ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVFeatured ArticleNEXT

Intermolecular C–H Amination of Complex Molecules: Insights into the Factors Governing the Selectivity

View Author Information
Centre de Recherche de Gif-sur-Yvette, Institut de Chimie des Substances Naturelles, UPR 2301 CNRS Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
Cite this: J. Org. Chem. 2012, 77, 17, 7232–7240
Publication Date (Web):August 15, 2012
https://doi.org/10.1021/jo301563j
Copyright © 2012 American Chemical Society

    Article Views

    3511

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Transition-metal-catalyzed C–H amination via nitrene insertion allows the direct transformation of a C–H into a C–N bond. Given the ubiquity of C–H bonds in organic compounds, such a process raises the problem of regio- and chemoselectivity, a challenging goal even more difficult to tackle as the complexity of the substrate increases. Whereas excellent regiocontrol can be achieved by the use of an appropriate tether securing intramolecular addition of the nitrene, the intermolecular C–H amination remains much less predictable. This study aims at addressing this issue by capitalizing on an efficient stereoselective nitrene transfer involving the combination of a chiral aminating agent 1 with a chiral rhodium catalyst 2. Allylic C–H amination of terpenes and enol ethers occurs with excellent yields as well as with high regio-, chemo-, and diastereoselectivity as a result of the combination of steric and electronic factors. Conjugation of allylic C–H bonds with the π-bond would explain the chemoselectivity observed for cyclic substrates. Alkanes used in stoichiometric amounts are also efficiently functionalized with a net preference for tertiary equatorial C–H bonds. The selectivity, in this case, can be rationalized by steric and hyperconjugative effects. This study, therefore, provides useful information to better predict the site of C–H amination of complex molecules.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    1H NMR and 13C NMR spectra of all compounds. Crystallographic data and X-ray structures of 3a,e,g,i, 4, 5e, and 8c. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 82 publications.

    1. Giampiero Proietti, Julius Kuzmin, Azamat Z. Temerdashev, Peter Dinér. Accessing Perfluoroaryl Sulfonimidamides and Sulfoximines via Photogenerated Perfluoroaryl Nitrenes: Synthesis and Application as a Chiral Auxiliary. The Journal of Organic Chemistry 2021, 86 (23) , 17119-17128. https://doi.org/10.1021/acs.joc.1c02241
    2. J. Henry Blackwell, Georgia R. Harris, Milo A. Smith, Matthew J. Gaunt. Modular Photocatalytic Synthesis of α-Trialkyl-α-Tertiary Amines. Journal of the American Chemical Society 2021, 143 (39) , 15946-15959. https://doi.org/10.1021/jacs.1c07402
    3. Takafumi Ide, Kaibo Feng, Charlie F. Dixon, Dawei Teng, Joseph R. Clark, Wei Han, Chloe I. Wendell, Vanessa Koch, M. Christina White. Late-Stage Intermolecular Allylic C–H Amination. Journal of the American Chemical Society 2021, 143 (37) , 14969-14975. https://doi.org/10.1021/jacs.1c06335
    4. Shingo Harada, Mayu Kobayashi, Masato Kono, Tetsuhiro Nemoto. Site-Selective and Chemoselective C–H Functionalization for the Synthesis of Spiroaminals via a Silver-Catalyzed Nitrene Transfer Reaction. ACS Catalysis 2020, 10 (22) , 13296-13304. https://doi.org/10.1021/acscatal.0c04057
