ACS Publications. Most Trusted. Most Cited. Most Read
Pattern Recognition in Retrosynthetic Analysis:  Snapshots in Total Synthesis
My Activity
    Perspective

    Pattern Recognition in Retrosynthetic Analysis:  Snapshots in Total Synthesis
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10021, and Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, New York 10027
    Other Access Options

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2007, 72, 12, 4293–4305
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo070871s
    Published June 1, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In this Perspective, the value of small molecule natural products (SMNPs) in the discovery of active biological agents is discussed. The usefulness of the natural products-based method of potential pharma discovery is much augmented by the capacities of chemical synthesis. The great advances in synthetic methodology allow for major editing of the natural product in the hopes of optimizing potency and therapeutic index. As a consequence of the enormous increase in the power of multistep chemical synthesis, one can now approach structures of previously impractical complexity. In constructing a plan for a multistep synthesis, two complementary thought styles are often encountered. One is the traditional and extremely powerful concept of prioritized strategic bond disconnections. The other, which we term “pattern recognition,” involves the identification of moieties within the target, which are associated with reliable chemistry, and can serve to facilitate progress to the target. Recognition of such targets may require substantial recasting of the target structure to connect it to well-established types of transformations. Some of our older ventures, where ideas about pattern recognition were first being fashioned and used productively, are revisited. In addition, we provide snapshots of recently achieved total syntheses of SMNPs of novel biological potential. These vignettes serve to harmonize insights occasioned by pattern recognition, in concert with transformations enabled by the enormous growth in the power of synthesis.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Sloan-Kettering Institute for Cancer Research.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Columbia University.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 90 publications.

    1. Shubham Tiwari, Guddeangadi N. Gururaja. Nitroalkanes as Ketone Synthetic Equivalents in C–N and C–S Bond Formation Reactions. Organic Letters 2025, Article ASAP.
    2. Reem Al-Ahmad, Mingji Dai. Advancing Total Synthesis Through Skeletal Editing. Accounts of Chemical Research 2025, Article ASAP.
    3. David L. Cain, Niall A. Anderson, David B. Cordes, Alexandra M. Z. Slawin, Allan J. B. Watson. Total Synthesis of (±)-Aspidospermidine, (±)-Aspidofractinine, (±)-Limaspermidine, and (±)-Vincadifformine via a Cascade and Common Intermediate Strategy. The Journal of Organic Chemistry 2022, 87 (22) , 15559-15563. https://doi.org/10.1021/acs.joc.2c02099
    4. Hai-Hua Lu, Kang-Ji Gan, Fu-Qiang Ni, Zhihan Zhang, Yao Zhu. Concise Total Synthesis of Salimabromide. Journal of the American Chemical Society 2022, 144 (41) , 18778-18783. https://doi.org/10.1021/jacs.2c08337
    5. Claire S. Harmange Magnani, Danny Q. Thach, Karl T. Haelsig, Thomas J. Maimone. Syntheses of Complex Terpenes from Simple Polyprenyl Precursors. Accounts of Chemical Research 2020, 53 (4) , 949-961. https://doi.org/10.1021/acs.accounts.0c00055
