Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
X-Shaped Oligothiophenes as a New Class of Electron Donors for Bulk-Heterojunction Solar Cells
My Activity

Figure 1Loading Img
    Article

    X-Shaped Oligothiophenes as a New Class of Electron Donors for Bulk-Heterojunction Solar Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China, and Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, P. R. China
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2006, 110, 15, 7702–7707
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp060128o
    Published March 24, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Four X-shaped oligothiophenes with different conjugation length were investigated as novel electron donors in single-layer bulk-heterojunction solar cells. The UV−vis absorption spectra of blends of compounds 14 with 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 show a remarkably red shift and broadening with increasing thiophene number at each of the four branches. The performance of the photovoltaic cells varied significantly with molecular structures of the four oligothiophenes. Conversion efficiencies increased from 0.008% to 0.8% with changing the electron donors from 1 to 4. The maximum incident photon-to-current conversion efficiency of the device based on 4 reaches 31.6%, much higher than those of three other compounds 13. Remarkable improvement of the device performance was achieved with increasing the substituted thiophene number. The results show that the photovoltaic effect is dependent on the structural characteristics and the film forming abilities of the X-shaped thiophenes.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Institute of Chemistry, Chinese Academy of Sciences.

     Jilin University.

    *

     Address correspondence to these authors. E-mail:  [email protected] (Y.Q.L.), [email protected] (W.J.T.).

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 118 publications.

    1. Antonio Prlj, Basile F. E. Curchod, Alberto Fabrizio, Leonard Floryan, and Clémence Corminboeuf . Qualitatively Incorrect Features in the TDDFT Spectrum of Thiophene-Based Compounds. The Journal of Physical Chemistry Letters 2015, 6 (1) , 13-21. https://doi.org/10.1021/jz5022087
    2. Ewa Kurach, Kamil Kotwica, Joanna Zapala, Marek Knor, Robert Nowakowski, David Djurado, Petr Toman, Jiri Pfleger, Malgorzata Zagorska, and Adam Pron . Semiconducting Alkyl Derivatives of 2,5-Bis(2,2′-bithiophene-5-yl)-1,3,4-thiadiazole—Effect of the Substituent Position on the Spectroscopic, Electrochemical, and Structural Properties. The Journal of Physical Chemistry C 2013, 117 (29) , 15316-15326. https://doi.org/10.1021/jp4033832
    3. Suling Shen, Pei Jiang, Chang He, Jing Zhang, Ping Shen, Yi Zhang, Yuanping Yi, Zhanjun Zhang, Zhibo Li, and Yongfang Li . Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups. Chemistry of Materials 2013, 25 (11) , 2274-2281. https://doi.org/10.1021/cm400782q
    4. Gisela L. Schulz, Michael Mastalerz, Chang-Qi Ma, Martijn Wienk, René Janssen, and Peter Bäuerle . Synthesis and Photovoltaic Performance of Pyrazinoquinoxaline Containing Conjugated Thiophene-Based Dendrimers and Polymers. Macromolecules 2013, 46 (6) , 2141-2151. https://doi.org/10.1021/ma302404y
    5. Weifeng Zhang, Xiangnan Sun, Pingfang Xia, Jianyao Huang, Gui Yu, Man Shing Wong, Yunqi Liu, and Daoben Zhu . Novel Butterfly-Shaped Fused Heteroacenes: Synthesis, Properties, and Device Performance of Solution-Processed Field-Effect Transistors. Organic Letters 2012, 14 (17) , 4382-4385. https://doi.org/10.1021/ol301852m
    6. Zuo Xiao, Yutaka Matsuo, Iwao Soga, and Eiichi Nakamura . Structurally Defined High-LUMO-Level 66π-[70]Fullerene Derivatives: Synthesis and Application in Organic Photovoltaic Cells. Chemistry of Materials 2012, 24 (13) , 2572-2582. https://doi.org/10.1021/cm301238n