    5. Aaron Trowbridge, Scarlett M. Walton, Matthew J. Gaunt. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chemical Reviews 2020, 120 (5) , 2613-2692. https://doi.org/10.1021/acs.chemrev.9b00462
    6. Jacob S. Burman, Robert J. Harris, Caitlin M. B. Farr, John Bacsa, Simon B. Blakey. Rh(III) and Ir(III)Cp* Complexes Provide Complementary Regioselectivity Profiles in Intermolecular Allylic C–H Amidation Reactions. ACS Catalysis 2019, 9 (6) , 5474-5479. https://doi.org/10.1021/acscatal.9b01338
    7. Liela Bayeh and Uttam K. Tambar . Catalytic Asymmetric Intermolecular Allylic Functionalization of Unactivated Internal Alkenes. ACS Catalysis 2017, 7 (12) , 8533-8543. https://doi.org/10.1021/acscatal.7b03081
    8. Juliet M. Alderson, Joshua R. Corbin, and Jennifer M. Schomaker . Tunable, Chemo- and Site-Selective Nitrene Transfer Reactions through the Rational Design of Silver(I) Catalysts. Accounts of Chemical Research 2017, 50 (9) , 2147-2158. https://doi.org/10.1021/acs.accounts.7b00178
    9. Yoonsu Park, Youyoung Kim, and Sukbok Chang . Transition Metal-Catalyzed C–H Amination: Scope, Mechanism, and Applications. Chemical Reviews 2017, 117 (13) , 9247-9301. https://doi.org/10.1021/acs.chemrev.6b00644
    10. Minxue Huang, Joshua R. Corbin, Nicholas S. Dolan, Charles G. Fry, Anastasiya I. Vinokur, Ilia A. Guzei, and Jennifer M. Schomaker . Synthesis, Characterization, and Variable-Temperature NMR Studies of Silver(I) Complexes for Selective Nitrene Transfer. Inorganic Chemistry 2017, 56 (11) , 6725-6733. https://doi.org/10.1021/acs.inorgchem.7b00838
    11. Xian-He Zhao, Qing Zhang, Ji-Yuan Du, Xin-Yun Lu, Ye-Xing Cao, Yu-Hua Deng, and Chun-An Fan . Total Synthesis of (±)-Lycojaponicumin D and Lycodoline-Type Lycopodium Alkaloids. Journal of the American Chemical Society 2017, 139 (20) , 7095-7103. https://doi.org/10.1021/jacs.7b03280
    12. Cale Weatherly, Juliet M. Alderson, John F. Berry, Jason E. Hein, and Jennifer M. Schomaker . Catalyst-Controlled Nitrene Transfer by Tuning Metal:Ligand Ratios: Insight into the Mechanisms of Chemoselectivity. Organometallics 2017, 36 (8) , 1649-1661. https://doi.org/10.1021/acs.organomet.7b00190
    13. Nicholas S. Dolan, Ryan J. Scamp, Tzuhsiung Yang, John F. Berry, and Jennifer M. Schomaker . Catalyst-Controlled and Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and Computational Studies. Journal of the American Chemical Society 2016, 138 (44) , 14658-14667. https://doi.org/10.1021/jacs.6b07981
    14. Chen Kong, Navendu Jana, Crystalann Jones, and Tom G. Driver . Control of the Chemoselectivity of Metal N-Aryl Nitrene Reactivity: C–H Bond Amination versus Electrocyclization. Journal of the American Chemical Society 2016, 138 (40) , 13271-13280. https://doi.org/10.1021/jacs.6b07026
    15. Xiongyi Huang, Tova M. Bergsten, and John T. Groves . Manganese-Catalyzed Late-Stage Aliphatic C–H Azidation. Journal of the American Chemical Society 2015, 137 (16) , 5300-5303. https://doi.org/10.1021/jacs.5b01983
    16. Juliet M. Alderson, Alicia M. Phelps, Ryan J. Scamp, Nicholas S. Dolan, and Jennifer M. Schomaker . Ligand-Controlled, Tunable Silver-Catalyzed C–H Amination. Journal of the American Chemical Society 2014, 136 (48) , 16720-16723. https://doi.org/10.1021/ja5094309
