Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Bis-morpholine-Substituted Perylene Bisimides: Impact of Isomeric Arrangement on Electrochemical and Spectroelectrochemical Properties
My Activity
    Article

    Bis-morpholine-Substituted Perylene Bisimides: Impact of Isomeric Arrangement on Electrochemical and Spectroelectrochemical Properties
    Click to copy article linkArticle link copied!

    View Author Information
    School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K., and Daresbury Laboratory, Synchrotron Radiation Source, Warrington, WA4 4AD Cheshire, England
    †University of Nottingham.
    ‡Synchrotron Radiation Source.
    Other Access OptionsSupporting Information (2)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2008, 73, 22, 8808–8814
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo801557e
    Published October 15, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The synthesis and separation of the 1,6- and 1,7- isomers of N,N′-bis(n-butyl)dimorpholino-3,4:9,10-perylenetetracarboxylic acid bisimide are reported. Investigations of the electrochemical and spectroscopic, in particular, spectroelectrochemical, properties of the two isomers reveal a sequence of electrochemically and chemically reversible redox processes for both isomers. Importantly, the 1,7-isomer of N,N′-bis(n-butyl)dimorpholino-3,4:9,10-perylenetetracarboxylic acid bisimide was observed to undergo a two-electron oxidation process, which contrasts with the behavior of both the corresponding 1,6-isomer and other related amino-substituted perylene bis-imide species.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Full experimental details, original 1H and 13C NMR spectra, and mass spectra for 1a and 1b; full UV−vis and EPR data for all the oxidation and reduction processes; further details of DFT calculations. Details of structural refinement and CIF file for 1b. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 32 publications.

