Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Internal Concentration Gradients of Guest Molecules in Nanoporous Host Materials:  Measurement and Microscopic Analysis
My Activity

Figure 1Loading Img
    Article

    Internal Concentration Gradients of Guest Molecules in Nanoporous Host Materials:  Measurement and Microscopic Analysis
    Click to copy article linkArticle link copied!

    View Author Information
    Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany, Chemical Engineering Department, University of Florida, P.O. Box 116005, Gainesville, Florida 32611-6005, Chemical & Biomedical Engineering Department, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115-2214, and Institute of Chemical Technology, Universität Stuttgart, 70550 Stuttgart, Germany
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2006, 110, 47, 23821–23828
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp065112c
    Published October 18, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Evolution of internal concentration profiles of methanol in 2-D pore structure of ferrierite crystal was measured in the pressure range of 0 to 80 mbar with the help of the recently developed interference microscopy technique. The measured profiles showed that both a surface barrier and internal diffusion controlled the kinetics of adsorption/desorption. Furthermore, they indicated that in the main part of the crystal, the z-directional 10-ring channels were not accessible to methanol and that the transport of methanol mainly occurred via 8-ring y-directional channels. The roof-like part of the crystal was almost instantaneously filled/emptied during adsorption/desorption, indicating accessible 10-ring channels in this section. The measured profiles were analyzed microscopically with the direct application of Fick's second law, and the transport diffusivity of methanol in ferrierite was determined as a function of adsorbed phase concentration. The transport diffusivity varied by more than 2 orders of magnitude over the investigated pressure range. Transport diffusivities, calculated from measured profiles from small and large pressure step changes, were all found to be consistent. Simulated concentration profiles obtained from the solution of Fick's second law with the calculated functional dependence of diffusivities on concentration compared very well with the measured concentration profiles, indicating validity and consistency of the measured data and the calculated diffusivities. The results indicate the importance of measuring the evolution of concentration profiles as this information is vital in determining (1) the direction of internal transport, (2) the presence of internal structural defects, and (3) surface/internal transport barriers. Such detailed information is available neither from common macroscopic methods since, they measure changes in macroscopic properties and use model assumptions to predict the concentration profiles inside, nor from microscopic methods, since they only provide information on average displacement of diffusing molecules.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Universität Leipzig.

    *

     Corresponding author. E-mail address:  [email protected].

     University of Florida.

    §

     Cleveland State University.

     Universität Stuttgart.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 60 publications.