    17. Jared W. Rigoli, Cale D. Weatherly, Juliet M. Alderson, Brian T. Vo, and Jennifer M. Schomaker . Tunable, Chemoselective Amination via Silver Catalysis. Journal of the American Chemical Society 2013, 135 (46) , 17238-17241. https://doi.org/10.1021/ja406654y
    18. Yungen Liu, Xiangguo Guan, Ella Lai-Ming Wong, Peng Liu, Jie-Sheng Huang, and Chi-Ming Che . Nonheme Iron-Mediated Amination of C(sp3)–H Bonds. Quinquepyridine-Supported Iron-Imide/Nitrene Intermediates by Experimental Studies and DFT Calculations. Journal of the American Chemical Society 2013, 135 (19) , 7194-7204. https://doi.org/10.1021/ja3122526
    19. Hongli Bao and Uttam K. Tambar . Catalytic Enantioselective Allylic Amination of Unactivated Terminal Olefins via an Ene Reaction/[2,3]-Rearrangement. Journal of the American Chemical Society 2012, 134 (45) , 18495-18498. https://doi.org/10.1021/ja307851b
    20. Qi Xing, Ding Jiang, Jiayin Zhang, Liangyu Guan, Ting Li, Yi Zhao, Man Di, Huangcan Chen, Chao Che, Zhendong Zhu. Combining visible-light induction and copper catalysis for chemo-selective nitrene transfer for late-stage amination of natural products. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00692-6
    21. Emily Zerull, Tuan Anh Trinh, Jed Kim, Jennifer M. Schomaker. CH Functionalization via Asymmetric Nitrene Transfer. 2022, 1-41. https://doi.org/10.1002/9783527834242.chf0139
    22. Sanjay Singh, Chinmoy K. Hazra. Outer‐Sphere CH Bond Activation. 2022, 1-42. https://doi.org/10.1002/9783527834242.chf0199
    23. Xiao Zhang, Yangyang Shen, Eva Bednářová, Tomislav Rovis. ASYMMETRIC C–H FUNCTIONALIZATION OF C(sp 3 )–H BOND. 2022, 429-490. https://doi.org/10.1002/9781119736424.ch12
    24. Suresh Rajamanickam, Mayank Saraswat, Sugumar Venkataramani, Bhisma K. Patel. Intermolecular CDC amination of remote and proximal unactivated C sp 3 –H bonds through intrinsic substrate reactivity – expanding towards a traceless directing group. Chemical Science 2021, 12 (46) , 15318-15328. https://doi.org/10.1039/D1SC04365J
    25. Siva Murru, Bhanudas D. Mokar, Ramesh Bista, Dominique Harakat, Jean Le Bras, Frank Fronczek, Kenneth M. Nicholas, Radhey S. Srivastava. Copper-catalyzed asymmetric allylic C–H amination of alkenes using N -arylhydroxylamines. Organic Chemistry Frontiers 2021, 8 (13) , 3228-3237. https://doi.org/10.1039/D1QO00223F
    26. Zhen Liu, Frances H Arnold. New-to-nature chemistry from old protein machinery: carbene and nitrene transferases. Current Opinion in Biotechnology 2021, 69 , 43-51. https://doi.org/10.1016/j.copbio.2020.12.005
    27. Sebastián J. Castro, José M. Padrón, Benjamin Darses, Viviana E. Nicotra, Philippe Dauban. Late‐stage Rh(II)‐catalyzed Nitrene Transfer for the Synthesis of Guaianolide Analogs with Enhanced Antiproliferative Activity. European Journal of Organic Chemistry 2021, 2021 (12) , 1859-1863. https://doi.org/10.1002/ejoc.202100074
    28. Risa Yasue, Kazuhiro Yoshida. Enantioselective Desymmetrization of 1,3‐Disubstituted Adamantane Derivatives via Rhodium‐Catalyzed C−H Bond Amination: Access to Optically Active Amino Acids Containing Adamantane Core. Advanced Synthesis & Catalysis 2021, 363 (6) , 1662-1671. https://doi.org/10.1002/adsc.202001419
