9436. https://doi.org/10.1021/ma401574b
    7. Jieming Gao, Peiming Chen, Yashveer Singh, Xiaoping Zhang, Zoltan Szekely, Stanley Stein, and Patrick J. Sinko . Novel Monodisperse PEGtide Dendrons: Design, Fabrication, and Evaluation of Mannose Receptor-Mediated Macrophage Targeting. Bioconjugate Chemistry 2013, 24 (8) , 1332-1344. https://doi.org/10.1021/bc400011v
    8. Noélie Maillard, Rasomoy Biswas, Tamis Darbre, and Jean-Louis Reymond . Combinatorial Discovery of Peptide Dendrimer Enzyme Models Hydrolyzing Isobutyryl Fluorescein. ACS Combinatorial Science 2011, 13 (3) , 310-320. https://doi.org/10.1021/co200006z
    9. Luís C. S. Filipe, Miguel Machuqueiro, and António M. Baptista . Unfolding the Conformational Behavior of Peptide Dendrimers: Insights from Molecular Dynamics Simulations. Journal of the American Chemical Society 2011, 133 (13) , 5042-5052. https://doi.org/10.1021/ja111001v
    10. Malar A. Azagarsamy, Kothandam Krishnamoorthy, Kulandaivelu Sivanandan and S. Thayumanavan. Site-Specific Installation and Study of Electroactive Units in Every Layer of Dendrons. The Journal of Organic Chemistry 2009, 74 (24) , 9475-9485. https://doi.org/10.1021/jo902109u
    11. Stijn F. M. van Dongen, Hans-Peter M. de Hoog, Ruud J. R. W. Peters, Madhavan Nallani, Roeland J. M. Nolte and Jan C. M. van Hest . Biohybrid Polymer Capsules. Chemical Reviews 2009, 109 (11) , 6212-6274. https://doi.org/10.1021/cr900072y
    12. Noélie Maillard, Tamis Darbre and Jean-Louis Reymond. Identification of Catalytic Peptide Dendrimers by “Off-Bead” in Silica High-Throughput Screening of Combinatorial Libraries. Journal of Combinatorial Chemistry 2009, 11 (4) , 667-675. https://doi.org/10.1021/cc9000289
    13. Sacha Javor and Jean-Louis Reymond. Molecular Dynamics and Docking Studies of Single Site Esterase Peptide Dendrimers. The Journal of Organic Chemistry 2009, 74 (10) , 3665-3674. https://doi.org/10.1021/jo802743c
    14. Benjamin P. Roberts, Guy Y. Krippner, Martin J. Scanlon and David K. Chalmers. Molecular Dynamics of Variegated Polyamide Dendrimers. Macromolecules 2009, 42 (7) , 2784-2794. https://doi.org/10.1021/ma8021579
    15. H. Bauke Albada and Rob M. J. Liskamp. TAC-Scaffolded Tripeptides as Artificial Hydrolytic Receptors: A Combinatorial Approach Toward Esterase Mimics. Journal of Combinatorial Chemistry 2008, 10 (6) , 814-824. https://doi.org/10.1021/cc800065a
    16. Elizabeth A. Colby Davie,, Steven M. Mennen,, Yingju Xu, and, Scott J. Miller. Asymmetric Catalysis Mediated by Synthetic Peptides. Chemical Reviews 2007, 107 (12) , 5759-5812. https://doi.org/10.1021/cr068377w
    17. Carsten Schmuck and, Jürgen Dudaczek. Screening of a Combinatorial Library Reveals Peptide-Based Catalysts for Phosphorester Cleavage in Water. Organic Letters 2007, 9 (26) , 5389-5392. https://doi.org/10.1021/ol702191q
    18. Sacha Javor,, Estelle Delort,, Tamis Darbre, and, Jean-Louis Reymond. A Peptide Dendrimer Enzyme Model with a Single Catalytic Site at the Core. Journal of the American Chemical Society 2007, 129 (43) , 13238-13246. https://doi.org/10.1021/ja074115f
