ACS Publications. Most Trusted. Most Cited. Most Read
Asymmetric Epoxidation of 1,1-Disubstituted Terminal Olefins by Chiral Dioxirane via a Planar-like Transition State
My Activity
    Article

    Asymmetric Epoxidation of 1,1-Disubstituted Terminal Olefins by Chiral Dioxirane via a Planar-like Transition State
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
    * To whom correspondence should be addressed. Phone: 970-491-7424. Fax: 970-491-1801.
    Other Access OptionsSupporting Information (4)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2008, 73, 24, 9539–9543
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo801576k
    Published October 14, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Various 1,1-disubstituted terminal olefins have been investigated for asymmetric epoxidation using chiral ketone catalysts. Up to 88% ee has been achieved with a lactam ketone, and a planar transition state is likely to be a major reaction pathway.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The synthesis and characterization of ketones 3ah, the epoxidation procedure and characterization of epoxides, and the X-ray structures of ketones 3c, 3d, and 3g along with the data for the determination of the enantiomeric excess of the epoxides obtained with ketone 3d. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 80 publications.

    1. Dequan Zhang, Cai You, Xiuxiu Li, Jialin Wen, Xumu Zhang. Asymmetric Linear-Selective Hydroformylation of 1,1-Dialkyl Olefins Assisted by a Steric-Auxiliary Strategy. Organic Letters 2020, 22 (11) , 4523-4526. https://doi.org/10.1021/acs.orglett.0c01550
    2. Diana C. Fager, KyungA Lee, Amir H. Hoveyda. Catalytic Enantioselective Addition of an Allyl Group to Ketones Containing a Tri-, a Di-, or a Monohalomethyl Moiety. Stereochemical Control Based on Distinctive Electronic and Steric Attributes of C–Cl, C–Br, and C–F Bonds. Journal of the American Chemical Society 2019, 141 (40) , 16125-16138. https://doi.org/10.1021/jacs.9b08443
    3. Sándor Kun, Nándor Kánya, Norbert Galó, András Páhi, Attila Mándi, Tibor Kurtán, Péter Makleit, Szilvia Veres, Ádám Sipos, Tibor Docsa, László Somsák. Glucopyranosylidene-spiro-benzo[b][1,4]oxazinones and -benzo[b][1,4]thiazinones: Synthesis and Investigation of Their Effects on Glycogen Phosphorylase and Plant Growth Inhibition. Journal of Agricultural and Food Chemistry 2019, 67 (24) , 6884-6891. https://doi.org/10.1021/acs.jafc.9b00443
    4. Cai You, Shuailong Li, Xiuxiu Li, Jialing Lan, Yuhong Yang, Lung Wa Chung, Hui Lv, Xumu Zhang. Design and Application of Hybrid Phosphorus Ligands for Enantioselective Rh-Catalyzed Anti-Markovnikov Hydroformylation of Unfunctionalized 1,1-Disubstituted Alkenes. Journal of the American Chemical Society 2018, 140 (15) , 4977-4981. https://doi.org/10.1021/jacs.8b00275
    5. Yuchao Deng, Hui Wang, Yuhan Sun, and Xiao Wang . Principles and Applications of Enantioselective Hydroformylation of Terminal Disubstituted Alkenes. ACS Catalysis 2015, 5 (11) , 6828-6837. https://doi.org/10.1021/acscatal.5b01300
    6. Junqi Li, Anthony S. Grillo, and Martin D. Burke . From Synthesis to Function via Iterative Assembly of N-Methyliminodiacetic Acid Boronate Building Blocks. Accounts of Chemical Research 2015, 48 (8) , 2297-2307. https://doi.org/10.1021/acs.accounts.5b00128
    7. Brandon A. Vara, Thomas J. Struble, Weiwei Wang, Mark C. Dobish, and Jeffrey N. Johnston . Enantioselective Small Molecule Synthesis by Carbon Dioxide Fixation using a Dual Brønsted Acid/Base Organocatalyst. Journal of the American Chemical Society 2015, 137 (23) , 7302-7305. https://doi.org/10.1021/jacs.5b04425