    29. Honghui Lei, Tomislav Rovis. A site-selective amination catalyst discriminates between nearly identical C–H bonds of unsymmetrical disubstituted alkenes. Nature Chemistry 2020, 12 (8) , 725-731. https://doi.org/10.1038/s41557-020-0470-z
    30. Hiroki Hayashi, Tatsuya Uchida. Nitrene Transfer Reactions for Asymmetric C–H Amination: Recent Development. European Journal of Organic Chemistry 2020, 2020 (8) , 909-916. https://doi.org/10.1002/ejoc.201901562
    31. Ajay Verma, Lal Singh Banjara, Rahul Meena, Sangit Kumar. Transition‐Metal‐Free Synthesis of N‐Substituted Phenanthridinones and Spiro‐isoindolinones: C( sp 2 )−N and C( sp 2 )−O Coupling through Radical Pathway. Asian Journal of Organic Chemistry 2020, 9 (1) , 105-110. https://doi.org/10.1002/ajoc.201900704
    32. Philippe Dauban, Romain Rey‐Rodriguez, Ali Nasrallah. Stereoselective C  N Bond‐Forming Reactions Through C ( sp 3 ) H Bond Insertion of Metal Nitrenoids. 2019, 51-76. https://doi.org/10.1002/9783527810857.ch2
    33. C.P. Irfana Jesin, S. Ravindra, Ganesh Chandra Nandi. Sulfonimidamide as a directing agent for Pd-catalyzed regioselective oxidative C–H acyloxylation of arenes. Tetrahedron 2019, 75 (43) , 130622. https://doi.org/10.1016/j.tet.2019.130622
    34. Alexandra E. Bosnidou, Kilian Muñiz. Intermolekulare radikalische C(sp 3 )‐H‐Aminierung unter Iod‐Katalyse. Angewandte Chemie 2019, 131 (22) , 7564-7568. https://doi.org/10.1002/ange.201901673
    35. Alexandra E. Bosnidou, Kilian Muñiz. Intermolecular Radical C(sp 3 )−H Amination under Iodine Catalysis. Angewandte Chemie International Edition 2019, 58 (22) , 7485-7489. https://doi.org/10.1002/anie.201901673
    36. María Ivana Lapuh, Alejandro Dana, Pablo H. Di Chenna, Benjamin Darses, Fernando J. Durán, Philippe Dauban. Late-stage C–H amination of abietane diterpenoids. Organic & Biomolecular Chemistry 2019, 17 (19) , 4736-4746. https://doi.org/10.1039/C9OB00272C
    37. Tom G. Driver. Rhodium( II )‐Catalyzed Nitrogen‐Atom Transfer for Oxidation of Aliphatic CH Bonds. 2019, 373-432. https://doi.org/10.1002/9783527811908.ch14
    38. Mahzad Dehghany, Josephine Eshon, Jessica M. Roberts, Jennifer M. Schomaker. Silver‐Catalyzed Carbene, Nitrene, and Silylene Transfer Reactions. 2019, 439-532. https://doi.org/10.1002/9783527342822.ch8
    39. Irina L. Simakova, Andrey V. Simakov, Dmitry Yu. Murzin. Valorization of Biomass Derived Terpene Compounds by Catalytic Amination. Catalysts 2018, 8 (9) , 365. https://doi.org/10.3390/catal8090365
    40. Ganesh Chandra Nandi, Per I. Arvidsson. Sulfonimidamides: Synthesis and Applications in Preparative Organic Chemistry. Advanced Synthesis & Catalysis 2018, 360 (16) , 2976-3001. https://doi.org/10.1002/adsc.201800273
    41. Ganesh Chandra Nandi, Irfana Jesin. Direct Synthesis of N ‐Acyl Sulfonimidamides and N ‐Sulfonimidoyl Amidines from Sulfonimidoyl Azides. Advanced Synthesis & Catalysis 2018, 360 (13) , 2465-2469. https://doi.org/10.1002/adsc.201800215
    42. Romain Rey‐Rodriguez, Grégory Jestin, Vincent Gandon, Gwendal Grelier, Pascal Retailleau, Benjamin Darses, Philippe Dauban, Isabelle Gillaizeau. Intermolecular Rhodium(II)‐Catalyzed Allylic C( sp 3 )–H Amination of Cyclic Enamides. Advanced Synthesis & Catalysis 2018, 360 (3) , 513-518. https://doi.org/10.1002/adsc.201701188
    43. Feng Shi, Xinjiang Cui. N -Alkyl Amine Synthesis by Oxidative Amination of Alkane. 2018, 149-180. https://doi.org/10.1016/B978-0-12-812284-6.00006-8