    1. Lisa Joss and Ronny Pini . Digital Adsorption: 3D Imaging of Gas Adsorption Isotherms by X-ray Computed Tomography. The Journal of Physical Chemistry C 2017, 121 (48) , 26903-26915. https://doi.org/10.1021/acs.jpcc.7b09836
    2. Thomas C. Hoff, Michael J. Holmes, Juan Proano-Aviles, Laleh Emdadi, Dongxia Liu, Robert C. Brown, and Jean-Philippe Tessonnier . Decoupling the Role of External Mass Transfer and Intracrystalline Pore Diffusion on the Selectivity of HZSM-5 for the Catalytic Fast Pyrolysis of Biomass. ACS Sustainable Chemistry & Engineering 2017, 5 (10) , 8766-8776. https://doi.org/10.1021/acssuschemeng.7b01578
    3. Aldo Ledesma-Durán, S. I. Hernández, and Iván Santamaría-Holek . Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. I. Local Kinetics. The Journal of Physical Chemistry C 2017, 121 (27) , 14544-14556. https://doi.org/10.1021/acs.jpcc.7b03652
    4. Aldo Ledesma-Durán, Saúl Iván Hernández, and Iván Santamaría-Holek . Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. II. Macro-Kinetics. The Journal of Physical Chemistry C 2017, 121 (27) , 14557-14565. https://doi.org/10.1021/acs.jpcc.7b03653
    5. Christian Chmelik, Arati Varma, Lars Heinke, Dhananjai B. Shah, Jörg Kärger, Friedrich Kremer, Ursula Wilczok and Wolfgang Schmidt. Effect of Surface Modification on Uptake Rates of Isobutane in MFI Crystals: An Infrared Microscopy Study. Chemistry of Materials 2007, 19 (24) , 6012-6019. https://doi.org/10.1021/cm071632o
    6. Mario Evers, Karin Hauser, Wolfgang G. Hinze, Nele Klinkenberg, Yasar Krysiak, Daniel Mombers, Sebastian Polarz. Spatial tuning of adsorption enthalpies by exploiting spectator group effects in organosilica carbon capture materials. Journal of Materials Chemistry A 2024, 12 (19) , 11332-11343. https://doi.org/10.1039/D4TA01381F
    7. Anemar Bruno Kanj, Lars Heinke. Guest Uptake and Exchange in One‐Dimensional Channels of Metal‐Organic‐Framework Films . Chemie Ingenieur Technik 2023, 95 (11) , 1858-1864. https://doi.org/10.1002/cite.202300045
    8. Shuman Xu, Ke Zheng, Cristian-Renato Boruntea, Dang-guo Cheng, Fengqiu Chen, Guanghua Ye, Xinggui Zhou, Marc-Olivier Coppens. Surface barriers to mass transfer in nanoporous materials for catalysis and separations. Chemical Society Reviews 2023, 52 (12) , 3991-4005. https://doi.org/10.1039/D2CS00627H
    9. Christian Chmelik, Jürgen Caro, Dieter Freude, Jürgen Haase, Rustem Valiullin, Jörg Kärger. Diffusive Spreading of Molecules in Nanoporous Materials. 2023, 179-214. https://doi.org/10.1007/978-3-031-05946-9_10
    10. Jörg Kärger. Douglas M. Ruthven: In Memoriam of a Great Scholar and a Caring Friend. Chemie Ingenieur Technik 2022, 94 (6) , 813-822. https://doi.org/10.1002/cite.202200018
    11. Christian Chmelik, Roger Gläser, Jürgen Haase, Seungtaik Hwang, Jörg Kärger. Application of microimaging to diffusion studies in nanoporous materials. Adsorption 2021, 27 (5) , 819-840. https://doi.org/10.1007/s10450-020-00279-4
    12. Jörg Kärger. Jens Weitkamp – in Memoriam . Chemie Ingenieur Technik 2021, 93 (6) , 875-883. https://doi.org/10.1002/cite.202000134
    13. Roger Gläser, Jörg Kärger, Douglas M. Ruthven. Diffusion in Nanoporous Solids in the Focus of IUPAC – A Tribute to Jens Weitkamp . Chemie Ingenieur Technik 2021, 93 (6) , 893-901. https://doi.org/10.1002/cite.202100009
    14. Marc‐Olivier Coppens, Tobias Weissenberger, Qunfeng Zhang, Guanghua Ye. Nature‐Inspired, Computer‐Assisted Optimization of Hierarchically Structured Zeolites. Advanced Materials Interfaces 2021, 8 (4) https://doi.org/10.1002/admi.202001409
