ACS Publications. Most Trusted. Most Cited. Most Read
Photolysis of (3-Methyl-2H-azirin-2-yl)-phenylmethanone: Direct Detection of a Triplet Vinylnitrene Intermediate
My Activity
    Article

    Photolysis of (3-Methyl-2H-azirin-2-yl)-phenylmethanone: Direct Detection of a Triplet Vinylnitrene Intermediate
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Cincinnati, Ohio 45221-0172, United States
    Department of Chemistry, University of Victoria, Victoria, BC, Canada
    § Division of Space Life Science, Universities Space Research Association, Houston, Texas 77058, United States
    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2011, 76, 24, 9934–9945
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo200877k
    Published July 6, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The photoreactivity of (3-methyl-2H-azirin-2-yl)-phenylmethanone, 1, is wavelength-dependent (Singh et al. J. Am. Chem. Soc. 1972, 94, 1199−1206). Irradiation at short wavelengths yields 2P, whereas longer wavelengths produce 3P. Laser flash photolysis of 1 in acetonitrile using a 355 nm laser forms its triplet ketone (T1K, broad absorption with λmax ∼ 390–410 nm, τ ∼ 90 ns), which cleaves and yields triplet vinylnitrene 3 (broad absorption with λmax ∼ 380–400 nm, τ = 2 μs). Calculations (B3LYP/6-31+G(d)) reveal that T1K of 1 is located 67 kcal/mol above its ground state (S0) and has a long C–N bond (1.58 Å), and the calculated transition state to form 3 is only 1 kcal/mol higher in energy than T1K of 1. The calculations show that 3 has significant 1,3-carbon iminyl biradical character, which explains why 3 reacts efficiently with oxygen and decays by intersystem crossing to the singlet surface. Photolysis of 1 in argon matrixes at 14 K produced ketene imine 7, which presumably is formed from 3 intersystem crossing to 7. In comparison, photolysis of 1 in methanol with a 266 nm laser produces mainly ylide 2max ∼ 380 nm, τ ∼ 6 μs, acetonitrile), which decays to form 2P. Ylide 2 is formed via singlet reactivity of 1, and calculations show that the first singlet excited state of the azirine chromophore (S1A) is located 113 kcal/mol above its S0 and that the singlet excited state of the ketone (S1K) is 85 kcal/mol. Furthermore, the transition state for cleaving the C–C bond in 1 to form 2 is located 49 kcal/mol above the S0 of 1. Thus, we theorize that internal conversion of S1A to a vibrationally hot S0 of 1 forms 2, whereas intersystem crossing from S1K to T1K results in 3.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Cartesian coordinates, energies, and vibrational frequencies. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 35 publications.

    1. Weiyu Qian, Peter R. Schreiner, Artur Mardyukov. Preparation and Photochemistry of Parent Triplet Vinylarsinidene. Journal of the American Chemical Society 2024, 146 (1) , 930-935. https://doi.org/10.1021/jacs.3c11432
    2. Dylan J. Shields, Durga Prasad Karothu, Karthik Sambath, Ranaweera A. A. Upul Ranaweera, Stefan Schramm, Alexander Duncan, Benjamin Duncan, Jeanette A. Krause, Anna D. Gudmundsdottir, Panče Naumov. Cracking under Internal Pressure: Photodynamic Behavior of Vinyl Azide Crystals through N2 Release. Journal of the American Chemical Society 2020, 142 (43) , 18565-18575. https://doi.org/10.1021/jacs.0c07830