    44. Logan A. Combee, Balaram Raya, Daoyong Wang, Michael K. Hilinski. Organocatalytic nitrenoid transfer: metal-free selective intermolecular C(sp 3 )–H amination catalyzed by an iminium salt. Chemical Science 2018, 9 (4) , 935-939. https://doi.org/10.1039/C7SC03968A
    45. Gwendal Grelier, Benjamin Darses, Philippe Dauban. Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis. Beilstein Journal of Organic Chemistry 2018, 14 , 1508-1528. https://doi.org/10.3762/bjoc.14.128
    46. Ganesh Chandra Nandi. Cu‐Catalysed Mild Synthesis of N ‐Imidoyl and N ‐Oxoimidoyl Sulfonimidamides through the Three‐Component Coupling of Sulfonimidamides, Azides, and Alkynes. European Journal of Organic Chemistry 2017, 2017 (45) , 6633-6638. https://doi.org/10.1002/ejoc.201701380
    47. Minsoo Ju, Cale D. Weatherly, Ilia A. Guzei, Jennifer M. Schomaker. Chemo‐ and Enantioselective Intramolecular Silver‐Catalyzed Aziridinations. Angewandte Chemie 2017, 129 (33) , 10076-10080. https://doi.org/10.1002/ange.201704786
    48. Minsoo Ju, Cale D. Weatherly, Ilia A. Guzei, Jennifer M. Schomaker. Chemo‐ and Enantioselective Intramolecular Silver‐Catalyzed Aziridinations. Angewandte Chemie International Edition 2017, 56 (33) , 9944-9948. https://doi.org/10.1002/anie.201704786
    49. Juliet M. Alderson, Jennifer M. Schomaker. Tandem Oxidative Derivatization of Nitrene Insertion Products for the Highly Diastereoselective Synthesis of 1,3‐aminoalcohols. Chemistry – A European Journal 2017, 23 (36) , 8571-8576. https://doi.org/10.1002/chem.201702038
    50. Gwendal Grelier, Romain Rey‐Rodriguez, Benjamin Darses, Pascal Retailleau, Philippe Dauban. Catalytic Intramolecular C(sp 3 )–H Amination of Carbamimidates. European Journal of Organic Chemistry 2017, 2017 (14) , 1880-1883. https://doi.org/10.1002/ejoc.201700263
    51. Ganesh Chandra Nandi, Cijil Raju. CuBr/TBHP-mediated synthesis of N-acyl sulfonimidamides via the oxidative cross-coupling of sulfonimidamides and aldehydes. Organic & Biomolecular Chemistry 2017, 15 (10) , 2234-2239. https://doi.org/10.1039/C6OB02589G
    52. Xinsheng Xiao, Cheng Hou, Zhenhui Zhang, Zhuofeng Ke, Jianyong Lan, Huanfeng Jiang, Wei Zeng. Iridium(III)‐Catalyzed Regioselective Intermolecular Unactivated Secondary Csp 3 −H Bond Amidation. Angewandte Chemie 2016, 128 (39) , 12076-12080. https://doi.org/10.1002/ange.201606531
    53. Xinsheng Xiao, Cheng Hou, Zhenhui Zhang, Zhuofeng Ke, Jianyong Lan, Huanfeng Jiang, Wei Zeng. Iridium(III)‐Catalyzed Regioselective Intermolecular Unactivated Secondary Csp 3 −H Bond Amidation. Angewandte Chemie International Edition 2016, 55 (39) , 11897-11901. https://doi.org/10.1002/anie.201606531
    54. Julien Buendia, Gwendal Grelier, Benjamin Darses, Amanda G. Jarvis, Frédéric Taran, Philippe Dauban. The Multiple Facets of Iodine(III) Compounds in an Unprecedented Catalytic Auto‐amination for Chiral Amine Synthesis. Angewandte Chemie 2016, 128 (26) , 7656-7659. https://doi.org/10.1002/ange.201602022
    55. Julien Buendia, Gwendal Grelier, Benjamin Darses, Amanda G. Jarvis, Frédéric Taran, Philippe Dauban. The Multiple Facets of Iodine(III) Compounds in an Unprecedented Catalytic Auto‐amination for Chiral Amine Synthesis. Angewandte Chemie International Edition 2016, 55 (26) , 7530-7533. https://doi.org/10.1002/anie.201602022