    7. Alicea A. Leitch, Aya Mansour, Kimberly A. Stobo, Ilia Korobkov, and Jaclyn L. Brusso . Functionalized Tetrathienoanthracene: Enhancing π–π Interactions Through Expansion of the π-Conjugated Framework. Crystal Growth & Design 2012, 12 (3) , 1416-1421. https://doi.org/10.1021/cg201521w
    8. Jing Zhang, Dan Deng, Chang He, Youjun He, Maojie Zhang, Zhi-Guo Zhang, Zhanjun Zhang, and Yongfang Li . Solution-Processable Star-Shaped Molecules with Triphenylamine Core and Dicyanovinyl Endgroups for Organic Solar Cells. Chemistry of Materials 2011, 23 (3) , 817-822. https://doi.org/10.1021/cm102077j
    9. Bright Walker, Chunki Kim, and Thuc-Quyen Nguyen. Small Molecule Solution-Processed Bulk Heterojunction Solar Cells. Chemistry of Materials 2011, 23 (3) , 470-482. https://doi.org/10.1021/cm102189g
    10. Jing Luo, Kuo-Wei Huang, Hemi Qu, Xiaojie Zhang, Lijun Zhu, Hardy Sze On Chan, and Chunyan Chi . H-Shaped Oligothiophenes with Low Band Gaps and Amphoteric Redox Properties. Organic Letters 2010, 12 (24) , 5660-5663. https://doi.org/10.1021/ol102456c
    11. Jin-Liang Wang, Qi Xiao, and Jian Pei. Benzothiadiazole-Based D−π-A−π-D Organic Dyes with Tunable Band Gap: Synthesis and Photophysical Properties. Organic Letters 2010, 12 (18) , 4164-4167. https://doi.org/10.1021/ol101754q
    12. Hannah Bürckstümmer, Nils M. Kronenberg, Klaus Meerholz and Frank Würthner. Near-Infrared Absorbing Merocyanine Dyes for Bulk Heterojunction Solar Cells. Organic Letters 2010, 12 (16) , 3666-3669. https://doi.org/10.1021/ol101492q
    13. Anthony J. Zucchero, Psaras L. McGrier and Uwe H. F. Bunz. Cross-Conjugated Cruciform Fluorophores. Accounts of Chemical Research 2010, 43 (3) , 397-408. https://doi.org/10.1021/ar900218d
    14. Yi Yang, Jing Zhang, Yi Zhou, Guangjin Zhao, Chang He, Yongfang Li, Mattias Andersson, Olle Inganäs and Fengling Zhang . Solution-Processable Organic Molecule with Triphenylamine Core and Two Benzothiadiazole-Thiophene Arms for Photovoltaic Application. The Journal of Physical Chemistry C 2010, 114 (8) , 3701-3706. https://doi.org/10.1021/jp910836t
    15. Jean Roncali. Molecular Bulk Heterojunctions: An Emerging Approach to Organic Solar Cells. Accounts of Chemical Research 2009, 42 (11) , 1719-1730. https://doi.org/10.1021/ar900041b
    16. Jing Zhang, Yi Yang, Chang He, Youjun He, Guangjin Zhao and Yongfang Li . Solution-Processable Star-Shaped Photovoltaic Organic Molecule with Triphenylamine Core and Benzothiadiazole−Thiophene Arms. Macromolecules 2009, 42 (20) , 7619-7622. https://doi.org/10.1021/ma901896n
    17. Amaresh Mishra, Chang-Qi Ma and Peter Bäuerle. Functional Oligothiophenes: Molecular Design for Multidimensional Nanoarchitectures and Their Applications. Chemical Reviews 2009, 109 (3) , 1141-1276. https://doi.org/10.1021/cr8004229
    18. Jin-Liang Wang, Zheng-Ming Tang, Qi Xiao, Yuguo Ma and Jian Pei. Star-Shaped D-π-A Conjugated Molecules: Synthesis and Broad Absorption Bands. Organic Letters 2009, 11 (4) , 863-866. https://doi.org/10.1021/ol802845w
    19. Guangjin Zhao, Guanglong Wu, Chang He, Fu-Quan Bai, Hongxia Xi, Hong-Xing Zhang and Yongfang Li . Solution-Processable Multiarmed Organic Molecules Containing Triphenylamine and DCM Moieties: Synthesis and Photovoltaic Properties. The Journal of Physical Chemistry C 2009, 113 (6) , 2636-2642. https://doi.org/10.1021/jp809795p
    20. Youjun He, Weiping Wu, Guangjing Zhao, Yunqi Liu and Yongfang Li . Poly(3,6-dihexyl-thieno[3,2-b]thiophene vinylene): Synthesis, Field-Effect Transistors, and Photovoltaic Properties. Macromolecules 2008, 41 (24) , 9760-9766. https://doi.org/10.1021/ma801923c