    6. John Hartung, Stephen N. Greszler, Russell C. Klix, Jeffrey M. Kallemeyn. Development of an Enantioselective [3 + 2] Cycloaddition To Synthesize the Pyrrolidine Core of ABBV-3221 on Multikilogram Scale. Organic Process Research & Development 2019, 23 (11) , 2532-2537. https://doi.org/10.1021/acs.oprd.9b00292
    7. Hong Zhang, Xinxin Wu, Yunlong Wei, Chen Zhu. Radical-Mediated Heck-Type Alkylation: Stereoconvergent Synthesis of Functionalized Polyenes. Organic Letters 2019, 21 (18) , 7568-7572. https://doi.org/10.1021/acs.orglett.9b02838
    8. Nuno R. Candeias, Benedicta Assoah, Svilen P. Simeonov. Production and Synthetic Modifications of Shikimic Acid. Chemical Reviews 2018, 118 (20) , 10458-10550. https://doi.org/10.1021/acs.chemrev.8b00350
    9. Cheng Tao, Jing Zhang, Xiaoming Chen, Huifei Wang, Yun Li, Bin Cheng, and Hongbin Zhai . Formal Synthesis of (±)-Aplykurodinone-1 through a Hetero-Pauson–Khand Cycloaddition Approach. Organic Letters 2017, 19 (5) , 1056-1059. https://doi.org/10.1021/acs.orglett.7b00068
    10. Hao Liu, Jing Yu, Xinyu Li, Rui Yan, Ji-Chang Xiao, and Ran Hong . Stereoselectivity in N-Iminium Ion Cyclization: Development of an Efficient Synthesis of (±)-Cephalotaxine. Organic Letters 2015, 17 (18) , 4444-4447. https://doi.org/10.1021/acs.orglett.5b02106
    11. Youngeun Jung and Ikyon Kim . Total Synthesis of Brazilin. The Journal of Organic Chemistry 2015, 80 (3) , 2001-2005. https://doi.org/10.1021/jo502745j
    12. Amy M. Hamlin, David Lapointe, Kyle Owens, and Richmond Sarpong . Studies on C20-Diterpenoid Alkaloids: Synthesis of the Hetidine Framework and Its Application to the Synthesis of Dihydronavirine and the Atisine Skeleton. The Journal of Organic Chemistry 2014, 79 (15) , 6783-6800. https://doi.org/10.1021/jo501214b
    13. Audrey G. Ross, Steven D. Townsend, and Samuel J. Danishefsky . Halocycloalkenones as Diels–Alder Dienophiles. Applications to Generating Useful Structural Patterns. The Journal of Organic Chemistry 2013, 78 (1) , 204-210. https://doi.org/10.1021/jo302230m
    14. Feng Peng and Samuel J. Danishefsky . Total Synthesis of (±)-Maoecrystal V. Journal of the American Chemical Society 2012, 134 (45) , 18860-18867. https://doi.org/10.1021/ja309905j
    15. Audrey G. Ross, Xiaohua Li, and Samuel J. Danishefsky . Intramolecular Diels–Alder Reactions of Cycloalkenones: Translation of High Endo Selectivity to Trans Junctions. Journal of the American Chemical Society 2012, 134 (38) , 16080-16084. https://doi.org/10.1021/ja307708q
    16. Jun Hee Lee, Yandong Zhang, and Samuel J. Danishefsky . A Straightforward Route to Functionalized trans-Diels−Alder Motifs. Journal of the American Chemical Society 2010, 132 (41) , 14330-14333. https://doi.org/10.1021/ja1073855
    17. Yandong Zhang and Samuel J. Danishefsky . Total Synthesis of (±)-Aplykurodinone-1: Traceless Stereochemical Guidance. Journal of the American Chemical Society 2010, 132 (28) , 9567-9569. https://doi.org/10.1021/ja1035495
    18. Xiayun Cheng and Stephen P. Waters. Concise Total Syntheses of the Lycopodium Alkaloids (±)-Nankakurines A and B via Luciduline. Organic Letters 2010, 12 (2) , 205-207. https://doi.org/10.1021/ol902455y
    19. Ping Wang, Jianglong Zhu, Yu Yuan and Samuel J. Danishefsky . Total Synthesis of the 2,6-Sialylated Immunoglobulin G Glycopeptide Fragment in Homogeneous Form. Journal of the American Chemical Society 2009, 131 (46) , 16669-16671. https://doi.org/10.1021/ja907136d