    19. Elena Kolomiets,, Emma M. V. Johansson,, Olivier Renaudet,, Tamis Darbre, and, Jean-Louis Reymond. Neoglycopeptide Dendrimer Libraries as a Source of Lectin Binding Ligands. Organic Letters 2007, 9 (8) , 1465-1468. https://doi.org/10.1021/ol070119d
    20. Hui Shao,, Jeffrey W. Lockman, and, Jon R. Parquette. Coupled Conformational Equilibria in β-Sheet Peptide−Dendron Conjugates. Journal of the American Chemical Society 2007, 129 (7) , 1884-1885. https://doi.org/10.1021/ja068154n
    21. Tamis Darbre and, Jean-Louis Reymond. Peptide Dendrimers as Artificial Enzymes, Receptors, and Drug-Delivery Agents. Accounts of Chemical Research 2006, 39 (12) , 925-934. https://doi.org/10.1021/ar050203y
    22. Armelle Ouali,, Régis Laurent,, Anne-Marie Caminade,, Jean-Pierre Majoral, and, Marc Taillefer. Enhanced Catalytic Properties of Copper in O- and N-Arylation and Vinylation Reactions, Using Phosphorus Dendrimers as Ligands. Journal of the American Chemical Society 2006, 128 (50) , 15990-15991. https://doi.org/10.1021/ja066505s
    23. Mojdeh Shojaei, Hamid Fallahi, Farhad Shirzaei, Hamid Reza Shaterian. The synthesis of γ-Fe2O3@SiO2-L-histidine as a magnetic nanocatalyst for the preparation of new chromeno[1,6]naphthyridine derivatives. Monatshefte für Chemie - Chemical Monthly 2025, 156 (3) , 337-349. https://doi.org/10.1007/s00706-025-03298-5
    24. Shinzo Omiya, Hinako Yamochi, Tetsuo Koyama, Ken Hatano, Koji Matsuoka, Takahiko Matsushita. pH-Dependent proteolytic activity of histidine-pendant polyacrylamides. European Polymer Journal 2024, 12 , 112898. https://doi.org/10.1016/j.eurpolymj.2024.112898
    25. Qing Liu, Kaiwei Wan, Yingxu Shang, Zhen-Gang Wang, Yiyang Zhang, Luru Dai, Chen Wang, Hui Wang, Xinghua Shi, Dongsheng Liu, Baoquan Ding. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nature Materials 2021, 20 (3) , 395-402. https://doi.org/10.1038/s41563-020-00856-6
    26. Ryan J. Smith, Christopher Gorman, Stefano Menegatti. Synthesis, structure, and function of internally functionalized dendrimers. Journal of Polymer Science 2021, 59 (1) , 10-28. https://doi.org/10.1002/pol.20200721
    27. Marina Kurbasic, Ana M. Garcia, Simone Viada, Silvia Marchesan. Tripeptide Self-Assembly into Bioactive Hydrogels: Effects of Terminus Modification on Biocatalysis. Molecules 2021, 26 (1) , 173. https://doi.org/10.3390/molecules26010173
    28. Kengo Akagawa. Catalysis by peptides. 2018, 513-564. https://doi.org/10.1016/B978-0-08-100736-5.00021-1
    29. Anne-Marie Caminade, Armelle Ouali, Régis Laurent, Jean-Pierre Majoral. Catalysis Within Dendrimers. 2017, 173-207. https://doi.org/10.1007/978-3-319-50207-6_8
    30. Rania S. Seoudi, Adam Mechler. Design Principles of Peptide Based Self-Assembled Nanomaterials. 2017, 51-94. https://doi.org/10.1007/978-3-319-66095-0_4
    31. Kengo Akagawa, Kazuaki Kudo. Solvolysis of Formylphenyl Esters by a Bifunctional Peptide Catalyst. Chemistry Letters 2016, 45 (3) , 300-302. https://doi.org/10.1246/cl.151154
    32. G. Smitha, K. Sreekumar. Chiral dendrigraft polymer for asymmetric synthesis of isoquinuclidines. RSC Advances 2016, 6 (88) , 85643-85658. https://doi.org/10.1039/C6RA15548K