    21. Arnold Bernarte Tamayo, Mananya Tantiwiwat, Bright Walker and Thuc-Quyen Nguyen . Design, Synthesis, and Self-assembly of Oligothiophene Derivatives with a Diketopyrrolopyrrole Core. The Journal of Physical Chemistry C 2008, 112 (39) , 15543-15552. https://doi.org/10.1021/jp804816c
    22. Ping Shen, Guangyi Sang, Junjian Lu, Bin Zhao, Meixiu Wan, Yingping Zou, Yongfang Li and Songting Tan. Effect of 3D π−π Stacking on Photovoltaic and Electroluminescent Properties in Triphenylamine-containing Poly(p-phenylenevinylene) Derivatives. Macromolecules 2008, 41 (15) , 5716-5722. https://doi.org/10.1021/ma800847f
    23. Arnold B. Tamayo, Bright Walker and Thuc-Quyen Nguyen*. A Low Band Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells. The Journal of Physical Chemistry C 2008, 112 (30) , 11545-11551. https://doi.org/10.1021/jp8031572
    24. Luca Valentini, Diego Bagnis, Assunta Marrocchi, Mirko Seri, Aldo Taticchi and Josè M. Kenny. Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells. Chemistry of Materials 2008, 20 (1) , 32-34. https://doi.org/10.1021/cm703011k
    25. Matthew T. Lloyd,, Alex C. Mayer,, Sankar Subramanian,, Devin A. Mourey,, Dave J. Herman,, Amit V. Bapat,, John E. Anthony, and, George G. Malliaras. Efficient Solution-Processed Photovoltaic Cells Based on an Anthradithiophene/Fullerene Blend. Journal of the American Chemical Society 2007, 129 (29) , 9144-9149. https://doi.org/10.1021/ja072147x
    26. Chang He,, Qingguo He,, Xiaodi Yang,, Guanglong Wu,, Chunhe Yang,, Fenglian Bai,, Zhigang Shuai,, Lingxuan Wang, and, Yongfang Li. Synthesis and Photovoltaic Properties of a Solution-Processable Organic Molecule Containing Triphenylamine and DCM Moieties. The Journal of Physical Chemistry C 2007, 111 (24) , 8661-8666. https://doi.org/10.1021/jp070714x
    27. Qihui Yue, Xiaozhang Zhu. p ‐Type Molecular Photovoltaic Materials. 2022, 77-119. https://doi.org/10.1002/9783527833658.ch2
    28. Numbury Surendra Babu. DFT and TD-DFT studies of new triphenylamine-based (D–A–D) donor materials for high-efficiency organic solar cells. Materials Advances 2022, 3 (8) , 3526-3535. https://doi.org/10.1039/D2MA00048B
    29. Mengbing Zhu, Qiong Wang, Linrui Duan, Hao Xia, Yingshuang Zhang, Fei Tong, Wenhong Peng, Hua Tan, Weiguo Zhu. Improving solubility and photovoltaic properties of the star-shaped molecules by synergistic effect of central tris(2-methoxyphenyl)amine and branched fluorine substituent. Dyes and Pigments 2021, 186 , 109009. https://doi.org/10.1016/j.dyepig.2020.109009
    30. Ilya E. Kuznetsov, Petr M. Kuznetsov, Andrey V. Maskaev, Alexander V. Akkuratov, Pavel A. Troshin. Novel small oligothiophene molecules with phenylene and naphthalene cores as promising absorber materials for organic solar cells. Mendeleev Communications 2020, 30 (5) , 683-685. https://doi.org/10.1016/j.mencom.2020.09.044
    31. Mounia Guergouri, Rafik Bensegueni, Leïla Bencharif. Synthesis, photophysical properties and electrochemical polymerization of a new blue fluorescent compound based on 3,4-ethylenedioxythiophene moiety. Materials Science-Poland 2020, 38 (1) , 151-158. https://doi.org/10.2478/msp-2019-0089
    32. Jhao‐Lin Wu, Yi‐Ting Lee, Chin‐Ti Chen, Chao‐Tsen Chen. Solution‐processed Small Molecular Materials: Bulk Heterojunction Organic Photovoltaic Materials, Host Materials for Phosphorescence Organic Light‐emitting Diodes, and Nondopant Thermally Activated Delayed Fluorescence Materials. Journal of the Chinese Chemical Society 2018, 65 (1) , 87-106. https://doi.org/10.1002/jccs.201700244
    33. Adam C. Yeats, Rupert G. D. Taylor, Peter J. Skabara. p-Type Molecular Materials for Organic Solar Cells. 2017, 109-153. https://doi.org/10.1039/9781782626749-00109