    20. Woo Han Kim, Jun Hee Lee and Samuel J. Danishefsky . Improved Dienophilicity of Nitrocycloalkenes: Prospects for the Development of a trans-Diels−Alder Paradigm. Journal of the American Chemical Society 2009, 131 (35) , 12576-12578. https://doi.org/10.1021/ja9058926
    21. Emile J. Velthuisen and, Samuel J. Danishefsky. Total Synthesis of (+)-Suaveolindole:  Establishment of Its Absolute Configuration. Journal of the American Chemical Society 2007, 129 (35) , 10640-10641. https://doi.org/10.1021/ja075100k
    22. Fangzheng Li,, Baiyuan Yang,, Marvin J. Miller,, Jaroslav Zajicek,, Bruce C. Noll,, Ute Möllmann,, Hans-Martin Dahse, and, Patricia A. Miller. Iminonitroso Diels−Alder Reactions for Efficient Derivatization and Functionalization of Complex Diene-Containing Natural Products. Organic Letters 2007, 9 (15) , 2923-2926. https://doi.org/10.1021/ol071322b
    23. Goh Sennari, Tomoyasu Hirose, Toshiaki Sunazuka. Total Synthesis of Puberulic Acid and Related Congeners Using a Carbohydrate Framework Source. Journal of Synthetic Organic Chemistry, Japan 2025, 83 (4) , 293-304. https://doi.org/10.5059/yukigoseikyokaishi.83.293
    24. Yipeng You, Xue-Jie Zhang, Wen Xiao, Thittaya Kunthic, Zheng Xiang, Chen Xu. Unified enantiospecific synthesis of drimane meroterpenoids enabled by enzyme catalysis and transition metal catalysis. Chemical Science 2024, 15 (46) , 19307-19314. https://doi.org/10.1039/D4SC06060A
    25. Wen‐Xiu Xu, Li‐Han Zhao, Yao Zhu, Hai‐Hua Lu. Enantioselective Total Synthesis of (+)‐Propolisbenzofuran B †. Chinese Journal of Chemistry 2024, 42 (22) , 2833-2839. https://doi.org/10.1002/cjoc.202400563
    26. Zachary Schwartz, Chelsea Valiton, Myles Lovasz, Andrew G. Roberts. Recent Applications of Ammonium Ylide Based [2,3]-Sigmatropic and [1,2]-Stevens Rearrangements To Transform Amines into Natural Products. Synthesis 2024, 56 (01) , 87-106. https://doi.org/10.1055/s-0042-1751446
    27. Amar Nath Singh Chauhan, Ghanshyam Mali, Rohan D. Erande. Regioselectivity Switch Towards the Development of Innovative Diels‐Alder Cycloaddition and Productive Applications in Organic Synthesis. Asian Journal of Organic Chemistry 2022, 11 (4) https://doi.org/10.1002/ajoc.202100793
    28. Li Zhai, Ye Tang, Yan Zhang, Sha‐Hua Huang, Lili Zhu, Ran Hong. A Bridge to Alkaloid Synthesis. The Chemical Record 2022, 22 (1) https://doi.org/10.1002/tcr.202100197
    29. Xianwen Long, Hai Wu, Yiming Ding, Chunlei Qu, Jun Deng. Biosynthetically Inspired Divergent Syntheses of Merocytochalasans. Chem 2021, 7 (1) , 212-223. https://doi.org/10.1016/j.chempr.2020.11.010
    30. Eduard Badarau, K. Harsha Vardhan Reddy, Aurore Loudet, Charles Simon, Laurent Trembleau, Stijn Claerhout, Etienne Pair, Stéphane Massip, Philippe Breton, Brigitte Lesur, Solo Goldstein, Jean‐Marie Fourquez, Jean Michel Henlin, Léon Ghosez. Productive Syntheses of Privileged Scaffolds Inspired by the Recognition of a Diels–Alder Pattern Common to Three Classes of Natural Products. Chemistry – A European Journal 2020, 26 (67) , 15477-15481. https://doi.org/10.1002/chem.202002372
    31. Nicolle A. Doering, Richmond Sarpong, Reinhard W. Hoffmann. Ein Fall für die Bindungs‐Netzwerk‐Analyse bei der Synthese verbrückter polycyclischer komplexer Moleküle: Hetidin‐ und Hetisin‐Diterpen‐Alkaloide. Angewandte Chemie 2020, 132 (27) , 10810-10820. https://doi.org/10.1002/ange.201909656
    32. Nicolle A. Doering, Richmond Sarpong, Reinhard W. Hoffmann. A Case for Bond‐Network Analysis in the Synthesis of Bridged Polycyclic Complex Molecules: Hetidine and Hetisine Diterpenoid Alkaloids. Angewandte Chemie International Edition 2020, 59 (27) , 10722-10731. https://doi.org/10.1002/anie.201909656