    15. Seungtaik Hwang, Jürgen Haase, Erich Miersemann, Jörg Kärger. Diffusion Analysis in Pore Hierarchies by the Two‐Region Model. Advanced Materials Interfaces 2021, 8 (4) https://doi.org/10.1002/admi.202000749
    16. Christian Chmelik, Jörg Kärger. Molecular transport in nanoporous materials. 2020, 169-215. https://doi.org/10.1016/B978-0-12-818487-5.00006-6
    17. Ronny Pini, Lisa Joss. See the unseen: applications of imaging techniques to study adsorption in microporous materials. Current Opinion in Chemical Engineering 2019, 24 , 37-44. https://doi.org/10.1016/j.coche.2019.01.002
    18. Guanghua Ye, Yuanyuan Sun, Zhongyuan Guo, Kake Zhu, Honglai Liu, Xinggui Zhou, Marc-Olivier Coppens. Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of n-pentane. Journal of Catalysis 2018, 360 , 152-159. https://doi.org/10.1016/j.jcat.2018.01.033
    19. Joel E. Schmidt, Frank C. Hendriks, Martin Lutz, L. Christiaan Post, Donglong Fu, Bert M. Weckhuysen. Diagnosing the Internal Architecture of Zeolite Ferrierite. ChemPhysChem 2018, 19 (4) , 367-372. https://doi.org/10.1002/cphc.201700583
    20. Christian Chmelik, Jürgen Caro, Dieter Freude, Jürgen Haase, Rustem Valiullin, Jörg Kärger. Diffusive Spreading of Molecules in Nanoporous Materials. 2018, 171-202. https://doi.org/10.1007/978-3-319-67798-9_10
    21. Lars Heinke. Diffusion and photoswitching in nanoporous thin films of metal-organic frameworks. Journal of Physics D: Applied Physics 2017, 50 (19) , 193004. https://doi.org/10.1088/1361-6463/aa65f8
    22. Aldo Ledesma-Durán, S. I. Hernández, Iván Santamaría-Holek. Relation between the porosity and tortuosity of a membrane formed by disconnected irregular pores and the spatial diffusion coefficient of the Fick-Jacobs model. Physical Review E 2017, 95 (5) https://doi.org/10.1103/PhysRevE.95.052804
    23. Jörg Kärger, Douglas M. Ruthven. Diffusion in nanoporous materials: fundamental principles, insights and challenges. New Journal of Chemistry 2016, 40 (5) , 4027-4048. https://doi.org/10.1039/C5NJ02836A
    24. Tobias Titze, Christian Chmelik, Jens Kullmann, Lutz Prager, Erich Miersemann, Roger Gläser, Dirk Enke, Jens Weitkamp, Jörg Kärger. Microimaging of Transient Concentration Profiles of Reactant and Product Molecules during Catalytic Conversion in Nanoporous Materials. Angewandte Chemie International Edition 2015, 54 (17) , 5060-5064. https://doi.org/10.1002/anie.201409482
    25. Tobias Titze, Christian Chmelik, Jens Kullmann, Lutz Prager, Erich Miersemann, Roger Gläser, Dirk Enke, Jens Weitkamp, Jörg Kärger. Microimaging transienter Konzentrationsprofile von Reaktant‐ und Produktmolekülen während einer katalytischen Umwandlung in nanoporösen Materialien. Angewandte Chemie 2015, 127 (17) , 5148-5153. https://doi.org/10.1002/ange.201409482
    26. Jörg Kärger. Transport Phenomena in Nanoporous Materials. ChemPhysChem 2015, 16 (1) , 24-51. https://doi.org/10.1002/cphc.201402340
    27. Jörg Kärger. In-depth study of surface resistances in nanoporous materials by microscopic diffusion measurement. Microporous and Mesoporous Materials 2014, 189 , 126-135. https://doi.org/10.1016/j.micromeso.2013.11.023
    28. Jörg Kärger, Tomas Binder, Christian Chmelik, Florian Hibbe, Harald Krautscheid, Rajamani Krishna, Jens Weitkamp. Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nature Materials 2014, 13 (4) , 333-343. https://doi.org/10.1038/nmat3917
    29. . Sorption Kinetics. 2012, 143-189. https://doi.org/10.1002/9783527651276.ch6
    30. . Imaging of Transient Concentration Profiles. 2012, 395-426. https://doi.org/10.1002/9783527651276.ch12
    31. . Medium‐Pore (Ten‐Ring) Zeolites. 2012, 653-728. https://doi.org/10.1002/9783527651276.ch18
    32. . Metal Organic Frameworks (MOFs). 2012, 729-767. https://doi.org/10.1002/9783527651276.ch19
    33. Laurent Gueudré, Tomas Binder, Christian Chmelik, Florian Hibbe, Douglas M. Ruthven, Jörg Kärger. Micro-Imaging by Interference Microscopy: A Case Study of Orientation-Dependent Guest Diffusion in MFI-Type Zeolite Host Crystals. Materials 2012, 5 (4) , 721-740. https://doi.org/10.3390/ma5040721
    34. Florian Hibbe, Jasper M. van Baten, Rajamani Krishna, Christian Chmelik, Jens Weitkamp, Jörg Kärger. In‐Depth Study of Mass Transfer in Nanoporous Materials by Micro‐Imaging. Chemie Ingenieur Technik 2011, 83 (12) , 2211-2218. https://doi.org/10.1002/cite.201100167
    35. F. Hibbe, V. R. R. Marthala, C. Chmelik, J. Weitkamp, J. Kärger. Micro-imaging of transient guest profiles in nanochannels. The Journal of Chemical Physics 2011, 135 (18) https://doi.org/10.1063/1.3652715
    36. John H. Petropoulos, Merope Sanopoulou, Kyriaki G. Papadokostaki. Physically insightful modeling of non-Fickian kinetic regimes encountered in fundamental studies of isothermal sorption of swelling agents in polymeric media. European Polymer Journal 2011, 47 (11) , 2053-2062. https://doi.org/10.1016/j.eurpolymj.2011.07.019
    37. Christian Chmelik, Jörg Kärger. Unprecedented Wealth of Information on Guest Dynamics in Nanoporous Materials from Transient Concentration Profiles. Defect and Diffusion Forum 2011, 309-310 , 177-194. https://doi.org/10.4028/www.scientific.net/DDF.309-310.177
    38. Lars Heinke, Jörg Kärger. Correlating Surface Permeability with Intracrystalline Diffusivity in Nanoporous Solids. Physical Review Letters 2011, 106 (7) https://doi.org/10.1103/PhysRevLett.106.074501
    39. Christian Chmelik, Jörg Kärger. Imaging of transient guest profiles in nanoporous host materials: a new experimental technique to study intra-crystalline diffusion. Adsorption 2010, 16 (6) , 515-523. https://doi.org/10.1007/s10450-010-9264-8
    40. Eli Stavitski, Andrew M. Beale, Bert M. Weckhuysen. Catalyst Characterization—Heterogeneous. 2010https://doi.org/10.1002/0471227617.eoc044.pub2
    41. Douglas M. Ruthven, Lars Heinke, Jörg Kärger. Sorption kinetics for surface resistance controlled systems. Microporous and Mesoporous Materials 2010, 132 (1-2) , 94-102. https://doi.org/10.1016/j.micromeso.2010.02.003
    42. J. Kärger, C. Chmelik, L. Heinke, R. Valiullin. A new view of diffusion in nanoporous materials. Chemie Ingenieur Technik 2010, 82 (6) , 779-804. https://doi.org/10.1002/cite.201000038
    43. Johan van den Bergh, Jorge Gascon, Freek Kapteijn. Diffusion in Zeolites – Impact on Catalysis. 2010, 361-387. https://doi.org/10.1002/9783527630295.ch13
    44. Christian Chmelik, Jörg Kärger. In situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chemical Society Reviews 2010, 39 (12) , 4864. https://doi.org/10.1039/c0cs00100g
    45. J. Kärger, J. Caro, P. Cool, M.‐O. Coppens, D. Jones, F. Kapteijn, F. Rodríguez‐Reinoso, M. Stöcker, D. Theodorou, E. F. Vansant, J. Weitkamp. Benefit of Microscopic Diffusion Measurement for the Characterization of Nanoporous Materials. Chemical Engineering & Technology 2009, 32 (10) , 1494-1511. https://doi.org/10.1002/ceat.200900160
    46. Despina Tzoulaki, Lars Heinke, Hyuna Lim, Jing Li, David Olson, Jürgen Caro, Rajamani Krishna, Christian Chmelik, Jörg Kärger. Assessing Surface Permeabilities from Transient Guest Profiles in Nanoporous Host Materials. Angewandte Chemie International Edition 2009, 48 (19) , 3525-3528. https://doi.org/10.1002/anie.200804785
    47. Despina Tzoulaki, Lars Heinke, Hyuna Lim, Jing Li, David Olson, Jürgen Caro, Rajamani Krishna, Christian Chmelik, Jörg Kärger. Bestimmung von Oberflächenpermeabilitäten aus transienten Konzentrationsprofilen in nanoporösen Materialien. Angewandte Chemie 2009, 121 (19) , 3577-3580. https://doi.org/10.1002/ange.200804785
    48. L. Heinke, J. Kärger. Discriminating the molecular pathways during uptake and release on nanoporous host systems. The Journal of Chemical Physics 2009, 130 (4) https://doi.org/10.1063/1.3063657
    49. Robert A. Schoonheydt. Zeolithkristalle: Morphologie und Katalyse. Angewandte Chemie 2008, 120 (48) , 9328-9331. https://doi.org/10.1002/ange.200801327
    50. Robert A. Schoonheydt. Morphology of and Catalysis in Single Crystals of Zeolites. Angewandte Chemie International Edition 2008, 47 (48) , 9188-9191. https://doi.org/10.1002/anie.200801327
    51. Lars Heinke, Jörg Kärger. Assessing one-dimensional diffusion in nanoporous materials from transient concentration profiles. New Journal of Physics 2008, 10 (2) , 023035. https://doi.org/10.1088/1367-2630/10/2/023035
    52. L. Heinke, C. Chmelik, J. Kärger. Determining the transport diffusivity from intra-crystalline concentration profiles. 2008, 607-610. https://doi.org/10.1016/S0167-2991(08)80273-X
    53. L. Heinke, P. Kortunov, D. Tzoulaki, M. Castro, P. A. Wright, J. Kärger. Three-dimensional diffusion in nanoporous host-guest materials monitored by interference microscopy. EPL (Europhysics Letters) 2008, 81 (2) , 26002. https://doi.org/10.1209/0295-5075/81/26002
    54. L. Heinke, P. Kortunov, D. Tzoulaki, J. Kärger. The options of interference microscopy to explore the significance of intracrystalline diffusion and surface permeation for overall mass transfer on nanoporous materials. Adsorption 2007, 13 (3-4) , 215-223. https://doi.org/10.1007/s10450-007-9048-y
    55. L. Heinke, P. Kortunov, D. Tzoulaki, J. Kärger. Exchange Dynamics at the Interface of Nanoporous Materials with their Surroundings. Physical Review Letters 2007, 99 (22) https://doi.org/10.1103/PhysRevLett.99.228301
    56. L. Heinke, C. Chmelik, P. Kortunov, D.B. Shah, S. Brandani, D.M. Ruthven, J. Kärger. Analysis of thermal effects in infrared and interference microscopy: n-Butane-5A and methanol–ferrierite systems. Microporous and Mesoporous Materials 2007, 104 (1-3) , 18-25. https://doi.org/10.1016/j.micromeso.2006.11.017
    57. Pavel Kortunov, Lars Heinke, Jörg Kärger. Assessing Guest Diffusion in Nanoporous Materials by Boltzmann's Integration Method. Chemistry of Materials 2007, 19 (16) , 3917-3923. https://doi.org/10.1021/cm070404r
    58. L. Heinke, C. Chmelik, P. Kortunov, D. M. Ruthven, D. B. Shah, S. Vasenkov, J. Kärger. Application of Interference Microscopy and IR Microscopy for Characterizing and Investigating Mass Transport in Nanoporous Materials. Chemical Engineering & Technology 2007, 30 (8) , 995-1002. https://doi.org/10.1002/ceat.200700093
    59. L. Heinke, C. Chmelik, P. Kortunov, S. Vasenkov, D. M. Ruthven, D. B. Shah, J. Kärger. Anwendung von Interferenz‐ und IR‐Mikroskopie zur Charakterisierung und Untersuchung des Stofftransportes in nanoporösen Materialien. Chemie Ingenieur Technik 2007, 79 (8) , 1195-1203. https://doi.org/10.1002/cite.200700040
    60. Hellmut G. Karge, Jörg Kärger. Application of IR Spectroscopy, IR Microscopy, and Optical Interference Microscopy to Diffusion in Zeolites. , 135-206. https://doi.org/10.1007/3829_2008_020

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2006, 110, 47, 23821–23828
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp065112c
    Published October 18, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    357

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.