    33. Jesús M. Fernández-Hernández, Verónica Cámara, José Vicente. Synthesis of molecular chains: application of cross-coupling and bromo by iodo exchange reactions. Tetrahedron 2015, 71 (34) , 5506-5512. https://doi.org/10.1016/j.tet.2015.06.072
    34. Nishant Singh, Marta Tena‐Solsona, Juan F. Miravet, Beatriu Escuder. Towards Supramolecular Catalysis with Small Self‐assembled Peptides. Israel Journal of Chemistry 2015, 55 (6-7) , 711-723. https://doi.org/10.1002/ijch.201400185
    35. Kerem Goren, Jeny Karabline‐Kuks, Yael Shiloni, Einav Barak‐Kulbak, Scott J. Miller, Moshe Portnoy. Multivalency as a Key Factor for High Activity of Selective Supported Organocatalysts for the Baylis–Hillman Reaction. Chemistry – A European Journal 2015, 21 (3) , 1191-1197. https://doi.org/10.1002/chem.201404560
    36. Aroa Duro-Castano, Inmaculada Conejos-Sánchez, María Vicent. Peptide-Based Polymer Therapeutics. Polymers 2014, 6 (2) , 515-551. https://doi.org/10.3390/polym6020515
    37. Matthieu Raynal, Pablo Ballester, Anton Vidal-Ferran, Piet W. N. M. van Leeuwen. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 2014, 43 (5) , 1734-1787. https://doi.org/10.1039/C3CS60037H
    38. Liang Xu, Chuanshi Ji, Yu Bai, Junlin He, Keliang Liu. DNA duplex-supported artificial esterase mimicking by cooperative grafting functional groups. Biochemical and Biophysical Research Communications 2013, 434 (3) , 516-520. https://doi.org/10.1016/j.bbrc.2013.03.106
    39. Piero Geotti-Bianchini, Tamis Darbre, Jean-Louis Reymond. pH-tuned metal coordination and peroxidase activity of a peptide dendrimer enzyme model with a Fe( ii )bipyridine at its core. Org. Biomol. Chem. 2013, 11 (2) , 344-352. https://doi.org/10.1039/C2OB26551F
    40. Adela Ya-Ting Huang, Ching-Hua Tsai, Hsing-Yin Chen, Hui-Ting Chen, Chi-Yu Lu, Yu-Ting Lin, Chai-Lin Kao. Concise solid-phase synthesis of inverse poly(amidoamine) dendrons using AB2 building blocks. Chemical Communications 2013, 49 (51) , 5784. https://doi.org/10.1039/c3cc40661j
    41. Jean-Louis Reymond, Myriam Bergmann, Tamis Darbre. Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chemical Society Reviews 2013, 42 (11) , 4814. https://doi.org/10.1039/c3cs35504g
    42. Gabriela A. Eggimann, Stefanie Buschor, Tamis Darbre, Jean-Louis Reymond. Convergent synthesis and cellular uptake of multivalent cell penetrating peptides derived from Tat, Antp, pVEC, TP10 and SAP. Organic & Biomolecular Chemistry 2013, 11 (39) , 6717. https://doi.org/10.1039/c3ob41023d
    43. Amit Mahindra, Karthik Nooney, Shrikant Uraon, Krishna K. Sharma, Rahul Jain. Microwave-assisted solution phase peptide synthesis in neat water. RSC Advances 2013, 3 (37) , 16810. https://doi.org/10.1039/c3ra43040e
    44. Yanzhen Yin, Zeyuan Dong, Quan Luo, Junqiu Liu. Biomimetic catalysts designed on macromolecular scaffolds. Progress in Polymer Science 2012, 37 (11) , 1476-1509. https://doi.org/10.1016/j.progpolymsci.2012.04.001
    45. Barbara Geibel, Michael Merschky, Carolin Rether, Carsten Schmuck. Artificial Enzyme Mimics. 2012https://doi.org/10.1002/9780470661345.smc159
    46. Tzofit Kehat, Kerem Goren, Moshe Portnoy. Effects of dendritic interface on enantioselective catalysis by polymer-bound prolines. New J. Chem. 2012, 36 (2) , 394-401. https://doi.org/10.1039/C1NJ20471H