    8. Masahiro Noji, Toshihiro Kobayashi, Yuria Uechi, Asami Kikuchi, Hisako Kondo, Shigeo Sugiyama, and Keitaro Ishii . Asymmetric Epoxidation of Allylic Alcohols Catalyzed by Vanadium–Binaphthylbishydroxamic Acid Complex. The Journal of Organic Chemistry 2015, 80 (6) , 3203-3210. https://doi.org/10.1021/acs.joc.5b00185
    9. Shaolin Zhu and Stephen L. Buchwald . Enantioselective CuH-Catalyzed Anti-Markovnikov Hydroamination of 1,1-Disubstituted Alkenes. Journal of the American Chemical Society 2014, 136 (45) , 15913-15916. https://doi.org/10.1021/ja509786v
    10. Yingguang Zhu, Qian Wang, Richard G. Cornwall, and Yian Shi . Organocatalytic Asymmetric Epoxidation and Aziridination of Olefins and Their Synthetic Applications. Chemical Reviews 2014, 114 (16) , 8199-8256. https://doi.org/10.1021/cr500064w
    11. Xiao Wang and Stephen L. Buchwald . Rh-Catalyzed Asymmetric Hydroformylation of Functionalized 1,1-Disubstituted Olefins. Journal of the American Chemical Society 2011, 133 (47) , 19080-19083. https://doi.org/10.1021/ja2092689
    12. Zhi Li and Hisashi Yamamoto. Zirconium(IV)- and Hafnium(IV)-Catalyzed Highly Enantioselective Epoxidation of Homoallylic and Bishomoallylic Alcohols. Journal of the American Chemical Society 2010, 132 (23) , 7878-7880. https://doi.org/10.1021/ja100951u
    13. Daniel C. Whitehead, Roozbeh Yousefi, Arvind Jaganathan and Babak Borhan. An Organocatalytic Asymmetric Chlorolactonization. Journal of the American Chemical Society 2010, 132 (10) , 3298-3300. https://doi.org/10.1021/ja100502f
    14. O. Andrea Wong, Bin Wang, Mei-Xin Zhao and Yian Shi. Asymmetric Epoxidation Catalyzed by α,α-Dimethylmorpholinone Ketone. Methyl Group Effect on Spiro and Planar Transition States. The Journal of Organic Chemistry 2009, 74 (16) , 6335-6338. https://doi.org/10.1021/jo900739q
    15. Rajender Reddy Yerla, Surendrababu Manubolusurya, Saravanakumar Meganathan, Veerababu Madalapu, Gopal Vaidyanathan. Structural Elucidation of Novel Degradation Impurities of Ibrutinib in Ibrutinib Tablets Using Preparative Chromatography, LCMS, HRMS and 2D NMR Techniques. Journal of Chromatographic Science 2025, 63 (1) https://doi.org/10.1093/chromsci/bmae002
    16. Navjeet Kaur. Epoxide synthesis from carbonyl compounds using sulfur ylides-I. 2025, 229-256. https://doi.org/10.1016/B978-0-443-31600-5.00014-X
    17. Efthymios T. Poursaitidis, Foteini Trigka, Christiana Mantzourani, Maroula G. Kokotou, Ierasia Triandafillidi, Christoforos G. Kokotos. Exploiting Hydroxamic Acids as Organocatalysts for the Epoxidation of Alkenes with Hydrogen Peroxide as the Oxidant. European Journal of Organic Chemistry 2024, 27 (13) https://doi.org/10.1002/ejoc.202400082
    18. Sujata V. Bhat, Mayur Uttekar, Manisha O. Gupta. Facile Synthesis of Electron-deficient Epoxides Adjacent to Ester and Cyanide Groups. Letters in Organic Chemistry 2024, 21 (1) , 7-11. https://doi.org/10.2174/1570178620666230705123035
    19. Nándor Kánya, Sándor Kun, László Somsák. Glycopyranosylidene-Spiro-Morpholinones: Evaluation of the Synthetic Possibilities Based on Glyculosonamide Derivatives and a New Method for the Construction of the Morpholine Ring. Molecules 2022, 27 (22) , 7785. https://doi.org/10.3390/molecules27227785
    20. Michael Dominic Delost, Jon Tryggvi Njardarson. Oxiranes and Oxirenes: Monocyclic. 2022, 199-274. https://doi.org/10.1016/B978-0-12-409547-2.14758-4
    21. Emmanuel Gras, Omar Sadek. Oxiranes and Oxirenes: Fused-Ring Derivatives. 2022, 275-360. https://doi.org/10.1016/B978-0-12-818655-8.00026-3
    22. Elżbieta Wojaczyńska, Franz Steppeler, Dominika Iwan, Marie-Christine Scherrmann, Alberto Marra. Synthesis and Applications of Carbohydrate-Based Organocatalysts. Molecules 2021, 26 (23) , 7291. https://doi.org/10.3390/molecules26237291
    23. Marina Petsi, Maria Orfanidou, Alexandros L. Zografos. Organocatalytic epoxidation and allylic oxidation of alkenes by molecular oxygen. Green Chemistry 2021, 23 (22) , 9172-9178. https://doi.org/10.1039/D1GC03029A
    24. Xiangqing Feng, Haifeng Du. Shi Epoxidation: A Great Shortcut to Complex Compounds. Chinese Journal of Chemistry 2021, 39 (7) , 2016-2026. https://doi.org/10.1002/cjoc.202000744
    25. . Olefination, Metathesis, and Epoxidation Reactions. 2021, 111-159. https://doi.org/10.1002/9783527828166.ch3
    26. Jie Chen, Zhankun Jiang, Shunichi Fukuzumi, Wonwoo Nam, Bin Wang. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coordination Chemistry Reviews 2020, 421 , 213443. https://doi.org/10.1016/j.ccr.2020.213443
    27. . (+)‐Intricatetraol. 2019, 143-157. https://doi.org/10.1002/9781119663331.ch7
    28. Martín Soto, Humberto Rodríguez-Solla, Raquel Soengas. Recent Advances in the Chemistry and Biology of Spirocyclic Nucleosides. 2019, 171-213. https://doi.org/10.1007/7081_2019_31
    29. Ierasia Triandafillidi, Dimitrios Ioannis Tzaras, Christoforos G. Kokotos. Green Organocatalytic Oxidative Methods using Activated Ketones. ChemCatChem 2018, 10 (12) , 2521-2535. https://doi.org/10.1002/cctc.201800013
    30. Richard C. Larock, Tanay Kesharwani. Formation of Ethers by Alkane, Arene, Alkene, and Alkyne Substitutions and Additions. 2018, 11-104. https://doi.org/10.1002/9781118662083.cot06-003
    31. Anne Kokel, Christian Schäfer. Application of Green Chemistry in Homogeneous Catalysis. 2018, 375-414. https://doi.org/10.1016/B978-0-12-809270-5.00016-9
    32. Laia Vicens, Miquel Costas. Biologically inspired oxidation catalysis using metallopeptides. Dalton Transactions 2018, 47 (6) , 1755-1763. https://doi.org/10.1039/C7DT03657D
    33. . Asymmetric Epoxidation. 2017, 379-538. https://doi.org/10.1002/9783527802029.ch3
    34. Hui Yang, Guo‐Tao Fan, Ling Zhou, Jie Chen. Enantioselective Chloro‐ O ‐cyclization of Unsaturated N ‐Tosylcarbamates. Advanced Synthesis & Catalysis 2017, 359 (8) , 1295-1300. https://doi.org/10.1002/adsc.201601328
    35. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Chiral Auxiliaries and Catalysts. 2017https://doi.org/10.1002/9780471264194.fos02343.pub6
    36. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Chiral Auxiliaries and Catalysts. 2017https://doi.org/10.1002/9780471264194.fos02343.pub7
    37. Jing Li, Zequan Li, Xun Zhang, Bing Xu, Yian Shi. Catalytic enantioselective bromohydroxylation of aryl olefins with flexible functionalities. Organic Chemistry Frontiers 2017, 4 (6) , 1084-1090. https://doi.org/10.1039/C6QO00636A
    38. Olaf Cussó, Michael W. Giuliano, Xavi Ribas, Scott J. Miller, Miquel Costas. A bottom up approach towards artificial oxygenases by combining iron coordination complexes and peptides. Chemical Science 2017, 8 (5) , 3660-3667. https://doi.org/10.1039/C7SC00099E