    34. Wei Gao, Junkai Wang, Qun Luo, Yi Lin, Yuchao Ma, Junyan Dou, Hongwei Tan, Chang-Qi Ma, Zheng Cui. Tuning the optical and electrochemical properties of conjugated all-thiophene dendrimers via core functionalization with a benzothiadiazole unit. RSC Advances 2017, 7 (3) , 1606-1616. https://doi.org/10.1039/C6RA25567A
    35. Antoine Labrunie, Pierre Josse, Sylvie Dabos-Seignon, Philippe Blanchard, Clément Cabanetos. Pentaerythritol based push–pull tetramers for organic photovoltaics. Sustainable Energy & Fuels 2017, 1 (9) , 1921-1927. https://doi.org/10.1039/C7SE00345E
    36. Milan Klikar, Parmeshwar Solanke, Jiří Tydlitát, Filip Bureš. Alphabet‐Inspired Design of (Hetero)Aromatic Push–Pull Chromophores. The Chemical Record 2016, 16 (4) , 1886-1905. https://doi.org/10.1002/tcr.201600032
    37. Yeongrok Gim, Daekyeom Kim, Minkyu Kyeong, Seunghwan Byun, Yuri Park, Sooncheol Kwon, Heejoo Kim, Sukwon Hong, Yves Lansac, Yun Hee Jang. D–A–D-type narrow-bandgap small-molecule photovoltaic donors: pre-synthesis virtual screening using density functional theory. Physical Chemistry Chemical Physics 2016, 18 (22) , 15054-15059. https://doi.org/10.1039/C5CP07536J
    38. Shamsa Bibi, Jingping Zhang. Theoretical studies to investigate the effect of different cores and two different topologies on the optical and charge transfer properties of donor materials for organic solar cells. New Journal of Chemistry 2016, 40 (4) , 3693-3704. https://doi.org/10.1039/C5NJ02412A
    39. Mahalingavelar Paramasivam, Akhil Gupta, N. Jagadeesh Babu, K. Bhanuprakash, Sheshanath V. Bhosale, V. Jayathirtha Rao. Funnel shaped molecules containing benzo/pyrido[1,2,5]thiadiazole functionalities as peripheral acceptors for organic photovoltaic applications. RSC Advances 2016, 6 (71) , 66978-66989. https://doi.org/10.1039/C6RA06616J
    40. Viktor V. Brus, Aung Ko Ko Kyaw, Pavlo D. Maryanchuk, Jie Zhang. Quantifying interface states and bulk defects in high‐efficiency solution‐processed small‐molecule solar cells by impedance and capacitance characteristics. Progress in Photovoltaics: Research and Applications 2015, 23 (11) , 1526-1535. https://doi.org/10.1002/pip.2586
    41. Mohamed Shaker, Jong-Hoon Lee, Cuc Kim Trinh, Wonbin Kim, Kwanghee Lee, Jae-Suk Lee. A facile method to synthesize [A′(D′AD) 2 ]-based push–pull small molecules for organic photovoltaics. RSC Advances 2015, 5 (81) , 66005-66012. https://doi.org/10.1039/C5RA06660C
    42. V.V. Brus, A.K.K. Kyaw, P.D. Maryanchuk, J. Zhang. Temperature and light dependent diode current in high-efficiency solution-processed small-molecule solar cells. Organic Electronics 2014, 15 (9) , 2141-2147. https://doi.org/10.1016/j.orgel.2014.06.010
    43. Surya Prakash Singh, G. D. Sharma. Near Infrared Organic Semiconducting Materials for Bulk Heterojunction and Dye‐Sensitized Solar Cells. The Chemical Record 2014, 14 (3) , 419-481. https://doi.org/10.1002/tcr.201300041
    44. Tomasz Jarosz, Mieczyslaw Lapkowski, Przemyslaw Ledwon. Advances in Star‐Shaped π‐Conjugated Systems: Properties and Applications. Macromolecular Rapid Communications 2014, 35 (11) , 1006-1032. https://doi.org/10.1002/marc.201400061
    45. Jean Roncali, Philippe Leriche, Philippe Blanchard. Molecular Materials for Organic Photovoltaics: Small is Beautiful. Advanced Materials 2014, 26 (23) , 3821-3838. https://doi.org/10.1002/adma.201305999
    46. Jianhua Liu, Bright Walker, Thuc‐Quyen Nguyen. Solution‐Processed Molecular Bulk Heterojunction Solar Cells. 2014, 95-138. https://doi.org/10.1002/9783527656912.ch04
    47. Hung‐Chin Wu, Yi‐Cang Lai, Yu‐Cheng Chiu, Wen‐Ya Lee, Wen‐Chang Chen. Syntheses of Biaxially Extended Octithiophene‐Based Conjugated Copolymers for High‐Open‐Circuit‐Voltage Photovoltaic‐Cell Applications. Macromolecular Chemistry and Physics 2014, 215 (7) , 638-647. https://doi.org/10.1002/macp.201300765