    56. Kensuke Kiyokawa, Kenta Takemoto, Satoshi Minakata. Ritter-type amination of C–H bonds at tertiary carbon centers using iodic acid as an oxidant. Chemical Communications 2016, 52 (89) , 13082-13085. https://doi.org/10.1039/C6CC07164C
    57. Alexander C. Brueckner, Erin N. Hancock, Evan J. Anders, Matthew M. Tierney, Heather R. Morgan, Kristina A. Scott, Angus A. Lamar. Visible-light-mediated, nitrogen-centered radical amination of tertiary alkyl halides under metal-free conditions to form α-tertiary amines. Organic & Biomolecular Chemistry 2016, 14 (19) , 4387-4392. https://doi.org/10.1039/C6OB00616G
    58. Jun Fei, Zhen Wang, Zheren Cai, Hao Sun, Xu Cheng. Synthesis of α‐Tertiary Amine Derivatives by Intermolecular Hydroamination of Unfunctionalized Alkenes with Sulfamates under Trifluoromethanesulfonic Acid Catalysis. Advanced Synthesis & Catalysis 2015, 357 (18) , 4063-4068. https://doi.org/10.1002/adsc.201500646
    59. Wen-Ting Wu, Ze-Peng Yang, Shu-Li You. Asymmetric C–H Bond Insertion Reactions. 2015, 1-66. https://doi.org/10.1039/9781782621966-00001
    60. Julien Buendia, Benjamin Darses, Philippe Dauban. Tandem Catalytic C(sp 3 )H Amination/Sila‐Sonogashira–Hagihara Coupling Reactions with Iodine Reagents. Angewandte Chemie 2015, 127 (19) , 5789-5793. https://doi.org/10.1002/ange.201412364
    61. Julien Buendia, Benjamin Darses, Philippe Dauban. Tandem Catalytic C(sp 3 )H Amination/Sila‐Sonogashira–Hagihara Coupling Reactions with Iodine Reagents. Angewandte Chemie International Edition 2015, 54 (19) , 5697-5701. https://doi.org/10.1002/anie.201412364
    62. Ganesh Chandra Nandi, Sudhakar Rao Kota, Tricia Naicker, Thavendran Govender, Hendrick G. Kruger, Per I. Arvidsson. Cu(OAc) 2 ‐Catalysed Oxidative Dual C–H/N–H Activation of Terminal Alkynes and N ‐Deprotected Sulfonimidamides: An Easy Access to N ‐Alkynylated Sulfonimidamides. European Journal of Organic Chemistry 2015, 2015 (13) , 2861-2867. https://doi.org/10.1002/ejoc.201500239
    63. Ankit Sharma, John F. Hartwig. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 2015, 517 (7536) , 600-604. https://doi.org/10.1038/nature14127
    64. Julien Buendia, Gwendal Grelier, Philippe Dauban. Dirhodium(II)-Catalyzed C(sp3)–H Amination Using Iodine(III) Oxidants. 2015, 77-118. https://doi.org/10.1016/bs.adomc.2015.08.001
    65. Ganesh C. Nandi, Sudhakar R. Kota, Prasad B. Wakchaure, Praveen K. Chinthakindi, Thavendran Govender, Hendrick G. Kruger, Tricia Naicker, Per I. Arvidsson. Pd-catalyzed C–N coupling of vinylbromides and sulfonimidamides: a facile synthesis of N′-vinylsulfonimidamides. RSC Advances 2015, 5 (76) , 62084-62090. https://doi.org/10.1039/C5RA10939F
    66. Takeshi Nagata, Shinobu Ito, Kazuyoshi Itoga, Hideko Kanazawa, Hitoshi Masaki. The Mechanism of Melanocytes-Specific Cytotoxicity Induced by Phenol Compounds Having a Prooxidant Effect, relating to the Appearance of Leukoderma. BioMed Research International 2015, 2015 , 1-12. https://doi.org/10.1155/2015/479798
    67. Guan‐Hao Huang, Jian‐Min Li, Jing‐Jyun Huang, Jyun‐Dai Lin, Gary Jing Chuang. Cooperative Effect of Two Metals: CoPd(OAc) 4 ‐Catalyzed CH Amination and Aziridination. Chemistry – A European Journal 2014, 20 (18) , 5240-5243. https://doi.org/10.1002/chem.201304633