    3. Dylan J. Shields, Sujan K. Sarkar, H. Dushanee M. Sriyarathne, Jocelyn R. Brown, Curt Wentrup, Manabu Abe, Anna D. Gudmundsdottir. Transforming Triplet Vinylnitrene into Triplet Alkylnitrene at Cryogenic Temperatures. Organic Letters 2019, 21 (18) , 7194-7198. https://doi.org/10.1021/acs.orglett.9b01950
    4. DeVonna M. Gatlin, William L. Karney, Manabu Abe, Bruce S. Ault, Anna D. Gudmundsdottir. Formation and Reactivity of Triplet Vinylnitrenes as a Function of Ring Size. The Journal of Organic Chemistry 2019, 84 (14) , 9215-9225. https://doi.org/10.1021/acs.joc.9b01191
    5. Kirill I. Mikhailov, Ekaterina E. Galenko, Alexey V. Galenko, Mikhail S. Novikov, Alexander Yu. Ivanov, Galina L. Starova, Alexander F. Khlebnikov. Fe(II)-Catalyzed Isomerization of 5-Chloroisoxazoles to 2H-Azirine-2-carbonyl Chlorides as a Key Stage in the Synthesis of Pyrazole–Nitrogen Heterocycle Dyads. The Journal of Organic Chemistry 2018, 83 (6) , 3177-3187. https://doi.org/10.1021/acs.joc.8b00069
    6. Stefan Pusch, Andreas Tröster, Daniel Lefrancois, Pooria Farahani, Andreas Dreuw, Thorsten Bach, and Till Opatz . Mechanism and cis/trans Selectivity of Vinylogous Nazarov-type [6π] Photocyclizations. The Journal of Organic Chemistry 2018, 83 (2) , 964-972. https://doi.org/10.1021/acs.joc.7b02982
    7. Yingtang Ning, Yuko Otani, and Tomohiko Ohwada . Base-Induced Transformation of 2-Acyl-3-alkyl-2H-azirines to Oxazoles: Involvement of Deprotonation-Initiated Pathways. The Journal of Organic Chemistry 2017, 82 (12) , 6313-6326. https://doi.org/10.1021/acs.joc.7b00904
    8. Sujan K. Sarkar, Onyinye Osisioma, William L. Karney, Manabu Abe, and Anna D. Gudmundsdottir . Using Molecular Architecture to Control the Reactivity of a Triplet Vinylnitrene. Journal of the American Chemical Society 2016, 138 (45) , 14905-14914. https://doi.org/10.1021/jacs.6b05746
    9. Sujan K. Sarkar, Asako Sawai, Kousei Kanahara, Curt Wentrup, Manabu Abe, and Anna D. Gudmundsdottir . Direct Detection of a Triplet Vinylnitrene, 1,4-Naphthoquinone-2-ylnitrene, in Solution and Cryogenic Matrices. Journal of the American Chemical Society 2015, 137 (12) , 4207-4214. https://doi.org/10.1021/jacs.5b00998
    10. Ye Liu, Peijie Guan, Yating Wang, Lihong Liu, and Jun Cao . Mechanistic Insight into Decomposition of 2H-Azirines: Electronic Structure Calculations and Dynamics Simulations. The Journal of Physical Chemistry A 2015, 119 (1) , 67-78. https://doi.org/10.1021/jp511208p
    11. Sridhar Rajam, Abhijit V. Jadhav, Qian Li, Sujan K. Sarkar, Pradeep N. D. Singh, Ahleah Rohr, Tamara C. S. Pace, Rui Li, Jeanette A. Krause, Cornelia Bohne, Bruce S. Ault, and Anna D. Gudmundsdottir . Triplet Sensitized Photolysis of a Vinyl Azide: Direct Detection of a Triplet Vinyl Azide and Nitrene. The Journal of Organic Chemistry 2014, 79 (19) , 9325-9334. https://doi.org/10.1021/jo501898p
    12. Darío J. R. Duarte, Margarida S. Miranda, and Joaquim C. G. Esteves da Silva . Computational Study on the Vinyl Azide Decomposition. The Journal of Physical Chemistry A 2014, 118 (27) , 5038-5045. https://doi.org/10.1021/jp500140j
    13. Didier Bégué, Alain Dargelos, Hans M. Berstermann, Klaus P. Netsch, Pawel Bednarek, and Curt Wentrup . Nitrile Imines and Nitrile Ylides: Rearrangements of Benzonitrile N-Methylimine and Benzonitrile Dimethylmethylide to Azabutadienes, Carbodiimides, and Ketenimines. Chemical Activation in Thermolysis of Azirenes, Tetrazoles, Oxazolones, Isoxazolones, and Oxadiazolones. The Journal of Organic Chemistry 2014, 79 (3) , 1247-1253. https://doi.org/10.1021/jo402667y