    48. Ruyu Li, Yanjiao Mo, Rong Shi, Peng Li, Chengyu Li, Zhenjiang Wang, Xun Wang, Shengbiao Li. Synthesis and properties of poly(p-phenylene vinylene) derivatives with hyperbranched structure and containing a nitro substituent. Monatshefte für Chemie - Chemical Monthly 2014, 145 (1) , 85-90. https://doi.org/10.1007/s00706-013-1051-2
    49. Yanhua Chen, Zhengkun Du, Weichao Chen, Liangliang Han, Qian Liu, Mingliang Sun, Renqiang Yang. Near-infrared response thienoisoindigo-based small molecule for solution-processed bulk-heterojunction solar cells. Synthetic Metals 2014, 187 , 24-29. https://doi.org/10.1016/j.synthmet.2013.10.017
    50. Giovanni Salassa, James W. Ryan, Eduardo C. Escudero-Adán, Arjan W. Kleij. Spectroscopic properties of Zn(salphenazine) complexes and their application in small molecule organic solar cells. Dalton Trans. 2014, 43 (1) , 210-221. https://doi.org/10.1039/C3DT52034J
    51. Xin Liu, QingDuan Li, Yunchuan Li, Xiong Gong, Shi-Jian Su, Yong Cao. Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. Journal of Materials Chemistry A 2014, 2 (11) , 4004. https://doi.org/10.1039/c3ta14659f
    52. Liwei Wang, Feiyao Qing, Yeping Sun, Xiaoyu Li, Haiqiao Wang. Synthesis and Photovoltaic Properties of Poly(5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole-9,9-dioctylfluorene). Journal of Materials Science & Technology 2013, 29 (12) , 1214-1218. https://doi.org/10.1016/j.jmst.2013.10.015
    53. Hung-Chin Wu, Wen-Ya Lee, Chih-Jung Lin, Wen-Chang Chen. Highly air stable branched octithiophene oligomer for organic field effect transistor and pH sensor applications. Materials Chemistry and Physics 2013, 138 (2-3) , 542-552. https://doi.org/10.1016/j.matchemphys.2012.12.017
    54. Suling Shen, Lei Gao, Chang He, Zhanjun Zhang, Qingjiang Sun, Yongfang Li. A star-shaped oligothiophene with triphenylamine as core and octyl cyanoacetate as end groups for solution-processed organic solar cells. Organic Electronics 2013, 14 (3) , 875-881. https://doi.org/10.1016/j.orgel.2012.12.030
    55. Yuze Lin, Xiaowei Zhan. Organic Solar Cells Based on Small Molecules. 2013, 375-405. https://doi.org/10.1002/9783527653454.ch8
    56. Zhiming Wang, Xiaohui Song, Lingling Ma, Ying Feng, Cheng Gu, Xiaojuan Zhang, Ping Lu, Yuguang Ma. A triphenylamine-capped solution-processable wholly aromatic organic molecule with electrochemical stability and its potential application in photovoltaic devices. New Journal of Chemistry 2013, 37 (8) , 2440. https://doi.org/10.1039/c3nj00406f
    57. Weifeng Zhang, Ji Zhang, Xiangyang Chen, Zupan Mao, Xiaodong Xie, Liping Wang, Yi Liao, Gui Yu, Yunqi Liu, Daoben Zhu. Bitrialkylsilylethynyl thienoacenes: synthesis, molecular conformation and crystal packing, and their field-effect properties. Journal of Materials Chemistry C 2013, 1 (39) , 6403. https://doi.org/10.1039/c3tc31421a
    58. Jie Min, Yuriy N. Luponosov, Tayebeh Ameri, Andreas Elschner, Svetlana M. Peregudova, Derya Baran, Thomas Heumüller, Ning Li, Florian Machui, Sergei Ponomarenko, Christoph J. Brabec. A solution-processable star-shaped molecule for high-performance organic solar cells via alkyl chain engineering and solvent additive. Organic Electronics 2013, 14 (1) , 219-229. https://doi.org/10.1016/j.orgel.2012.11.002
    59. Shahino Mah Abdullah, Zubair Ahmad, Fakhra Aziz, Khaulah Sulaiman. Investigation of VOPcPhO as an acceptor material for bulk heterojunction solar cells. Organic Electronics 2012, 13 (11) , 2532-2537. https://doi.org/10.1016/j.orgel.2012.07.030
    60. Ying‐Hsuan Chou, Wen‐Ya Lee, Wen‐Chang Chen. Self‐Assembled Nanowires of Organic n‐Type Semiconductor for Nonvolatile Transistor Memory Devices. Advanced Functional Materials 2012, 22 (20) , 4352-4359. https://doi.org/10.1002/adfm.201200706