    68. Siva Murru, Radhey S. Srivastava. Iron‐Catalyzed Allylic C–H Amination of Substituted 1,3‐Dienes. European Journal of Organic Chemistry 2014, 2014 (10) , 2174-2181. https://doi.org/10.1002/ejoc.201301914
    69. Tatsuya Uchida, Tsutomu Katsuki. Asymmetric Nitrene Transfer Reactions: Sulfimidation, Aziridination and C – H Amination Using Azide Compounds as Nitrene Precursors. The Chemical Record 2014, 14 (1) , 117-129. https://doi.org/10.1002/tcr.201300027
    70. Marie Mazurais, Camille Lescot, Pascal Retailleau, Philippe Dauban. A Short Asymmetric Synthesis of Octahydroindole Derivatives by Application of Catalytic C(sp 3 )–H Amination Reaction. European Journal of Organic Chemistry 2014, 2014 (1) , 66-79. https://doi.org/10.1002/ejoc.201301174
    71. Stephen P. Lathrop, Mohammad Movassaghi. Application of diazene-directed fragment assembly to the total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids. Chem. Sci. 2014, 5 (1) , 333-340. https://doi.org/10.1039/C3SC52451E
    72. Chao Zheng, Shu-Li You. Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Advances 2014, 4 (12) , 6173. https://doi.org/10.1039/c3ra46996d
    73. Jennifer L. Roizen, David N. Zalatan, J. Du Bois. Selective Intermolecular Amination of CH Bonds at Tertiary Carbon Centers. Angewandte Chemie 2013, 125 (43) , 11553-11556. https://doi.org/10.1002/ange.201304238
    74. Jennifer L. Roizen, David N. Zalatan, J. Du Bois. Selective Intermolecular Amination of CH Bonds at Tertiary Carbon Centers. Angewandte Chemie International Edition 2013, 52 (43) , 11343-11346. https://doi.org/10.1002/anie.201304238
    75. . Hypervalent Iodine Reagents in Organic Synthesis. 2013, 145-336. https://doi.org/10.1002/9781118341155.ch3
    76. Timothy W. Liwosz, Sherry R. Chemler. Copper‐Catalyzed Oxidative Amination and Allylic Amination of Alkenes. Chemistry – A European Journal 2013, 19 (38) , 12771-12777. https://doi.org/10.1002/chem.201301800
    77. Álvaro Beltrán, Camille Lescot, M. Mar Díaz-Requejo, Pedro J. Pérez, Philippe Dauban. Catalytic C–H amination of alkanes with sulfonimidamides: silver(I)-scorpionates vs. dirhodium(II) carboxylates. Tetrahedron 2013, 69 (22) , 4488-4492. https://doi.org/10.1016/j.tet.2013.02.005
    78. Yota Nishioka, Tatsuya Uchida, Tsutomu Katsuki. Enantio‐ and Regioselective Intermolecular Benzylic and Allylic CH Bond Amination. Angewandte Chemie 2013, 125 (6) , 1783-1786. https://doi.org/10.1002/ange.201208906
    79. Yota Nishioka, Tatsuya Uchida, Tsutomu Katsuki. Enantio‐ and Regioselective Intermolecular Benzylic and Allylic CH Bond Amination. Angewandte Chemie International Edition 2013, 52 (6) , 1739-1742. https://doi.org/10.1002/anie.201208906
    80. Thorsten Höke, Eberhardt Herdtweck, Thorsten Bach. Hydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(ii) complex. Chemical Communications 2013, 49 (73) , 8009. https://doi.org/10.1039/c3cc44197k
    81. José Ramón Suárez, Jose Luis Chiara. Rhodium-catalyzed intermolecular C–H amination of simple hydrocarbons using the shelf-stable nonafluorobutanesulfonyl azide. Chemical Communications 2013, 49 (80) , 9194. https://doi.org/10.1039/c3cc44594a
    82. Jenna L. Jeffrey, Richmond Sarpong. Intramolecular C(sp3)–H amination. Chemical Science 2013, 4 (11) , 4092. https://doi.org/10.1039/c3sc51420j

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect