Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Smallest Possible Nanocrystals of Semiionic Oxides

View Author Information
Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden
Cite this: J. Phys. Chem. B 2003, 107, 15, 3336–3339
Publication Date (Web):March 21, 2003
https://doi.org/10.1021/jp022036e
Copyright © 2003 American Chemical Society

    Article Views

    618

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    General bonding principles are used to predict the structure of individual nanocrystals in nanocrystalline materials with semiionic bonding. The relationship between the general principles and actual nanocrystal structures is demonstrated using titanium dioxide in the anatase form. The proposed nanocrystals simultaneously fulfill strict criteria of stoichiometry, high coordination, and balanced charge distribution. The smallest such nanocrystals are remarkably simple, e.g., consisting of less than 100 atoms in anatase. According to computer simulations, these nanocrystals show strong quantum size effects, while other clusters of similar size instead show typical defect characteristics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 68 publications.

    1. Joshua A. Kress, Claudio Quarti, Qingzhi An, Sapir Bitton, Nir Tessler, David Beljonne, Yana Vaynzof. Persistent Ion Accumulation at Interfaces Improves the Performance of Perovskite Solar Cells. ACS Energy Letters 2022, 7 (10) , 3302-3310. https://doi.org/10.1021/acsenergylett.2c01636
    2. Juganta K. Roy, Ravinder Kaur, Andrew Daniel, Alexandra Baumann, Qing Li, Jared H. Delcamp, Jerzy Leszczynski. Photophysical Properties of Donor–Acceptor−π Bridge–Acceptor Sensitizers with a Naphthobisthiadiazole Auxiliary Acceptor: Toward Longer-Wavelength Access in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2022, 126 (29) , 11875-11888. https://doi.org/10.1021/acs.jpcc.2c02117
    3. Soichi Shirai, Takahiro Horiba, Hirotoshi Hirai. Calculation of Core-Excited and Core-Ionized States Using Variational Quantum Deflation Method and Applications to Photocatalyst Modeling. ACS Omega 2022, 7 (12) , 10840-10853. https://doi.org/10.1021/acsomega.2c01053
    4. Juganta K. Roy, Supratik Kar, Jerzy Leszczynski. Electronic Structure and Optical Properties of Designed Photo-Efficient Indoline-Based Dye-Sensitizers with D–A−π–A Framework. The Journal of Physical Chemistry C 2019, 123 (6) , 3309-3320. https://doi.org/10.1021/acs.jpcc.8b10708
    5. Soichi Shirai, Shunsuke Sato, Tomiko M. Suzuki, Ryosuke Jinnouchi, Nobuko Ohba, Ryoji Asahi, and Takeshi Morikawa . Effects of Ta2O5 Surface Modification by NH3 on the Electronic Structure of a Ru-Complex/N–Ta2O5 Hybrid Photocatalyst for Selective CO2 Reduction. The Journal of Physical Chemistry C 2018, 122 (4) , 1921-1929. https://doi.org/10.1021/acs.jpcc.7b09670
    6. Carlito S. Ponseca, Jr., Pavel Chábera, Jens Uhlig, Petter Persson, and Villy Sundström . Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews 2017, 117 (16) , 10940-11024. https://doi.org/10.1021/acs.chemrev.6b00807
    7. Oriol Lamiel-Garcia, Kyoung Chul Ko, Jin Yong Lee, Stefan T. Bromley, and Francesc Illas . When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1–6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations. Journal of Chemical Theory and Computation 2017, 13 (4) , 1785-1793. https://doi.org/10.1021/acs.jctc.7b00085