    61. K.R. Justin Thomas, Neha Kapoor, M.S. Roy, G.D. Sharma. RETRACTED: Efficient bulk heterojunction solar cells using tetrasubstituted pyrene derivatives as donors. Organic Electronics 2012, 13 (10) , 2201-2209. https://doi.org/10.1016/j.orgel.2012.06.026
    62. Tak-Kyun Ro, Jong-In Hong. New Donor Materials Based on Thiazole and Triphenylamine for Photovoltaic Devices. Bulletin of the Korean Chemical Society 2012, 33 (9) , 2897-2902. https://doi.org/10.5012/bkcs.2012.33.9.2897
    63. Chun‐Hui Duan, Fei Huang, Yong Cao, Niyazi Serdar Sariciftci, Yongfang Li, Guillermo C. Bazan, Xiong Gong. Organic Materials and Chemistry for Bulk Heterojunction Solar Cells. 2012, 643-683. https://doi.org/10.1002/9783527664801.ch17
    64. G.D. Sharma, J.A. Mikroyannidis, S.S. Sharma, K.R. Justin Thomas. Bulk heterojunction organic photovoltaic devices based on small molecules featuring pyrrole and carbazole and 2-(4-nitrophenyl)acrylonitrile acceptor segments as donor and fullerene derivatives as acceptor. Dyes and Pigments 2012, 94 (2) , 320-329. https://doi.org/10.1016/j.dyepig.2011.12.008
    65. Dong Wook Chang, Seo-Jin Ko, Jin Young Kim, Liming Dai, Jong-Beom Baek. Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synthetic Metals 2012, 162 (13-14) , 1169-1176. https://doi.org/10.1016/j.synthmet.2012.04.016
    66. Lei Wang, Soo-Yeon Park, Seong-Min Kim, Sora Yoon, Soo-Hyoung Lee, Eunwoo Lee, Kwang-Un Jeong, Myong-Hoon Lee. Bulk heterojunction photovoltaic cells based on room temperature liquid crystalline tetrathiafulvalene derivatives. Liquid Crystals 2012, 39 (7) , 795-801. https://doi.org/10.1080/02678292.2012.681074
    67. Pranabesh Dutta, Wooseung Yang, Seung Hun Eom, Soo-Hyoung Lee. Synthesis and characterization of triphenylamine flanked thiazole-based small molecules for high performance solution processed organic solar cells. Organic Electronics 2012, 13 (2) , 273-282. https://doi.org/10.1016/j.orgel.2011.11.016
    68. Jing Zhang, Jintao Yu, Chang He, Dan Deng, Zhi-Guo Zhang, Miaojie Zhang, Zhibo Li, Yongfang Li. Solution-processable star-shaped photovoltaic organic molecules based on triphenylamine and benzothiadiazole with longer pi-bridge. Organic Electronics 2012, 13 (1) , 166-172. https://doi.org/10.1016/j.orgel.2011.10.017
    69. Huanli Dong, Hongfei Zhu, Qing Meng, Xiong Gong, Wenping Hu. Organic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41 (5) , 1754-1808. https://doi.org/10.1039/C1CS15205J
    70. Yuze Lin, Yongfang Li, Xiaowei Zhan. Small molecule semiconductors for high-efficiency organic photovoltaics. Chemical Society Reviews 2012, 41 (11) , 4245. https://doi.org/10.1039/c2cs15313k
    71. Pranabesh Dutta, Wooseung Yang, Woo-Hyung Lee, In Nam Kang, Soo-Hyoung Lee. Novel naphtho[1,2-b:5,6-b′]dithiophene core linear donor–π–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells. Journal of Materials Chemistry 2012, 22 (21) , 10840. https://doi.org/10.1039/c2jm30934c
    72. Junichi Hatano, Naoki Obata, Shigeru Yamaguchi, Takeshi Yasuda, Yutaka Matsuo. Soluble porphyrin donors for small molecule bulk heterojunction solar cells. Journal of Materials Chemistry 2012, 22 (36) , 19258. https://doi.org/10.1039/c2jm33956k
    73. Jin-Liang Wang, Zhicai He, Hongbin Wu, Yong Cao, Jian Pei. π-Conjugated molecular heterojunctions with multi[60]fullerene: photophysical, electrochemical, and photovoltaic properties. New Journal of Chemistry 2012, 36 (8) , 1583. https://doi.org/10.1039/c2nj40121e
    74. Xue Quan Zhao, Li Guan, Yi Ping Zhong, Ping Liu, Wen Ji Deng. Influence of Morphology of Vacuum-Evaporated Oligothiophene Derivative Films on Oganic Photovoltaic Performance. Solid State Phenomena 2011, 181-182 , 320-323. https://doi.org/10.4028/www.scientific.net/SSP.181-182.320
    75. Hiroki Muraoka, Takanori Tanifuji, Satoshi Ogawa. Systematic Synthesis and Characterization of a Series of Tetra(5-aryl-2-thienyl)thiophenes. Chemistry Letters 2011, 40 (9) , 964-966. https://doi.org/10.1246/cl.2011.964
    76. Jie Min, Bo Peng, Yugen Wen, Zhi-Guo Zhang, Maojie Zhang, Jing Zhang, Qiang Xie, Yunqi Liu, Yongfang Li. Low bandgap copolymer of 1,4-diketopyrrolo[3,4-c]pyrrole and thieno[3,2-b]thiophene: Synthesis and applications in polymer solar cells and field-effect transistors. Synthetic Metals 2011, 161 (17-18) , 1832-1837. https://doi.org/10.1016/j.synthmet.2011.06.015
    77. J.A. Mikroyannidis, A.N. Kabanakis, S.S. Sharma, G.D. Sharma. Low band-gap phenylenevinylene and fluorenevinylene small molecules containing triphenylamine segments: Synthesis and application in bulk heterojunction solar cells. Organic Electronics 2011, 12 (5) , 774-784. https://doi.org/10.1016/j.orgel.2011.02.008
    78. Fahmi Fariq Muhammad, Khaulah Sulaiman. Photovoltaic performance of organic solar cells based on DH6T/PCBM thin film active layers. Thin Solid Films 2011, 519 (15) , 5230-5233. https://doi.org/10.1016/j.tsf.2011.01.165
    79. Huixia Shang, Haijun Fan, Yao Liu, Wenping Hu, Yongfang Li, Xiaowei Zhan. A Solution‐Processable Star‐Shaped Molecule for High‐Performance Organic Solar Cells. Advanced Materials 2011, 23 (13) , 1554-1557. https://doi.org/10.1002/adma.201004445
    80. Chang‐Qi Ma, Wojciech Pisula, Cornelia Weber, Xin‐Liang Feng, Klaus Müllen, Peter Bäuerle. Dendritic Oligothiophenes Terminated with Tris(alkyloxy)phenylethynyl Tails: Synthesis, Physical Properties, and Self‐Assembly. Chemistry – A European Journal 2011, 17 (5) , 1507-1518. https://doi.org/10.1002/chem.201002198
    81. Huixia Shang, Haijun Fan, Yao Liu, Wenping Hu, Yongfang Li, Xiaowei Zhan. New X-shaped oligothiophenes for solution-processed solar cells. Journal of Materials Chemistry 2011, 21 (26) , 9667. https://doi.org/10.1039/c1jm10814j
    82. Fan Zhang, Dongqing Wu, Youyong Xu, Xinliang Feng. Thiophene-based conjugated oligomers for organic solar cells. Journal of Materials Chemistry 2011, 21 (44) , 17590. https://doi.org/10.1039/c1jm12801a
    83. J.A. Mikroyannidis, A.N. Kabanakis, S.S. Sharma, Anil Kumar, G.D. Sharma. Symmetrical molecules of low band gap with a central spacer connected via ether bond with terminal 4-nitro-α-cyanostilbene units: Synthesis and application for bulk heterojunction solar cells. Organic Electronics 2010, 11 (10) , 1631-1641. https://doi.org/10.1016/j.orgel.2010.07.010
    84. Frank Würthner, Klaus Meerholz. Systems Chemistry Approach in Organic Photovoltaics. Chemistry – A European Journal 2010, 16 (31) , 9366-9373. https://doi.org/10.1002/chem.201001153
    85. Massimiliano Lanzi, Luisa Paganin. New regioregular polythiophenes functionalized with sulfur-containing substituents for bulk heterojunction solar cells. Reactive and Functional Polymers 2010, 70 (6) , 346-360. https://doi.org/10.1016/j.reactfunctpolym.2010.02.009
    86. Jin‐Liang Wang, Zhicai He, Hongbin Wu, Haibo Cui, Yan Li, Qihuang Gong, Yong Cao, Jian Pei. Solution‐Processed Bulk‐Heterojunction Photovoltaic Cells Based on Dendritic and Star‐Shaped D ‐π‐A Organic Dyes. Chemistry – An Asian Journal 2010, 5 (6) , 1455-1465. https://doi.org/10.1002/asia.200900686
    87. Yasser A. M. Ismail, Tetsuo Soga, Takashi Jimbo. Photovoltaic Properties of Bulk Heterojunction Organic Solar Cell Composed of Coumarin 6 Dye as Light Harvester and Donor Material. Japanese Journal of Applied Physics 2010, 49 (5) , 052301. https://doi.org/10.1143/JJAP.49.052301
    88. Lei Zhao, Jun Wang, Zhiqun Lin. Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells. Frontiers of Chemistry in China 2010, 5 (1) , 33-44. https://doi.org/10.1007/s11458-009-0112-x
    89. Huixia Shang, Haijun Fan, Qinqin Shi, Shuo Li, Yongfang Li, Xiaowei Zhan. Solution processable D-A-D molecules based on triphenylamine for efficient organic solar cells. Solar Energy Materials and Solar Cells 2010, 94 (3) , 457-464. https://doi.org/10.1016/j.solmat.2009.11.005
    90. Jin‐Liang Wang, Chengmei Zhong, Zheng‐Ming Tang, Hongbin Wu, Yuguo Ma, Yong Cao, Jian Pei. Solution‐Processed Bulk Heterojunction Photovoltaic Cells from Gradient π‐Conjugated Thienylene Vinylene Dendrimers. Chemistry – An Asian Journal 2010, 5 (1) , 105-113. https://doi.org/10.1002/asia.200900245
    91. Hannah Bürckstümmer, Nils Michael Kronenberg, Marcel Gsänger, Matthias Stolte, Klaus Meerholz, Frank Würthner. Tailored merocyaninedyes for solution-processed BHJ solar cells. J. Mater. Chem. 2010, 20 (2) , 240-243. https://doi.org/10.1039/B916181C
    92. Alexander L. Kanibolotsky, Igor F. Perepichka, Peter J. Skabara. Star-shaped π-conjugated oligomers and their applications in organic electronics and photonics. Chemical Society Reviews 2010, 39 (7) , 2695. https://doi.org/10.1039/b918154g
    93. Jongchul Kwon, Woochul Lee, Ji-young Kim, Seunguk Noh, Changhee Lee, Jong-In Hong. Solution processable donor materials based on thiophene and triphenylamine for bulk heterojunction solar cells. New Journal of Chemistry 2010, 34 (4) , 744. https://doi.org/10.1039/b9nj00431a
    94. Juan Luis Delgado, Pierre-Antoine Bouit, Salvatore Filippone, MaÁngeles Herranz, Nazario Martín. Organic photovoltaics: a chemical approach. Chemical Communications 2010, 46 (27) , 4853. https://doi.org/10.1039/c003088k
    95. Yaowen Li, Qing Guo, Zaifang Li, Jianing Pei, Wenjing Tian. Solution processable D–A small molecules for bulk-heterojunction solar cells. Energy & Environmental Science 2010, 3 (10) , 1427. https://doi.org/10.1039/c003946b
    96. Theodulf Rousseau, Antonio Cravino, Emilie Ripaud, Philippe Leriche, Sandra Rihn, Antoinette De Nicola, Raymond Ziessel, Jean Roncali. A tailored hybrid BODIPY–oligothiophene donor for molecular bulk heterojunction solar cells with improved performances. Chemical Communications 2010, 46 (28) , 5082. https://doi.org/10.1039/c0cc01144d
    97. Bright Walker, Arnold B. Tamayo, Xuan‐Dung Dang, Peter Zalar, Jung Hwa Seo, Andres Garcia, Mananya Tantiwiwat, Thuc‐Quyen Nguyen. Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐Processed, Small‐Molecule Bulk Heterojunction Solar Cells. Advanced Functional Materials 2009, 19 (19) , 3063-3069. https://doi.org/10.1002/adfm.200900832
    98. Youjun He, Guangjin Zhao, Jie Min, Maojie Zhang, Yongfang Li. Poly(thienylene-benzothiadiazole-thienylene-vinylene): A narrow bandgap polymer with broad absorption from visible to infrared region. Polymer 2009, 50 (21) , 5055-5058. https://doi.org/10.1016/j.polymer.2009.09.004
    99. John A. Mikroyannidis, Qingfeng Dong, Bin Xu, Wenjing Tian. Synthesis, photophysics and photovoltaics of alternating vinylene-copolymer and model compound containing triphenylamine moieties along the backbone. Synthetic Metals 2009, 159 (15-16) , 1546-1551. https://doi.org/10.1016/j.synthmet.2009.04.014
    100. Amaresh Mishra, Chang‐Qi Ma, José L. Segura, Peter Bäuerle. Functional Oligothiophene‐Based Materials: Nanoarchitectures and Applications. 2009, 1-155. https://doi.org/10.1002/9780470745533.ch1
    Load all citations

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2006, 110, 15, 7702–7707
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp060128o
    Published March 24, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1366

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.