    14. Xiaoming Zhang, Sujan K. Sarkar, Geethika K. Weragoda, Sridhar Rajam, Bruce S. Ault, and Anna D. Gudmundsdottir . Comparison of the Photochemistry of 3-Methyl-2-phenyl-2H-azirine and 2-Methyl-3-phenyl-2H-azirine. The Journal of Organic Chemistry 2014, 79 (2) , 653-663. https://doi.org/10.1021/jo402443w
    15. Disnani W. Gamage, Qian Li, R. A. A. Upul Ranaweera, Sujan K. Sarkar, Geethika K. Weragoda, Patrick L. Carr, and Anna D. Gudmundsdottir . Vinylnitrene Formation from 3,5-Diphenyl-isoxazole and 3-Benzoyl-2-phenylazirine. The Journal of Organic Chemistry 2013, 78 (22) , 11349-11356. https://doi.org/10.1021/jo401819g
    16. Cláudio M. Nunes, Igor Reva, and Rui Fausto . Capture of an Elusive Nitrile Ylide as an Intermediate in Isoxazole–Oxazole Photoisomerization. The Journal of Organic Chemistry 2013, 78 (21) , 10657-10665. https://doi.org/10.1021/jo4015672
    17. Annette D. Allen and Thomas T. Tidwell . Ketenes and Other Cumulenes as Reactive Intermediates. Chemical Reviews 2013, 113 (9) , 7287-7342. https://doi.org/10.1021/cr3005263
    18. Cláudio M. Nunes, Igor Reva, Teresa M. V. D. Pinho e Melo, Rui Fausto, Tomáš Šolomek, and Thomas Bally . The Pyrolysis of Isoxazole Revisited: A New Primary Product and the Pivotal Role of the Vinylnitrene. A Low-Temperature Matrix Isolation and Computational Study. Journal of the American Chemical Society 2011, 133 (46) , 18911-18923. https://doi.org/10.1021/ja207717k
    19. W.Dinindu Mendis, Abdelqader M. Jamhawi, Rajkumar Merugu, Dmitrii Govorov, Katrin H. Vilinsky, Bakar Alomari, Bruce S. Ault, A.Jean-Luc Ayitou, Anna D. Gudmundsdottir. Photoreactivity of 1-azidostyrene and 3-phenyl-2H-azirine in acetonitrile and cryogenic matrices. Journal of Photochemistry and Photobiology A: Chemistry 2025, 467 , 116427. https://doi.org/10.1016/j.jphotochem.2025.116427
    20. Shulei Pan, Peng Wu, Dimitra Bampi, Jas S. Ward, Kari Rissanen, Carsten Bolm. Mechanochemical Conditions for Intramolecular N−O Couplings via Rhodium Nitrenoids Generated from N ‐Acyl Sulfonimidamides. Angewandte Chemie 2024, 136 (50) https://doi.org/10.1002/ange.202413181
    21. Shulei Pan, Peng Wu, Dimitra Bampi, Jas S. Ward, Kari Rissanen, Carsten Bolm. Mechanochemical Conditions for Intramolecular N−O Couplings via Rhodium Nitrenoids Generated from N ‐Acyl Sulfonimidamides. Angewandte Chemie International Edition 2024, 63 (50) https://doi.org/10.1002/anie.202413181
    22. Franca M. Cordero, Donatella Giomi, Fabrizio Machetti. Isoxazoles. 2022, 308-434. https://doi.org/10.1016/B978-0-12-818655-8.00135-9
    23. Jianxiao Li, Zidong Lin, Wanqing Wu, Huanfeng Jiang. Recent advances in metal catalyzed or mediated cyclization/functionalization of alkynes to construct isoxazoles. Organic Chemistry Frontiers 2020, 7 (16) , 2325-2348. https://doi.org/10.1039/D0QO00609B
    24. Upasana Banerjee, Kosala Thenna‐Hewa, Anna D. Gudmundsdottir. Triplet vinylnitrenes. 2019, 1-37. https://doi.org/10.1002/9780470682531.pat0925
    25. Cláudio M. Nunes, Sandra M.V. Pinto, Igor Reva, Mário T.S. Rosado, Rui Fausto. Photochemistry of matrix-isolated 3-chloro-1,2-benzisoxazole: Generation and characterization of 2-cyanophenoxyl radical and other reactive intermediates. Journal of Molecular Structure 2018, 1172 , 33-41. https://doi.org/10.1016/j.molstruc.2017.11.009
    26. Onyinye Osisioma, Mrinal Chakraborty, Bruce S. Ault, Anna D. Gudmundsdottir. Wavelength-dependent photochemistry of 2-azidovinylbenzene and 2-phenyl-2H-azirine. Journal of Molecular Structure 2018, 1172 , 94-101. https://doi.org/10.1016/j.molstruc.2018.04.042
    27. H. Dushanee M. Sriyarathne, Sujan K. Sarkar, Sayaka Hatano, Manabu Abe, Anna D. Gudmundsdottir. Photolysis of 3,5‐diphenylisoxazole in argon matrices. Journal of Physical Organic Chemistry 2017, 30 (4) https://doi.org/10.1002/poc.3638
    28. James S. Poole. Recent Advances in the Photochemistry of Heterocyclic N-Oxides and Their Derivatives. 2017, 111-151. https://doi.org/10.1007/7081_2017_4
    29. Geethika K. Weragoda, Anushree Das, Sujan K. Sarkar, H. Dushanee M. Sriyarathne, Xiaoming Zhang, Bruce S. Ault, Anna D. Gudmundsdottir. Singlet Photoreactivity of 3-Methyl-2-phenyl-2H-azirine. Australian Journal of Chemistry 2017, 70 (4) , 413. https://doi.org/10.1071/CH16604
    30. Cláudio M. Nunes, Sandra M. V. Pinto, Igor Reva, Rui Fausto. On the Photochemistry of 1,2‐Benzisoxazole: Capture of Elusive Spiro‐2 H ‐azirine and Ketenimine Intermediates. European Journal of Organic Chemistry 2016, 2016 (24) , 4152-4158. https://doi.org/10.1002/ejoc.201600668
    31. Jun Cao. Photoinduced reactions of both 2-formyl-2 H -azirine and isoxazole: A theoretical study based on electronic structure calculations and nonadiabatic dynamics simulations. The Journal of Chemical Physics 2015, 142 (24) https://doi.org/10.1063/1.4922742
    32. Angelica Bianco, Debora Fabbri, Marco Minella, Marcello Brigante, Gilles Mailhot, Valter Maurino, Claudio Minero, Davide Vione. New insights into the environmental photochemistry of 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan): Reconsidering the importance of indirect photoreactions. Water Research 2015, 72 , 271-280. https://doi.org/10.1016/j.watres.2014.07.036
    33. Ranaweera A. A. Upul Ranaweera, Geethika K. Weragoda, John Bain, Shinji Watanabe, Manabu Abe, Anna D. Gudmundsdottir. Photolysis of acetophenone derivatives with α‐cyclopropyl substituents. Journal of Physical Organic Chemistry 2015, 28 (2) , 137-146. https://doi.org/10.1002/poc.3389
    34. Yunhui Zheng, Chao Yang, Daisy Zhang-Negrerie, Yunfei Du, Kang Zhao. One-pot synthesis of isoxazoles from enaminones: an application of Fe(II) as the catalyst for ring expansion of 2H-azirine intermediates. Tetrahedron Letters 2013, 54 (46) , 6157-6160. https://doi.org/10.1016/j.tetlet.2013.08.079
    35. Curt Wentrup, Nguyen Mong Lan, Adelheid Lukosch, Pawel Bednarek, David Kvaskoff. 3-Pyridylnitrene, 2- and 4-pyrimidinylcarbenes, 3-quinolylnitrenes, and 4-quinazolinylcarbenes. Interconversion, ring expansion to diazacycloheptatetraenes, ring opening to nitrile ylides, and ring contraction to cyanopyrroles and cyanoindoles. Beilstein Journal of Organic Chemistry 2013, 9 , 743-753. https://doi.org/10.3762/bjoc.9.84

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2011, 76, 24, 9934–9945
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo200877k
    Published July 6, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1504

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.