    39. Olaf Cussó, Xavi Ribas, Julio Lloret‐Fillol, Miquel Costas. Synergistic Interplay of a Non‐Heme Iron Catalyst and Amino Acid Coligands in H 2 O 2 Activation for Asymmetric Epoxidation of α‐Alkyl‐Substituted Styrenes. Angewandte Chemie 2015, 127 (9) , 2767-2771. https://doi.org/10.1002/ange.201410557
    40. Olaf Cussó, Xavi Ribas, Julio Lloret‐Fillol, Miquel Costas. Synergistic Interplay of a Non‐Heme Iron Catalyst and Amino Acid Coligands in H 2 O 2 Activation for Asymmetric Epoxidation of α‐Alkyl‐Substituted Styrenes. Angewandte Chemie International Edition 2015, 54 (9) , 2729-2733. https://doi.org/10.1002/anie.201410557
    41. Marc Magre, Maria Biosca, Oscar Pàmies, Montserrat Diéguez. Filling the Gaps in the Challenging Asymmetric Hydroboration of 1,1‐Disubstituted Alkenes with Simple Phosphite‐Based Phosphinooxazoline Iridium Catalysts. ChemCatChem 2015, 7 (1) , 114-120. https://doi.org/10.1002/cctc.201402822
    42. N. Candu, C. Rizescu, I. Podolean, M. Tudorache, V. I. Parvulescu, S. M. Coman. Efficient magnetic and recyclable SBILC (supported basic ionic liquid catalyst)-based heterogeneous organocatalysts for the asymmetric epoxidation of trans-methylcinnamate. Catalysis Science & Technology 2015, 5 (2) , 729-737. https://doi.org/10.1039/C4CY00891J
    43. Olaf Cussó, Xavi Ribas, Miquel Costas. Biologically inspired non-heme iron-catalysts for asymmetric epoxidation; design principles and perspectives. Chemical Communications 2015, 51 (76) , 14285-14298. https://doi.org/10.1039/C5CC05576H
    44. Rebecca L. Davis, Julian Stiller, Tricia Naicker, Hao Jiang, Karl Anker Jørgensen. Organokatalytische asymmetrische Epoxidierungen – Reaktionen, Mechanismen und Anwendungen. Angewandte Chemie 2014, 126 (29) , 7534-7556. https://doi.org/10.1002/ange.201400241
    45. Rebecca L. Davis, Julian Stiller, Tricia Naicker, Hao Jiang, Karl Anker Jørgensen. Asymmetric Organocatalytic Epoxidations: Reactions, Scope, Mechanisms, and Applications. Angewandte Chemie International Edition 2014, 53 (29) , 7406-7426. https://doi.org/10.1002/anie.201400241
    46. Thomas A. Ramirez, O. Andrea Wong, Yian Shi*. Discussion Addendum for: Synthesis of 1,2:4,5‐Di‐ o ‐isopropylidene– D ‐erythro‐2,3‐hexodiulo‐2,6‐pyranose. A Highly Enantioselective Ketone Catalyst for Epoxidation/Asymmetric Epoxidation of trans ‐β‐Methylstyrene and 1‐Phenylcyclohexene using a D ‐Fructose‐derived Ketone: ( R , R )‐ trans ‐β–Methylstyrene Oxide and ( R , R )‐1‐Phenylcyclohexene Oxide. 2014, 350-373. https://doi.org/10.1002/0471264229.os089.34
    47. An-lin Zhang, Li-wen Yang, Nian-fa Yang, Yan-ling Liu. The synthesis of chiral amino diol tridentate ligands and their enantioselective induction during the addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry 2014, 25 (4) , 289-297. https://doi.org/10.1016/j.tetasy.2013.11.007
    48. D.M. Hodgson, M.A.H. Stent, M.K. Reilly, E. Gras. Oxiranes and Oxirenes: Fused-ring Derivatives☆. 2014https://doi.org/10.1016/B978-0-12-409547-2.11428-3
    49. Nadia C. Abascal, Phillip A. Lichtor, Michael W. Giuliano, Scott J. Miller. Function-oriented investigations of a peptide-based catalyst that mediates enantioselective allylic alcohol epoxidation.. Chem. Sci. 2014, 5 (11) , 4504-4511. https://doi.org/10.1039/C4SC01440E
    50. Francesco Secci, Angelo Frongia, Pier Piras. Stereocontrolled Synthesis and Functionalization of Cyclobutanes and Cyclobutanones. Molecules 2013, 18 (12) , 15541-15572. https://doi.org/10.3390/molecules181215541
    51. Harry J. Milner, Alan Armstrong. Oxides and Epoxides. 2013, 523-545. https://doi.org/10.1002/9783527658862.ch19