    1. Isabele S. Campos, Andrea Fermi, Barbara Ventura, Carlos A. F. Moraes, Gabriel H. Ribeiro, Tiago Venâncio, Paola Ceroni, Rose M. Carlos. Modulation of the Excited States of Ruthenium(II)-perylene Dyad to Access Near-IR Luminescence, Long-Lived Perylene Triplet State and Singlet Oxygen Photosensitization. Inorganic Chemistry 2024, 63 (10) , 4595-4603. https://doi.org/10.1021/acs.inorgchem.3c04145
    2. Guangwei Shao, Mingliang Wu, Xin Wang, Jingjing Zhao, Xiaoxiao You, Di Wu, Jianlong Xia. Regiochemically Pure 1,6-Ditriflato-Perylene Diimide: Preparation and Transformation. The Journal of Organic Chemistry 2022, 87 (21) , 14825-14832. https://doi.org/10.1021/acs.joc.2c01246
    3. Rayane El-Berjawi, Lou Rocard, Antoine Goujon, Thomas Cauchy, Piétrick Hudhomme. Visible-Light-Mediated Synthesis of AzaBenzannulated Perylenediimide-Based Light-Harvesting Dyads. The Journal of Organic Chemistry 2020, 85 (19) , 12252-12261. https://doi.org/10.1021/acs.joc.0c01497
    4. Nicholas Pearce, E. Stephen Davies, William Lewis, Neil R. Champness. Thionated Perylene Diimide–Phenothiazine Dyad: Synthesis, Structure, and Electrochemical Studies. ACS Omega 2018, 3 (10) , 14236-14244. https://doi.org/10.1021/acsomega.8b02457
    5. Khrystofor Khokhlov, Nathaniel J. Schuster, Fay Ng, Colin Nuckolls. Functionalized Helical Building Blocks for Nanoelectronics. Organic Letters 2018, 20 (7) , 1991-1994. https://doi.org/10.1021/acs.orglett.8b00541
    6. Sarah L. Haddow, David J. Ring, Hena Bagha, Nicholas Pearce, Harriet Nowell, Alexander J. Blake, William Lewis, Jonathan McMaster, and Neil R. Champness . Perylene Diimide Triple Helix Formation in the Solid State. Crystal Growth & Design 2018, 18 (2) , 802-807. https://doi.org/10.1021/acs.cgd.7b01268
    7. M. Kyle Brennaman, Michael R. Norris, Melissa K. Gish, Erik M. Grumstrup, Leila Alibabaei, Dennis L. Ashford, Alexander M. Lapides, John M. Papanikolas, Joseph L. Templeton, and Thomas J. Meyer . Ultrafast, Light-Induced Electron Transfer in a Perylene Diimide Chromophore-Donor Assembly on TiO2. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4736-4742. https://doi.org/10.1021/acs.jpclett.5b02194
    8. Sanchita Sengupta, Rajeev K. Dubey, Rob W. M. Hoek, Sjoerd P. P. van Eeden, D. Deniz Gunbaş, Ferdinand C. Grozema, Ernst J. R. Sudhölter, and Wolter F. Jager . Synthesis of Regioisomerically Pure 1,7-Dibromoperylene-3,4,9,10-tetracarboxylic Acid Derivatives. The Journal of Organic Chemistry 2014, 79 (14) , 6655-6662. https://doi.org/10.1021/jo501180a
    9. Rajeev K. Dubey, Marja Niemi, Kimmo Kaunisto, Kati Stranius, Alexander Efimov, Nikolai V. Tkachenko, and Helge Lemmetyinen . Excited-State Interaction of Red and Green Perylene Diimides with Luminescent Ru(II) Polypyridine Complex. Inorganic Chemistry 2013, 52 (17) , 9761-9773. https://doi.org/10.1021/ic400474b
    10. Lina Zhong, Feifei Xing, Wei Shi, Liuming Yan, Liqing Xie, and Shourong Zhu . Synthesis, Spectra, and Electron-Transfer Reaction of Aspartic Acid-Functionalized Water-Soluble Perylene Bisimide in Aqueous Solution. ACS Applied Materials & Interfaces 2013, 5 (8) , 3401-3407. https://doi.org/10.1021/am4004446
    11. Anna G. Slater, E. Stephen Davies, Stephen P. Argent, William Lewis, Alexander J. Blake, Jonathan McMaster, and Neil R. Champness . Bis-thioether-Substituted Perylene Diimides: Structural, Electrochemical, and Spectroelectrochemical Properties. The Journal of Organic Chemistry 2013, 78 (7) , 2853-2862. https://doi.org/10.1021/jo400026r
    12. Haixia Wu, Haixia Wang, Lin Xue, Yan Shi, and Xiyou Li. Hindered Intramolecular Electron Transfer in Room-Temperature Ionic Liquid. The Journal of Physical Chemistry B 2010, 114 (45) , 14420-14425. https://doi.org/10.1021/jp101240a
    13. Michael Jaggi, Carmen Blum, Basil S. Marti, Shi-Xia Liu, Samuel Leutwyler and Silvio Decurtins. Annulation of Tetrathiafulvalene to the Bay Region of Perylenediimide. Organic Letters 2010, 12 (6) , 1344-1347. https://doi.org/10.1021/ol1002708
    14. Gudrun Goretzki, E. Stephen Davies, Stephen P. Argent, John E. Warren, Alexander J. Blake and Neil R. Champness . Building Multistate Redox-Active Architectures Using Metal-Complex Functionalized Perylene Bis-imides. Inorganic Chemistry 2009, 48 (21) , 10264-10274. https://doi.org/10.1021/ic901379d
    15. David Payno, Manuel Salado, Michael Andresini, David Gutiérrez-Moreno, Peng Huang, Fulvio Ciriaco, Samrana Kazim, Ángela Sastre-Santos, Fernando Fernández-Lázaro, Shahzada Ahmad. Substituents interplay in piperidinyl-perylenediimide as dopant-free hole-selective layer for perovskite solar cells fabrication. Emergent Materials 2022, 5 (4) , 977-985. https://doi.org/10.1007/s42247-021-00317-z
    16. Asia R. Y. Almuhana, Philipp Langer, Sarah L. Griffin, Rhys W. Lodge, Graham A. Rance, Neil R. Champness. Retention of perylene diimide optical properties in solid-state materials through tethering to nanodiamonds. Journal of Materials Chemistry C 2021, 9 (32) , 10317-10323. https://doi.org/10.1039/D1TC02577E