    33. Croix J. Laconsay, Ka Yi Tsui, Dean J. Tantillo. Tipping the balance: theoretical interrogation of divergent extended heterolytic fragmentations. Chemical Science 2020, 11 (8) , 2231-2242. https://doi.org/10.1039/C9SC05161A
    34. Christa K. G. Gerlinger, Tanja Gaich. Structure‐Pattern‐Based Total Synthesis. Chemistry – A European Journal 2019, 25 (46) , 10782-10791. https://doi.org/10.1002/chem.201901308
    35. Takahiro Kawamata, Akinori Yamaguchi, Masanori Nagatomo, Masayuki Inoue. Convergent Total Synthesis of Asimicin via Decarbonylative Radical Dimerization. Chemistry – A European Journal 2018, 24 (71) , 18907-18912. https://doi.org/10.1002/chem.201805317
    36. Marco V. Mijangos, Luis D. Miranda. A unified synthesis of topologically diverse Aspidosperma alkaloids through divergent iminium-trapping. Organic & Biomolecular Chemistry 2018, 16 (48) , 9409-9419. https://doi.org/10.1039/C8OB02621A
    37. Dylan J. Abrams, Philip A. Provencher, Erik J. Sorensen. Recent applications of C–H functionalization in complex natural product synthesis. Chemical Society Reviews 2018, 47 (23) , 8925-8967. https://doi.org/10.1039/C8CS00716K
    38. Christa K. G. Gerlinger, Sebastian Krüger, Tanja Gaich. Total Synthesis of Parvineostemonine by Structure Pattern Recognition: A Unified Approach to Stemona and Sarpagine Alkaloids. Chemistry – A European Journal 2018, 24 (16) , 3994-3997. https://doi.org/10.1002/chem.201800365
    39. Zsolt Benedek, Balázs Orbán, Tibor Szilvási. Theoretical Evidence for the Utilization of Low‐Valent Main‐Group Complexes as Rare‐Synthon Equivalents. Chemistry – A European Journal 2017, 23 (71) , 17908-17914. https://doi.org/10.1002/chem.201703636
    40. Goh Sennari, Ryo Saito, Tomoyasu Hirose, Masato Iwatsuki, Aki Ishiyama, Rei Hokari, Kazuhiko Otoguro, Satoshi Ōmura, Toshiaki Sunazuka. Antimalarial troponoids, puberulic acid and viticolins; divergent synthesis and structure-activity relationship studies. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-07718-3
    41. Kengo Masuda, Masanori Nagatomo, Masayuki Inoue. Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions. Nature Chemistry 2017, 9 (3) , 207-212. https://doi.org/10.1038/nchem.2639
    42. T. Aaron Bedell, Graham A. B. Hone, Damien Valette, Jin‐Quan Yu, Huw M. L. Davies, Erik J. Sorensen. Rapid Construction of a Benzo‐Fused Indoxamycin Core Enabled by Site‐Selective C−H Functionalizations. Angewandte Chemie 2016, 128 (29) , 8410-8414. https://doi.org/10.1002/ange.201602024
    43. T. Aaron Bedell, Graham A. B. Hone, Damien Valette, Jin‐Quan Yu, Huw M. L. Davies, Erik J. Sorensen. Rapid Construction of a Benzo‐Fused Indoxamycin Core Enabled by Site‐Selective C−H Functionalizations. Angewandte Chemie International Edition 2016, 55 (29) , 8270-8274. https://doi.org/10.1002/anie.201602024
    44. Masanori Nagatomo, Koji Hagiwara, Kengo Masuda, Masaki Koshimizu, Takahiro Kawamata, Yuki Matsui, Daisuke Urabe, Masayuki Inoue. Symmetry‐Driven Strategy for the Assembly of the Core Tetracycle of (+)‐Ryanodine: Synthetic Utility of a Cobalt‐Catalyzed Olefin Oxidation and α‐Alkoxy Bridgehead Radical Reaction. Chemistry – A European Journal 2016, 22 (1) , 222-229. https://doi.org/10.1002/chem.201503640
    45. Koichi Hagiwara, Toshiki Tabuchi, Daisuke Urabe, Masayuki Inoue. Expeditious synthesis of the fused hexacycle of puberuline C via a radical-based cyclization/translocation/cyclization process. Chemical Science 2016, 7 (7) , 4372-4378. https://doi.org/10.1039/C6SC00671J
    46. Taro Asaba, Yuki Katoh, Daisuke Urabe, Masayuki Inoue. Total Synthesis of Crotophorbolone. Angewandte Chemie 2015, 127 (48) , 14665-14669. https://doi.org/10.1002/ange.201509160
    47. Taro Asaba, Yuki Katoh, Daisuke Urabe, Masayuki Inoue. Total Synthesis of Crotophorbolone. Angewandte Chemie International Edition 2015, 54 (48) , 14457-14461. https://doi.org/10.1002/anie.201509160
    48. Pascal Ellerbrock, Nicolas Armanino, Marina K. Ilg, Robert Webster, Dirk Trauner. An eight-step synthesis of epicolactone reveals its biosynthetic origin. Nature Chemistry 2015, 7 (11) , 879-882. https://doi.org/10.1038/nchem.2336
    49. Jaron A. M. Mercer, Noah Z. Burns. Emulation illuminates biosynthesis. Nature Chemistry 2015, 7 (11) , 860-861. https://doi.org/10.1038/nchem.2377
    50. . Triangulation Retrosynthetic Analysis. 2015, 103-108. https://doi.org/10.1002/9781118978429.ch4
    51. . Total Organic Synthesis. 2015, 279-311. https://doi.org/10.1002/9783527688166.ch10
    52. Robert V. Kolakowski, Thomas D. Young, Philip W. Howard, Scott C. Jeffrey, Peter D. Senter. Synthesis of a C2-aryl-pyrrolo[2,1-c][1,4]benzodiazepine monomer enabling the convergent construction of symmetrical and non-symmetrical dimeric analogs. Tetrahedron Letters 2015, 56 (30) , 4512-4515. https://doi.org/10.1016/j.tetlet.2015.05.116
    53. Jing Zhang, Jinbao Wu, Benke Hong, Wenying Ai, Xiaoming Wang, Houhua Li, Xiaoguang Lei. Diversity-oriented synthesis of Lycopodium alkaloids inspired by the hidden functional group pairing pattern. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms5614
    54. David A. Siler, Jeffrey D. Mighion, Erik J. Sorensen. An Enantiospecific Synthesis of Jiadifenolide. Angewandte Chemie 2014, 126 (21) , 5436-5439. https://doi.org/10.1002/ange.201402335
    55. David A. Siler, Jeffrey D. Mighion, Erik J. Sorensen. An Enantiospecific Synthesis of Jiadifenolide. Angewandte Chemie International Edition 2014, 53 (21) , 5332-5335. https://doi.org/10.1002/anie.201402335
    56. Goh Sennari, Tomoyasu Hirose, Masato Iwatsuki, Satoshi Ōmura, Toshiaki Sunazuka. A concise total synthesis of puberulic acid, a potent antimalarial agent. Chem. Commun. 2014, 50 (63) , 8715-8718. https://doi.org/10.1039/C4CC03134B
    57. Michael A. Drahl, Madhuri Manpadi, Lawrence J. Williams. C‐C‐Fragmentierung: Herkunft und jüngste Anwendungen. Angewandte Chemie 2013, 125 (43) , 11430-11461. https://doi.org/10.1002/ange.201209833
    58. Michael A. Drahl, Madhuri Manpadi, Lawrence J. Williams. CC Fragmentation: Origins and Recent Applications. Angewandte Chemie International Edition 2013, 52 (43) , 11222-11251. https://doi.org/10.1002/anie.201209833
    59. Feng Peng, Robin E. Grote, Rebecca M. Wilson, Samuel J. Danishefsky. Pattern recognition analysis in complex molecule synthesis and the preparation of iso-Diels–Alder motifs. Proceedings of the National Academy of Sciences 2013, 110 (27) , 10904-10909. https://doi.org/10.1073/pnas.1309795110
    60. Qian Wang, Jie‐Ping Zhu, Kyriacos C. Nicolaou, Henry N. C. Wong, Wei‐Dong Li. Total Synthesis of Natural Products and the Synergy with Synthetic Methodology. 2012, 33-79. https://doi.org/10.1002/9783527664801.ch2
    61. Mukesh K. Sharma, Martin G. Banwell, Anthony C. Willis, A. David Rae. Approaches to the Neurotrophically Active Natural Product 11‐ O ‐Debenzoyltashironin: A Chemoenzymatic Total Synthesis of the Structurally Related Sesquiterpene Khusiol. Chemistry – An Asian Journal 2012, 7 (4) , 676-679. https://doi.org/10.1002/asia.201100913