    52. Zhaobin Wang, Zhilong Chen, Jianwei Sun. Catalytic Enantioselective Intermolecular Desymmetrization of 3‐Substituted Oxetanes. Angewandte Chemie 2013, 125 (26) , 6817-6820. https://doi.org/10.1002/ange.201300188
    53. Zhaobin Wang, Zhilong Chen, Jianwei Sun. Catalytic Enantioselective Intermolecular Desymmetrization of 3‐Substituted Oxetanes. Angewandte Chemie International Edition 2013, 52 (26) , 6685-6688. https://doi.org/10.1002/anie.201300188
    54. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Chiral Auxiliaries and Catalysts. 2013, 95-160. https://doi.org/10.1002/9780471264194.fos02343.pub5
    55. Alexander Bunge, Hans-Jürgen Hamann, Dennis Dietz, Jürgen Liebscher. Enantioselective epoxidation of tertiary allylic alcohols by chiral dihydroperoxides. Tetrahedron 2013, 69 (11) , 2446-2450. https://doi.org/10.1016/j.tet.2013.01.032
    56. Lynda J. Brown, Richard C. D. Brown, Robert Raja. Heterogenisation of ketonecatalysts within mesoporous supports for asymmetric epoxidation. RSC Adv. 2013, 3 (3) , 843-850. https://doi.org/10.1039/C2RA21837B
    57. Oscar Verho, Marléne D. V. Dilenstam, Markus D. Kärkäs, Eric V. Johnston, Torbjörn Åkermark, Jan‐E. Bäckvall, Björn Åkermark. Application and Mechanistic Studies of a Water‐Oxidation Catalyst in Alcohol Oxidation by Employing Oxygen‐Transfer Reagents. Chemistry – A European Journal 2012, 18 (52) , 16947-16954. https://doi.org/10.1002/chem.201202266
    58. Seong-Chea Chua, Xuebing Xu, Zheng Guo. Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers. Process Biochemistry 2012, 47 (10) , 1439-1451. https://doi.org/10.1016/j.procbio.2012.05.025
    59. Thomas A. Ramirez, Yian Shi. Spiro[6 H -1,3-dioxolo[4,5- c ]pyran-6,5′-oxazolidine]-3′-carboxylic acid, tetrahydro-2,2-dimethyl-2′,7-dioxo-,2-methyl-2-propyl ester, (3a R , 5′ S , 7a R )-. 2012https://doi.org/10.1002/047084289X.rn01464
    60. Christian A. Sandoval, Ryoji Noyori, Qi‐Lin Zhou, Andreas Pfaltz, Xue‐Long Hou, Hisashi Yamamoto. An Overview of Recent Developments in Metal‐Catalyzed Asymmetric Transformations. 2012, 335-366. https://doi.org/10.1002/9783527664801.ch9
    61. Raffaele Spaccini, Lucia Liguori, Carlo Punta, Hans‐René Bjørsvik. Organocatalyzed Epoxidation of Alkenes in Continuous Flow using a Multi‐Jet Oscillating Disk Reactor. ChemSusChem 2012, 5 (2) , 261-265. https://doi.org/10.1002/cssc.201100262
    62. Toshihiko Sone, Akitake Yamaguchi, Shigeki Matsunaga, Masakatsu Shibasaki. Enantioselective Synthesis of 2,2-Disubstituted Terminal Epoxides via Catalytic Asymmetric Corey-Chaykovsky Epoxidation of Ketones. Molecules 2012, 17 (2) , 1617-1634. https://doi.org/10.3390/molecules17021617
    63. S. Wendeborn, E. Godineau, R. Mondière, T. Smejkal, H. Smits. 1.8 Chirality in Agrochemicals. 2012, 120-166. https://doi.org/10.1016/B978-0-08-095167-6.00102-6
    64. O.A. Wong, T.A. Ramirez, Y. Shi. 6.23 Oxidation: Organocatalyzed Asymmetric Epoxidation of Alkenes. 2012, 528-553. https://doi.org/10.1016/B978-0-08-095167-6.00626-1
    65. José M. Vega-Pérez, Ignacio Periñán, Margarita Vega-Holm, Carlos Palo-Nieto, Fernando Iglesias-Guerra. New mannose-derived ketones as organocatalysts for enantioselective dioxirane-mediated epoxidation of arylalkenes. Part 3: Chiral ketones from sugars. Tetrahedron 2011, 67 (37) , 7057-7065. https://doi.org/10.1016/j.tet.2011.07.014
    66. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Chiral Auxiliaries and Catalysts. 2011, 123-200. https://doi.org/10.1002/9780471264194.fos02343.pub4