    8. Claudio Quarti, Filippo De Angelis, and David Beljonne . Influence of Surface Termination on the Energy Level Alignment at the CH3NH3PbI3 Perovskite/C60 Interface. Chemistry of Materials 2017, 29 (3) , 958-968. https://doi.org/10.1021/acs.chemmater.6b03259
    9. Daeheum Cho, Kyoung Chul Ko, Oriol Lamiel-García, Stefan T. Bromley, Jin Yong Lee, and Francesc Illas . Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles. Journal of Chemical Theory and Computation 2016, 12 (8) , 3751-3763. https://doi.org/10.1021/acs.jctc.6b00519
    10. David Sulzer, Satoru Iuchi, and Koji Yasuda . A New Method To Evaluate Excited States Lifetimes Based on Green’s Function: Application to Dye-Sensitized Solar Cells. Journal of Chemical Theory and Computation 2016, 12 (7) , 3074-3086. https://doi.org/10.1021/acs.jctc.6b00181
    11. Amendra Fernando, K. L. Dimuthu M. Weerawardene, Natalia V. Karimova, and Christine M. Aikens . Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chemical Reviews 2015, 115 (12) , 6112-6216. https://doi.org/10.1021/cr500506r
    12. Filippo De Angelis, Cristiana Di Valentin, Simona Fantacci, Andrea Vittadini, and Annabella Selloni . Theoretical Studies on Anatase and Less Common TiO2 Phases: Bulk, Surfaces, and Nanomaterials. Chemical Reviews 2014, 114 (19) , 9708-9753. https://doi.org/10.1021/cr500055q
    13. Malgorzata Makowska-Janusik, Olga Gladii, Abdelhadi Kassiba, Johann Bouclé, and Nathalie Herlin-Boime . Cluster Approach To Model Titanium Dioxide as Isolated or Organic Dye Sensitized Nanoobjects. The Journal of Physical Chemistry C 2014, 118 (12) , 6009-6018. https://doi.org/10.1021/jp4104855
    14. Shih-Hung Liu, Hungshin Fu, Yi-Ming Cheng, Kuan-Lin Wu, Shu-Te Ho, Yun Chi, and Pi-Tai Chou . Theoretical Study of N749 Dyes Anchoring on the (TiO2)28 Surface in DSSCs and Their Electronic Absorption Properties. The Journal of Physical Chemistry C 2012, 116 (31) , 16338-16345. https://doi.org/10.1021/jp3006074
    15. Meiyuan Guo, Rongxing He, Yulan Dai, Wei Shen, and Ming Li , Chaoyuan Zhu and Sheng Hsien Lin . Electron-Deficient Pyrimidine Adopted in Porphyrin Sensitizers: A Theoretical Interpretation of π-Spacers Leading to Highly Efficient Photo-to-Electric Conversion Performances in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (16) , 9166-9179. https://doi.org/10.1021/jp2109829
    16. Sami Auvinen, Matti Alatalo, Heikki Haario, Juho-Pertti Jalava, and Ralf-Johan Lamminmäki . Size and Shape Dependence of the Electronic and Spectral Properties in TiO2 Nanoparticles. The Journal of Physical Chemistry C 2011, 115 (17) , 8484-8493. https://doi.org/10.1021/jp112114p
    17. Jason B. Benedict and Philip Coppens. The Crystalline Nanocluster Phase as a Medium for Structural and Spectroscopic Studies of Light Absorption of Photosensitizer Dyes on Semiconductor Surfaces. Journal of the American Chemical Society 2010, 132 (9) , 2938-2944. https://doi.org/10.1021/ja909600w
    18. Yu Gong and Mingfei Zhou, Lester Andrews. Spectroscopic and Theoretical Studies of Transition Metal Oxides and Dioxygen Complexes. Chemical Reviews 2009, 109 (12) , 6765-6808. https://doi.org/10.1021/cr900185x
    19. Vladimir Blagojevic, Yiing-Rei Chen, Michael Steigerwald, Louis Brus and Richard A. Friesner. Quantum Chemical Investigation of Cluster Models for TiO2 Nanoparticles with Water-Derived Ligand Passivation: Studies of Excess Electron States and Implications for Charge Transport in the Gratzel Cell. The Journal of Physical Chemistry C 2009, 113 (46) , 19806-19811. https://doi.org/10.1021/jp905332z
    20. Hong Wang and James P. Lewis. Localization of Frontier Orbitals on Anatase Nanoparticles Impacts Water Adsorption. The Journal of Physical Chemistry C 2009, 113 (38) , 16631-16637. https://doi.org/10.1021/jp905489s
    21. Mònica Calatayud and Christian Minot. Is There a Nanosize for the Activity of TiO2 Compounds?. The Journal of Physical Chemistry C 2009, 113 (28) , 12186-12194. https://doi.org/10.1021/jp901465q
    22. Dongju Zhang, Hui Sun, Jianqiang Liu and Chengbu Liu. A New Family of Heterofullerenes: Stoichiometric TiO2 Nanoclusters. The Journal of Physical Chemistry C 2009, 113 (1) , 21-25. https://doi.org/10.1021/jp808819x
    23. Dongju Zhang, Peng Liu and Chengbu Liu. Thinnest Titanium Dioxide Nanowires Assembled by Ti2O4 Building Blocks. The Journal of Physical Chemistry C 2008, 112 (43) , 16729-16732. https://doi.org/10.1021/jp807264n
    24. Zheng-wang Qu and, Geert-Jan Kroes. Theoretical Study of Stable, Defect-Free (TiO2)n Nanoparticles with n = 10−16. The Journal of Physical Chemistry C 2007, 111 (45) , 16808-16817. https://doi.org/10.1021/jp073988t
    25. Maria J. Lundqvist,, Mattias Nilsing, and, Sten Lunell, , Björn Åkermark, , Petter Persson. Spacer and Anchor Effects on the Electronic Coupling in Ruthenium-bis-Terpyridine Dye-Sensitized TiO2 Nanocrystals Studied by DFT. The Journal of Physical Chemistry B 2006, 110 (41) , 20513-20525. https://doi.org/10.1021/jp064045j
    26. Zheng-wang Qu and, Geert-Jan Kroes. Theoretical Study of the Electronic Structure and Stability of Titanium Dioxide Clusters (TiO2)n with n = 1−9. The Journal of Physical Chemistry B 2006, 110 (18) , 8998-9007. https://doi.org/10.1021/jp056607p
    27. P. Persson,, M. J. Lundqvist,, R. Ernstorfer,, W. A. Goddard III, and, F. Willig. Quantum Chemical Calculations of the Influence of Anchor-Cum-Spacer Groups on Femtosecond Electron Transfer Times in Dye-Sensitized Semiconductor Nanocrystals. Journal of Chemical Theory and Computation 2006, 2 (2) , 441-451. https://doi.org/10.1021/ct050141x
    28. S. Hamad,, C. R. A. Catlow, and, S. M. Woodley, , S. Lago and, J. A. Mejías. Structure and Stability of Small TiO2 Nanoparticles. The Journal of Physical Chemistry B 2005, 109 (33) , 15741-15748. https://doi.org/10.1021/jp0521914
    29. Petter Persson and, Maria J. Lundqvist. Calculated Structural and Electronic Interactions of the Ruthenium Dye N3 with a Titanium Dioxide Nanocrystal. The Journal of Physical Chemistry B 2005, 109 (24) , 11918-11924. https://doi.org/10.1021/jp050513y
    30. Qing-Li Zhang,, Lu-Chao Du,, Yu-Xiang Weng,, Li Wang,, Han-Yuan Chen, and, Jian-Qi Li. Particle-Size-Dependent Distribution of Carboxylate Adsorption Sites on TiO2 Nanoparticle Surfaces:  Insights into the Surface Modification of Nanostructured TiO2 Electrodes. The Journal of Physical Chemistry B 2004, 108 (39) , 15077-15083. https://doi.org/10.1021/jp037584m
    31. VANITHA UMAPATHY, Dr.Karthikeyan B, Ramya B. Solar Light Photocatalytic Activity of Zr-Doped Tio2 for Degradation of Common Food Colorant: Investigation Through Combined Approach. 2024https://doi.org/10.2139/ssrn.4797056
    32. Gil M. Repa, Lisa A. Fredin. Capturing experimental properties in computationally efficient faceted titania nanoparticle models. International Journal of Quantum Chemistry 2023, 123 (7) https://doi.org/10.1002/qua.27062
    33. Wei Liu, Hongjian Tang, Daoyin Liu. Combining density functional theory and CFD-PBM model to predict TiO2 nanoparticle evolution during chemical vapor deposition. Chemical Engineering Journal 2023, 454 , 140174. https://doi.org/10.1016/j.cej.2022.140174
    34. Chinmay Rakesh Shukla, Deepak Singh Rajawat, Sumant Upadhyay. Theory, Modeling and Computational Aspects Regarding the Mechanisms of Activation of Photocatalysts. 2023, 305-327. https://doi.org/10.1007/978-3-031-27707-8_13
    35. Long-Jiang Gao, Jia-Wei Lai, Gang Yang, Hai-Yang Liu. Theoretical investigation of Ga-corrole based dyes with different spatial structure for dye-sensitized solar cells. Computational and Theoretical Chemistry 2022, 1209 , 113633. https://doi.org/10.1016/j.comptc.2022.113633
    36. Imane Arbouch, Yasser Karzazi, Jérôme Cornil. Influence of the nature of the anchoring group on the interfacial energy level alignment in dye-sensitized solar cells: A theoretical perspective. Physical Review Materials 2020, 4 (11) https://doi.org/10.1103/PhysRevMaterials.4.115401
    37. Yuanchao Li, Xin Li, Yanling Xu. Theoretical insights into the effect of pristine, doped and hole graphene on the overall performance of dye-sensitized solar cells. Inorganic Chemistry Frontiers 2020, 7 (1) , 157-168. https://doi.org/10.1039/C9QI01264H
    38. Corneliu I. Oprea, Mihai A. Gîrțu. Structure and Electronic Properties of TiO2 Nanoclusters and Dye–Nanocluster Systems Appropriate to Model Hybrid Photovoltaic or Photocatalytic Applications. Nanomaterials 2019, 9 (3) , 357. https://doi.org/10.3390/nano9030357
    39. Hyeonjun Jeong, Ramesh Kumar Chitumalla, Dong Woo Kim, S.V. Prabhakar Vattikuti, Suresh Thogiti, Rajesh Cheruku, Jae Hong Kim, Joonkyung Jang, Ganesh Koyyada, Jae Hak Jung. The comparative study of new carboxylated 1,3-indanedione sensitizers with standard cyanoacetic acid dyes using co-adsorbents in dye-sensitized solar cells. Chemical Physics Letters 2019, 715 , 84-90. https://doi.org/10.1016/j.cplett.2018.11.026
    40. Corneliu I. Oprea, Petre Panait, Reda M. AbdelAal, Mihai A. Cirtu. DFT Calculations of Structure and Optical Properties in Wide Band-Gap Semiconductor Clusters for Dye-Sensitized Solar Cells. 2018, 17-26. https://doi.org/10.1109/SMICND.2018.8539813
    41. Mahalingavelar Paramasivam, Ramesh Kumar Chitumalla, Joonkyung Jang, Ji Ho Youk. The impact of heteroatom substitution on cross-conjugation and its effect on the photovoltaic performance of DSSCs – a computational investigation of linear vs. cross-conjugated anchoring units. Physical Chemistry Chemical Physics 2018, 20 (35) , 22660-22673. https://doi.org/10.1039/C8CP02709A
    42. Marta Gałyńska, Petter Persson. Quantum chemical calculations of the structural influence on electronic properties in TiO 2 nanocrystals. Molecular Physics 2017, 115 (17-18) , 2209-2217. https://doi.org/10.1080/00268976.2017.1281456
    43. Carlos Orellana, Fernando Mendizábal, Guillermo González, Sebastián Miranda-Rojas, Lorena Barrientos. Palmitic acid and hexadecylamine molecules assdsorbed on titania surface in hybrid composites. Effect of surfactants using density functional theory. Computational and Theoretical Chemistry 2017, 1110 , 50-59. https://doi.org/10.1016/j.comptc.2017.04.006
    44. Malgorzata Makowska-Janusik, Abdel-Hadi Kassiba. Photoactive Semiconducting Oxides for Energy and Environment: Experimental and Theoretical Insights. 2017, 983-1030. https://doi.org/10.1007/978-3-319-27282-5_18
    45. Katherine Paredes-Gil, Fernando Mendizabal, Dayán Páez-Hernández, Ramiro Arratia-Pérez. Electronic structure and optical properties calculation of Zn-porphyrin with N-annulated perylene adsorbed on TiO2 model for dye-sensitized solar cell applications: A DFT/TD-DFT study. Computational Materials Science 2017, 126 , 514-527. https://doi.org/10.1016/j.commatsci.2016.09.042
    46. Oriol Lamiel-Garcia, Andi Cuko, Monica Calatayud, Francesc Illas, Stefan T. Bromley. Predicting size-dependent emergence of crystallinity in nanomaterials: titania nanoclusters versus nanocrystals. Nanoscale 2017, 9 (3) , 1049-1058. https://doi.org/10.1039/C6NR05788H
    47. Olga Miroshnichenko, Sergei Posysaev, Matti Alatalo. A DFT study of the effect of SO 4 groups on the properties of TiO 2 nanoparticles. Physical Chemistry Chemical Physics 2016, 18 (48) , 33068-33076. https://doi.org/10.1039/C6CP05681D
    48. Sami Auvinen, Matti Lahti, Matti Alatalo. Unoccupied titanium 3 d states due to subcluster formation in stoichiometric TiO 2 nanoparticles. International Journal of Quantum Chemistry 2015, 115 (17) , 1175-1180. https://doi.org/10.1002/qua.24945
    49. Jayaraman Jayabharathi, Periyasamy Ramanathan, Chockalingam Karunakaran, Venugopal Thanikachalam. RETRACTED ARTICLE: Site Specific Interaction Between TiO2 Nanoparticles and Phenanthrimidazole—A First Principles Quantum Mechanical Study. Journal of Fluorescence 2015, 25 (4) , 1063-1083. https://doi.org/10.1007/s10895-015-1593-2
    50. Malgorzata Makowska-Janusik, Abdel-Hadi Kassiba. Photoactive Semiconducting Oxides for Energy and Environment: Experimental and Theoretical Insights. 2015, 1-48. https://doi.org/10.1007/978-94-007-6169-8_18-2
    51. Olga Miroshnichenko, Sami Auvinen, Matti Alatalo. A DFT study of the effect of OH groups on the optical, electronic, and structural properties of TiO 2 nanoparticles. Physical Chemistry Chemical Physics 2015, 17 (7) , 5321-5327. https://doi.org/10.1039/C4CP02789B
    52. Marta Gałyńska, Petter Persson. Material Dependence of Water Interactions with Metal Oxide Nanoparticles. 2014, 303-332. https://doi.org/10.1016/B978-0-12-800345-9.00008-8
    53. Shi Yin, Elliot R. Bernstein. Experimental and theoretical studies of H 2 O oxidation by neutral Ti 2 O 4,5 clusters under visible light irradiation. Phys. Chem. Chem. Phys. 2014, 16 (27) , 13900-13908. https://doi.org/10.1039/C4CP00097H
    54. Ramesh Kumar Chitumalla, Kankatala S. V. Gupta, Chandrasekhram Malapaka, Reza Fallahpour, Ashraful Islam, Liyuan Han, Bhanuprakash Kotamarthi, Surya Prakash Singh. Thiocyanate-free cyclometalated ruthenium(ii) sensitizers for DSSC: A combined experimental and theoretical investigation. Physical Chemistry Chemical Physics 2014, 16 (6) , 2630. https://doi.org/10.1039/c3cp53613k
    55. Marta Gałyńska, Petter Persson. Emerging polymorphism in nanostructured TiO 2 : Quantum chemical comparison of anatase, rutile, and brookite clusters. International Journal of Quantum Chemistry 2013, 113 (24) , 2611-2620. https://doi.org/10.1002/qua.24522