    62. Goverdhan Mehta, Ramesh Samineni, Pabbaraja Srihari, R. Gajendra Reddy, Sumana Chakravarty. Diverted organic synthesis (DOS): accessing a new, natural product inspired, neurotrophically active scaffold through an intramolecular Pauson–Khand reaction. Organic & Biomolecular Chemistry 2012, 10 (34) , 6830. https://doi.org/10.1039/c2ob26107c
    63. Feng Peng, Mingji Dai, Angie R. Angeles, Samuel J. Danishefsky. Permuting Diels–Alder and Robinson annulation stereopatterns. Chemical Science 2012, 3 (10) , 3076. https://doi.org/10.1039/c2sc20868g
    64. Zhang Wang, Mingji Dai, Peter K. Park, Samuel J. Danishefsky. Synthetic studies toward (+)-cortistatin A. Tetrahedron 2011, 67 (52) , 10249-10260. https://doi.org/10.1016/j.tet.2011.10.026
    65. Feng Peng, Robin E. Grote, Samuel J. Danishefsky. Further expansion of the trans-Diels–Alder paradigm: reductive alkylation of α-cyanoketones. Tetrahedron Letters 2011, 52 (31) , 3957-3959. https://doi.org/10.1016/j.tetlet.2011.05.110
    66. Alexander Piala, Diyar Mayi, Scott T. Handy. Studies of one-pot double couplings on dibromoquinolines. Tetrahedron 2011, 67 (23) , 4147-4154. https://doi.org/10.1016/j.tet.2011.04.052
    67. Tung N. Dinh, Anqi Chen, Christina L.L. Chai. A pattern recognition approach to 14-epi-hydrophenanthrene core of the morphine alkaloids based on shikimic acid. Tetrahedron 2011, 67 (19) , 3363-3368. https://doi.org/10.1016/j.tet.2011.03.063
    68. Goverdhan Mehta, Ramesh Samineni, Pabbaraja Srihari. Model studies towards paecilomycine A–C: exploring scaffold diversity through a key intramolecular Pauson–Khand reaction. Tetrahedron Letters 2011, 52 (14) , 1663-1666. https://doi.org/10.1016/j.tetlet.2011.01.131
    69. C.V. Ramana, Mangesh P. Dushing, Sradhanjali Mohapatra, Rosy Mallik, Rajesh G. Gonnade. Target cum flexibility: an alkyne [2+2+2]-cyclotrimerization strategy for synthesis of trinem library. Tetrahedron Letters 2011, 52 (1) , 38-41. https://doi.org/10.1016/j.tetlet.2010.10.123
    70. Tanmay Chatterjee, Raju Dey, Brindaban C. Ranu. An easy access to styrenes: trans aryl 1,3-, 1,4- and 1,5-dienes, and 1,3,5-trienes by Hiyama cross-coupling catalyzed by palladium nanoparticles. New Journal of Chemistry 2011, 35 (5) , 1103. https://doi.org/10.1039/c0nj01019g
    71. Rebecca M. Wilson, Samuel J. Danishefsky. Zum Wirkungsbereich der chemischen Synthese: Aufbau einer Minipipeline in einem akademischen Labor. Angewandte Chemie 2010, 122 (35) , 6168-6193. https://doi.org/10.1002/ange.201000775
    72. Rebecca M. Wilson, Samuel J. Danishefsky. On the Reach of Chemical Synthesis: Creation of a Mini‐Pipeline from an Academic Laboratory. Angewandte Chemie International Edition 2010, 49 (35) , 6032-6056. https://doi.org/10.1002/anie.201000775
    73. Sharad B. Suryawanshi, Mangesh P. Dushing, Rajesh G. Gonnade, C.V. Ramana. The isochroman- and 1,3-dihydroisobenzofuran-annulation on carbohydrate templates via [2+2+2]-cyclotrimerization and synthesis of some tricyclic nucleosides. Tetrahedron 2010, 66 (32) , 6085-6096. https://doi.org/10.1016/j.tet.2010.06.011
    74. Nathan Collett, Rich G. Carter. Moving backwards in new ways. Nature Chemistry 2010, 2 (8) , 613-614. https://doi.org/10.1038/nchem.758
    75. C.V. Ramana, Sunil Kumar Pandey. A modular total synthesis of aculeatins A, B, E, F and 6-epi-aculeatins E, F. Tetrahedron 2010, 66 (1) , 390-399. https://doi.org/10.1016/j.tet.2009.10.058