    17. Mustafa E. Ozser. Comparing molecular and electronic properties of perylene tetracarboxylic diimides decorated at 1,6- and 1,7-bay-positions using DFT/TDDFT method. Materials Today Communications 2021, 27 , 102446. https://doi.org/10.1016/j.mtcomm.2021.102446
    18. Nicholas Pearce, E. Stephen Davies, Neil R. Champness. Electrochemical and spectroelectrochemical investigations of perylene peri-tetracarbonyl species. Dyes and Pigments 2020, 183 , 108735. https://doi.org/10.1016/j.dyepig.2020.108735
    19. Agnese Amati, Mirco Natali, Maria Teresa Indelli, Elisabetta Iengo, Frank Würthner. Photoinduced Energy‐ and Electron‐Transfer Processes in a Side‐to‐Face Ru II ‐Porphyrin/Perylene‐bisimide Array. ChemPhysChem 2019, 20 (17) , 2195-2203. https://doi.org/10.1002/cphc.201900611
    20. Joanna Palion-Gazda, Barbara Machura, Tomasz Klemens, Agata Szlapa-Kula, Stanisław Krompiec, Mariola Siwy, Henryk Janeczek, Ewa Schab-Balcerzak, Justyna Grzelak, Sebastian Maćkowski. Structure-dependent and environment-responsive optical properties of the trisheterocyclic systems with electron donating amino groups. Dyes and Pigments 2019, 166 , 283-300. https://doi.org/10.1016/j.dyepig.2019.03.035
    21. Mustafa E. Ozser, Samuel A. Sarkodie, Obaidullah Mohiuddin, Gozde Ozesme. Novel derivatives of regioisomerically pure 1,7-disubstituted perylene diimide dyes bearing phenoxy and pyrrolidinyl substituents: Synthesis, photophysical, thermal, and structural properties. Journal of Luminescence 2017, 192 , 414-423. https://doi.org/10.1016/j.jlumin.2017.07.019
    22. Samuel Quinn, E. Stephen Davies, Constance R. Pfeiffer, William Lewis, Jonathan McMaster, Neil R. Champness. Core‐Substituted Naphthalene Diimides: Influence of Substituent Conformation on Strong Visible Absorption. ChemPlusChem 2017, 82 (3) , 489-492. https://doi.org/10.1002/cplu.201700059
    23. Wenxuan Mao, Junji Zhang, Xin Li, Chen Li, He Tian. Regioisomerically pure multiaryl coronene derivatives: highly efficient synthesis via bay-extended perylene tetrabutylester. Chemical Communications 2017, 53 (36) , 5052-5055. https://doi.org/10.1039/C7CC02803B
    24. Ben A. Llewellyn, E. Stephen Davies, Constance R. Pfeiffer, Mick Cooper, William Lewis, Neil R. Champness. Thionated perylene diimides with intense absorbance in the near-IR. Chemical Communications 2016, 52 (10) , 2099-2102. https://doi.org/10.1039/C5CC09962E
    25. Jiajun Ma, Leicheng Yin, Gang Zou, Qijin Zhang. Regioisomerically Pure 1,7‐Dibromo‐Substituted Perylene Bisimide Dyes: Efficient Synthesis, Separation, and Characterization. European Journal of Organic Chemistry 2015, 2015 (15) , 3296-3302. https://doi.org/10.1002/ejoc.201500206
    26. Ben A. Llewellyn, Anna G. Slater, Gudrun Goretzki, Timothy L. Easun, Xue-Zhong Sun, E. Stephen Davies, Stephen P. Argent, William Lewis, Andrew Beeby, Michael W. George, Neil R. Champness. Photophysics and electrochemistry of a platinum-acetylide disubstituted perylenediimide. Dalton Trans. 2014, 43 (1) , 85-94. https://doi.org/10.1039/C3DT50874A
    27. Stanislav Luňák, Zdeněk Eliáš, Tomáš Mikysek, Jan Vyňuchal, Jiří Ludvík. One electron vs. two electron electrochemical and chemical oxidation of electron-donor substituted diketo-pyrrolo-pyrroles. Electrochimica Acta 2013, 106 , 351-359. https://doi.org/10.1016/j.electacta.2013.05.106
    28. Benjamin J. Slater, E. Stephen Davies, Stephen P. Argent, Harriott Nowell, William Lewis, Alexander J. Blake, Neil R. Champness. A Perylene Diimide Rotaxane: Synthesis, Structure and Electrochemically Driven De‐Threading. Chemistry – A European Journal 2011, 17 (52) , 14746-14751. https://doi.org/10.1002/chem.201103090
    29. Lara Perrin, Piétrick Hudhomme. Synthesis, Electrochemical and Optical Absorption Properties of New Perylene‐3,4:9,10‐bis(dicarboximide) and Perylene‐3,4:9,10‐bis(benzimidazole) Derivatives. European Journal of Organic Chemistry 2011, 2011 (28) , 5427-5440. https://doi.org/10.1002/ejoc.201100513
    30. Florian Menacher, Hans‐Achim Wagenknecht. Synthesis of DNA with Green Perylene Bisimides as DNA Base Substitutions. European Journal of Organic Chemistry 2011, 2011 (24) , 4564-4570. https://doi.org/10.1002/ejoc.201100519
    31. Junqian Feng, Delou Wang, Hailong Wang, Daopeng Zhang, Liangliang Zhang, Xiyou Li. Structural and property comparison between the di‐piperidinyl‐ and di‐pyrrolidinyl‐substituted perylene tetracarboxylic diimides. Journal of Physical Organic Chemistry 2011, 24 (8) , 621-629. https://doi.org/10.1002/poc.1799
    32. Fulvio G. Brunetti, Rajeev Kumar, Fred Wudl. Organic electronics from perylene to organic photovoltaics: painting a brief history with a broad brush. Journal of Materials Chemistry 2010, 20 (15) , 2934. https://doi.org/10.1039/b921677d

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2008, 73, 22, 8808–8814
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo801557e
    Published October 15, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1440

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.