    47. Jean-Louis Reymond, Tamis Darbre. Peptide and glycopeptide dendrimer apple trees as enzyme models and for biomedical applications. Organic & Biomolecular Chemistry 2012, 10 (8) , 1483. https://doi.org/10.1039/c2ob06938e
    48. Brian Rasmussen, Jørn Bolstad Christensen. Organocatalytic dendrimers. Organic & Biomolecular Chemistry 2012, 10 (25) , 4821. https://doi.org/10.1039/c2ob25317h
    49. Yu Bai, Yanbo Ling, Weiguo Shi, Lifeng Cai, Qiyan Jia, Shibo Jiang, Keliang Liu. Heteromeric Assembled Polypeptidic Artificial Hydrolases with a Six‐Helical Bundle Scaffold. ChemBioChem 2011, 12 (17) , 2647-2658. https://doi.org/10.1002/cbic.201100311
    50. Régis Laurent, Anne‐Marie Caminade. Catalysis with Dendrimers in Particular Media. 2011, 215-238. https://doi.org/10.1002/9781119976530.ch10
    51. Ronan Euzen, Jean-Louis Reymond. Synthesis of glycopeptide dendrimers, dimerization and affinity for Concanavalin A. Bioorganic & Medicinal Chemistry 2011, 19 (9) , 2879-2887. https://doi.org/10.1016/j.bmc.2011.03.047
    52. Zhengshuang Shi, Chunhui Zhou, Zhigang Liu, Filbert Totsingan, Neville R. Kallenbach. Amino Acid‐Based Dendrimers. 2011, 491-517. https://doi.org/10.1002/9783527631827.ch15
    53. Ronan Euzen, Jean-Louis Reymond. Glycopeptide dendrimers: tuning carbohydrate–lectin interactions with amino acids. Mol. BioSyst. 2011, 7 (2) , 411-421. https://doi.org/10.1039/C0MB00177E
    54. Nicolas A. Uhlich, Tamis Darbre, Jean-Louis Reymond. Peptide dendrimer enzyme models for ester hydrolysis and aldolization prepared by convergent thioether ligation. Organic & Biomolecular Chemistry 2011, 9 (20) , 7071. https://doi.org/10.1039/c1ob05877k
    55. Ludger A. Wessjohann, Martin C. Nin Brauer, Kristin Brand. Chalcogen-Based Organocatalysis. 2011, 209-314. https://doi.org/10.1007/978-90-481-3865-4_7
    56. Nicolas A. Uhlich, Antonino Natalello, Rameshwar U. Kadam, Silvia M. Doglia, Jean‐Louis Reymond, Tamis Darbre. Structure and Binding of Peptide‐Dendrimer Ligands to Vitamin B 12. ChemBioChem 2010, 11 (3) , 358-365. https://doi.org/10.1002/cbic.200900657
    57. Rasomoy Biswas, Noélie Maillard, Jacob Kofoed, Jean-Louis Reymond. Comparing dendritic with linear esterase peptides by screening SPOT arrays for catalysis. Chemical Communications 2010, 46 (46) , 8746. https://doi.org/10.1039/c0cc02700f
    58. Peter Sommer, Viviana S. Fluxa, Tamis Darbre, Jean‐Louis Reymond. Proteolysis of Peptide Dendrimers. ChemBioChem 2009, 10 (9) , 1527-1536. https://doi.org/10.1002/cbic.200900060
    59. Kazuhiko Mitsui, Jon R. Parquette. Dendritic Amplification of Stereoselectivity of a Prolinamide‐Catalyzed Direct Aldol Reaction. Israel Journal of Chemistry 2009, 49 (1) , 119-127. https://doi.org/10.1560/IJC.49.1.119
    60. Sacha Javor, Jean‐Louis Reymond. Structure–Activity Relationship Studies in Single‐Site Esterase Peptide Dendrimers. Israel Journal of Chemistry 2009, 49 (1) , 129-136. https://doi.org/10.1560/IJC.49.1.129
    61. V. Haridas, Yogesh K. Sharma, Sarala Naik. Multi‐Tier Dendrimers with an Aromatic Core. European Journal of Organic Chemistry 2009, 2009 (10) , 1570-1577. https://doi.org/10.1002/ejoc.200801150
    62. Kazuhiko Mitsui, Sarah A. Hyatt, Daniel A. Turner, Christopher M. Hadad, Jon R. Parquette. Direct aldol reactions catalyzed by intramolecularly folded prolinamide dendrons: dendrimer effects on stereoselectivity. Chemical Communications 2009, 102 (22) , 3261. https://doi.org/10.1039/b902960e
    63. Carsten Schmuck, Ute Michels, Jürgen Dudaczek. Hydrolytic activity of histidine-containing octapeptides in water identified by quantitative screening of a combinatorial library. Organic & Biomolecular Chemistry 2009, 7 (21) , 4362. https://doi.org/10.1039/b904415a
    64. Nicolas A. Uhlich, Peter Sommer, Claudia Bühr, Stefan Schürch, Jean-Louis Reymond, Tamis Darbre. Remote control of bipyridine–metal coordination within a peptide dendrimer. Chemical Communications 2009, 4 (41) , 6237. https://doi.org/10.1039/b912291e
    65. Laurent Vial, Pascal Dumy. Nanomolar Heparin Detection with an Artificial Enzyme. ChemBioChem 2008, 9 (18) , 2950-2953. https://doi.org/10.1002/cbic.200800420
    66. José Vicente, José A. Abad, Rosa M. López-Nicolás. Synthesis of molecular chains: phenylene thioether and sulfoxide oligomers. Tetrahedron 2008, 64 (27) , 6281-6288. https://doi.org/10.1016/j.tet.2008.04.108
    67. Peter Sommer, Nicolas A. Uhlich, Jean‐Louis Reymond, Tamis Darbre. A Peptide Dendrimer Model for Vitamin B 12 Transport Proteins. ChemBioChem 2008, 9 (5) , 689-693. https://doi.org/10.1002/cbic.200700606
    68. Jean‐Louis Reymond, Wolfgang Streit. The Search for New Enzymes. 2008, 65-85. https://doi.org/10.1002/9783527622481.ch3
    69. Rohit Kolhatkar, Deborah Sweet, Hamidreza Ghandehari. Functionalized Dendrimers as Nanoscale Drug Carriers. 2008, 201-232. https://doi.org/10.1007/978-0-387-76554-9_7
    70. Estelle Delort, Edit Szöcs, Roland Widmer, Hans Siegenthaler, Jean‐Louis Reymond. STM Vizualization of Thiol‐Containing Peptide Dendrimers on Au(111). Macromolecular Bioscience 2007, 7 (8) , 1024-1031. https://doi.org/10.1002/mabi.200700036
    71. Emma M. V. Johansson, Elena Kolomiets, Frank Rosenau, Karl-Erich Jaeger, Tamis Darbre, Jean-Louis Reymond. Combinatorial variation of branching length and multivalency in a large (390 625 member) glycopeptide dendrimer library: ligands for fucose-specific lectins. New Journal of Chemistry 2007, 31 (7) , 1291. https://doi.org/10.1039/b616051b
    72. Tzofit Kehat, Kerem Goren, Moshe Portnoy. Dendrons on insoluble supports: synthesis and applications. New Journal of Chemistry 2007, 31 (7) , 1218. https://doi.org/10.1039/b617855n
    73. Tzofit Kehat, Moshe Portnoy. Polymer-supported proline-decorated dendrons: dendritic effect in asymmetric aldol reaction. Chemical Communications 2007, 43 (27) , 2823. https://doi.org/10.1039/b703016a
    74. Victor Chechik. Reactivity in organised assemblies. Annual Reports Section "B" (Organic Chemistry) 2007, 103 , 352. https://doi.org/10.1039/b708518b

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2006, 71, 12, 4468–4480
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo060273y
    Published May 6, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1495

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.