    76. Matthieu Willot, Lea Radtke, Daniel Könning, Roland Fröhlich, Viktoria H. Gessner, Carsten Strohmann, Mathias Christmann. Totalsynthese und absolute Konfiguration des Guaian‐Sesquiterpens Englerin A. Angewandte Chemie 2009, 121 (48) , 9269-9272. https://doi.org/10.1002/ange.200905032
    77. Matthieu Willot, Lea Radtke, Daniel Könning, Roland Fröhlich, Viktoria H. Gessner, Carsten Strohmann, Mathias Christmann. Total Synthesis and Absolute Configuration of the Guaiane Sesquiterpene Englerin A. Angewandte Chemie International Edition 2009, 48 (48) , 9105-9108. https://doi.org/10.1002/anie.200905032
    78. Woo Han Kim, Angie R. Angeles, Jun Hee Lee, Samuel J. Danishefsky. Concise synthesis of the xenibellols core. Tetrahedron Letters 2009, 50 (47) , 6440-6441. https://doi.org/10.1016/j.tetlet.2009.08.131
    79. Feng Peng, Maolin Yu, Samuel J. Danishefsky. Synthetic studies toward Maoecrystal V. Tetrahedron Letters 2009, 50 (47) , 6586-6587. https://doi.org/10.1016/j.tetlet.2009.09.050
    80. James McNulty, Priyabrata Das. Aqueous Wittig reactions of semi-stabilized ylides. A straightforward synthesis of 1,3-dienes and 1,3,5-trienes. Tetrahedron Letters 2009, 50 (41) , 5737-5740. https://doi.org/10.1016/j.tetlet.2009.07.133
    81. James D. Sunderhaus, Chris Dockendorff, Stephen F. Martin. Synthesis of diverse heterocyclic scaffolds via tandem additions to imine derivatives and ring-forming reactions. Tetrahedron 2009, 65 (33) , 6454-6469. https://doi.org/10.1016/j.tet.2009.05.009
    82. Ke Chen, Phil S. Baran. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 2009, 459 (7248) , 824-828. https://doi.org/10.1038/nature08043
    83. James W. Herndon. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the Year 2007. Coordination Chemistry Reviews 2009, 253 (9-10) , 1517-1595. https://doi.org/10.1016/j.ccr.2008.12.013
    84. R.W. Hoffmann. Introduction. 2009, 1-7. https://doi.org/10.1007/978-3-540-79220-8_1
    85. Timothy Newhouse, Phil S. Baran, Reinhard W. Hoffmann. The economies of synthesis. Chemical Society Reviews 2009, 38 (11) , 3010. https://doi.org/10.1039/b821200g
    86. Alessandra Polara, Silas P. Cook, Samuel J. Danishefsky. Multiple chirality transfers in the enantioselective synthesis of 11-O-debenzoyltashironin. Chiroptical analysis of the key cascade. Tetrahedron Letters 2008, 49 (41) , 5906-5908. https://doi.org/10.1016/j.tetlet.2008.07.139
    87. Thomas E. Nielsen, Stuart L. Schreiber. Der optimale Molekülsatz für Screening‐Anwendungen: eine Synthesestrategie. Angewandte Chemie 2008, 120 (1) , 52-61. https://doi.org/10.1002/ange.200703073
    88. Thomas E. Nielsen, Stuart L. Schreiber. Towards the Optimal Screening Collection: A Synthesis Strategy. Angewandte Chemie International Edition 2008, 47 (1) , 48-56. https://doi.org/10.1002/anie.200703073
    89. Rebecca M. Wilson, Samuel J. Danishefsky. Pattern Recognition in Retrosynthetic Analysis: Snapshots in Total Synthesis.. ChemInform 2007, 38 (39) https://doi.org/10.1002/chin.200739234
    90. Rebecca M. Wilson, Samuel J. Danishefsky. Promising agents at the interface of biology and oncology derived through chemical synthesis. Pure and Applied Chemistry 2007, 79 (12) , 2189-2216. https://doi.org/10.1351/pac200779122189

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2007, 72, 12, 4293–4305
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo070871s
    Published June 1, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    5489

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.