    67. K. K. Banerji. Oxidation and Reduction. 2011, 79-128. https://doi.org/10.1002/9780470979525.ch3
    68. Ludger A. Wessjohann, Martin C. Nin Brauer, Kristin Brand. Chalcogen-Based Organocatalysis. 2011, 209-314. https://doi.org/10.1007/978-90-481-3865-4_7
    69. José M. Vega-Pérez, Margarita Vega-Holm, Ignacio Periñán, Carlos Palo-Nieto, Fernando Iglesias-Guerra. Synthesis of new carbohydrate-derived ketones as organocatalysts in the enantioselective epoxidation of arylalkenes. Part 2: Chiral ketones from sugars. Tetrahedron 2011, 67 (2) , 364-372. https://doi.org/10.1016/j.tet.2010.11.033
    70. Hui Lin, Yan Liu, Zhong-Liu Wu. Asymmetric epoxidation of styrene derivatives by styrene monooxygenase from Pseudomonas sp. LQ26: effects of α- and β-substituents. Tetrahedron: Asymmetry 2011, 22 (2) , 134-137. https://doi.org/10.1016/j.tetasy.2010.12.022
    71. Jiuyuan Li, Niankai Fu, Long Zhang, Pengxin Zhou, Sanzhong Luo, Jin‐Pei Cheng. Chiral Primary Amine Catalyzed Asymmetric Epoxidation of α‐Substituted Acroleins. European Journal of Organic Chemistry 2010, 2010 (35) , 6840-6849. https://doi.org/10.1002/ejoc.201001117
    72. Yian Shi. Organocatalytic Oxidation. Ketone‐Catalyzed Asymmetric Epoxidation of Alkenes and Synthetic Applications. 2010, 85-115. https://doi.org/10.1002/9783527632039.ch3
    73. Alan Armstrong, Michela Bettati, Andrew J.P. White. Catalytic enantioselective alkene epoxidation using novel spirocyclic N-carbethoxy-azabicyclo[3.2.1]octanones. Tetrahedron 2010, 66 (33) , 6309-6320. https://doi.org/10.1016/j.tet.2010.04.004
    74. José Manuel Vega‐Pérez, Margarita Vega Holm, M. Luisa Martínez, Eugenia Blanco, Fernando Iglesias‐Guerra. Synthesis of New Chiral Ketones from D ‐Glucose Derivatives and Their Use in the Enantioselective Epoxidation of Arylalkenes. European Journal of Organic Chemistry 2009, 2009 (34) , 6018-6009. https://doi.org/10.1002/ejoc.200900888
    75. Bin Wang, O. Andrea Wong, Mei‐Xin Zhao, Yian Shi. ChemInform Abstract: Asymmetric Epoxidation of 1,1‐Disubstituted Terminal Olefins by Chiral Dioxirane via a Planar‐Like Transition State.. ChemInform 2009, 40 (15) https://doi.org/10.1002/chin.200915098
    76. Stephen P. Thomas, Varinder K. Aggarwal. Asymmetrische Hydroborierung von 1,1‐disubstituierten Alkenen. Angewandte Chemie 2009, 121 (11) , 1928-1930. https://doi.org/10.1002/ange.200805604
    77. Stephen P. Thomas, Varinder K. Aggarwal. Asymmetric Hydroboration of 1,1‐Disubstituted Alkenes. Angewandte Chemie International Edition 2009, 48 (11) , 1896-1898. https://doi.org/10.1002/anie.200805604
    78. Stephen C. Bergmeier, David J. Lapinsky. Chapter 3: Three-Membered Ring Systems. 2009, 69-93. https://doi.org/10.1016/S0959-6380(09)70030-3
    79. Simon E. Lewis. Synthetic methods : Part (ii) Oxidation and reduction methods. Annual Reports Section "B" (Organic Chemistry) 2009, 105 , 35. https://doi.org/10.1039/b822050f
    80. Omar Boutureira, Joanna F. McGouran, Robert L. Stafford, Daniel P. G. Emmerson, Benjamin G. Davis. Accessible sugars as asymmetric olefin epoxidation organocatalysts: glucosaminide ketones in the synthesis of terminal epoxides. Organic & Biomolecular Chemistry 2009, 7 (20) , 4285. https://doi.org/10.1039/b911675c

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2008, 73, 24, 9539–9543
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo801576k
    Published October 14, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    5337

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.