    56. Vadim G. Kessler. Single Source Precursor Approach. 2013, 71-92. https://doi.org/10.1007/978-3-211-99311-8_4
    57. Meiyuan Guo, Ming Li, Yulan Dai, Wei Shen, Jingdong Peng, Chaoyuan Zhu, Sheng Hsien Lin, Rongxing He. Exploring the role of varied-length spacers in charge transfer: a theoretical investigation on pyrimidine-bridged porphyrin dyes. RSC Advances 2013, 3 (38) , 17515. https://doi.org/10.1039/c3ra40702k
    58. Dolly Vijay, E. Varathan, V. Subramanian. Theoretical design of core modified (oxa and thia) porphyrin based organic dyes with bridging thiophene linkers. Journal of Materials Chemistry A 2013, 1 (13) , 4358. https://doi.org/10.1039/c3ta10270j
    59. D Çakır, O Gülseren. Ab initio study of neutral (TiO 2 ) n clusters and their interactions with water and transition metal atoms. Journal of Physics: Condensed Matter 2012, 24 (30) , 305301. https://doi.org/10.1088/0953-8984/24/30/305301
    60. Suman Kalyan Sahoo, Sougata Pal, Pranab Sarkar, Chiranjib Majumder. Size-dependent electronic structure of rutile TiO2 quantum dots. Chemical Physics Letters 2011, 516 (1-3) , 68-71. https://doi.org/10.1016/j.cplett.2011.09.047
    61. Weiwei Zhang, Ye Han, Shuyu Yao, Haiqing Sun. Stability analysis and structural rules of titanium dioxide clusters (TiO2) with n= 1–9. Materials Chemistry and Physics 2011, 130 (1-2) , 196-202. https://doi.org/10.1016/j.matchemphys.2011.06.027
    62. Vadim G. Kessler. The chemistry behind the sol–gel synthesis of complex oxide nanoparticles for bio-imaging applications. Journal of Sol-Gel Science and Technology 2009, 51 (3) , 264-271. https://doi.org/10.1007/s10971-009-1946-x
    63. Suman Kalyan Pal, Villy Sundström, Elena Galoppini, Petter Persson. Calculations of interfacial interactions in pyrene-Ipa rod sensitized nanostructured TiO2. Dalton Transactions 2009, 95 (45) , 10021. https://doi.org/10.1039/b910880g
    64. Amilcare Iacomino, Giovanni Cantele, Domenico Ninno, Ivan Marri, Stefano Ossicini. Structural, electronic, and surface properties of anatase TiO 2 nanocrystals from first principles. Physical Review B 2008, 78 (7) https://doi.org/10.1103/PhysRevB.78.075405
    65. Jakub Jirkovský, Kateřina Macounová, Hartmut Dietz, Waldfried Plieth, Petr Krtil, Stanislav Záliš. Raman Spectroscopy of Nanocrystalline Li-Ti-O Spinels and Comparative DFT Calculations on TiyOz and LixTiyOz Clusters. Collection of Czechoslovak Chemical Communications 2007, 72 (2) , 171-184. https://doi.org/10.1135/cccc20070171
    66. A. S. Barnard, S. Erdin, Y. Lin, P. Zapol, J. W. Halley. Modeling the structure and electronic properties of Ti O 2 nanoparticles. Physical Review B 2006, 73 (20) https://doi.org/10.1103/PhysRevB.73.205405
    67. Maria J. Lundqvist, Mattias Nilsing, Petter Persson, Sten Lunell. DFT study of bare and dye‐sensitized TiO 2 clusters and nanocrystals. International Journal of Quantum Chemistry 2006, 106 (15) , 3214-3234. https://doi.org/10.1002/qua.21088
    68. Yu-Xiang Weng, Lu-Chao Du, Qing-Li Zhang, Lei Zhang. A transient molecular probe for characterizing the surface properties of TiO 2 nanoparticle in colloidal solution. Science and Technology of Advanced Materials 2005, 6 (7) , 867-872. https://doi.org/10.1016/j.stam.2005.05.013