ACS Publications. Most Trusted. Most Cited. Most Read
First-Principles Calculation of Electron Spin-Rotation Tensors
My Activity

Figure 1Loading Img
    Article

    First-Principles Calculation of Electron Spin-Rotation Tensors
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratory of Molecular Spectroscopy, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary, Laboratory of Theoretical Chemistry, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary, and Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
    * To whom correspondence should be addressed. E-mail: [email protected]
    †Laboratory of Molecular Spectroscopy, Eötvös University.
    ‡Laboratory of Theoretical Chemistry, Eötvös University.
    ¶Universität Mainz.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2010, 114, 34, 9246–9252
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp103789x
    Published August 5, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Using Curl’s Hamiltonian (Curl, R. F. Mol. Phys.1965, 9, 585) first-principles calculations at the Hartree−Fock and various coupled-cluster (CC) levels based on a perturbative scheme are reported. The effects of basis-set dependence and electron correlation have been investigated by performing benchmark calculations for a set of radicals comprising 12 species and 14 electronic states. In comparison to experimental results, the electron spin-rotation tensor is obtained with a 10−15% accuracy when using the CC singles and doubles approximation and a triple-ζ quality basis set. Some improvements are seen when triple excitations are considered via the CC singles, doubles, and triples model.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Supporting Information includes the geometries used in the calculations and e-SR tensor elements at all levels of theory discussed in the paper. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 25 publications.

    1. P. Bryan Changala, Michael C. McCarthy. Rotational Spectrum of the Phenoxy Radical. The Journal of Physical Chemistry Letters 2024, 15 (19) , 5063-5069. https://doi.org/10.1021/acs.jpclett.4c00962
    2. Kelly S. Meyer, John H. Westerfield, Sommer L. Johansen, Jasmine Keane, Anna C. Wannenmacher, Kyle N. Crabtree. Rotational and Vibrational Spectra of the Pyridyl Radicals: A Coupled-Cluster Study. The Journal of Physical Chemistry A 2022, 126 (20) , 3185-3197. https://doi.org/10.1021/acs.jpca.2c01761
    3. Jinjun Liu, Ming-Wei Chen, Terry A. Miller. Laser-Induced Fluorescence Spectroscopy of Large Secondary Alkoxy Radicals: Part II. Rotational and Fine Structure. The Journal of Physical Chemistry A 2021, 125 (7) , 1402-1412. https://doi.org/10.1021/acs.jpca.0c10663
    4. Sommer L. Johansen, Zhongxing Xu, J. H. Westerfield, Anna C. Wannenmacher, Kyle N. Crabtree. Coupled Cluster Characterization of 1-, 2-, and 3-Pyrrolyl: Parameters for Vibrational and Rotational Spectroscopy. The Journal of Physical Chemistry A 2021, 125 (5) , 1257-1268. https://doi.org/10.1021/acs.jpca.0c09833
    5. Silvia Alessandrini, Jürgen Gauss, Cristina Puzzarini. Accuracy of Rotational Parameters Predicted by High-Level Quantum-Chemical Calculations: Case Study of Sulfur-Containing Molecules of Astrochemical Interest. Journal of Chemical Theory and Computation 2018, 14 (10) , 5360-5371. https://doi.org/10.1021/acs.jctc.8b00695
    6. Chamara Abeysekera, A.O. Hernandez-Castillo, John F. Stanton, Timothy S. Zwier. Broadband Microwave Spectroscopy of 2-Furanyloxy Radical: Primary Pyrolysis Product of the Second-Generation Biofuel 2-Methoxyfuran. The Journal of Physical Chemistry A 2018, 122 (34) , 6879-6885. https://doi.org/10.1021/acs.jpca.8b05102
    7. Chaja Baruch, P. Bryan Changala, Yuval Shagam, Yotam Soreq. Constraining P and T violating forces with chiral molecules. Physical Review Research 2024, 6 (4) https://doi.org/10.1103/PhysRevResearch.6.043115
    8. Matthew D. Frye, Jeremy M. Hutson. Long-range states and Feshbach resonances in collisions between ultracold alkali-metal diatomic molecules and atoms. Physical Review Research 2023, 5 (2) https://doi.org/10.1103/PhysRevResearch.5.023001
    9. Filip Rivic, Andreas Lehr, Thomas M. Fuchs, Rolf Schäfer. Joint electric and magnetic beam deflection experiments and quantum chemical studies of MSn 12 clusters (M = Al, Ga, In): on the interplay of geometric structure and magnetic properties in nanoalloys. Faraday Discussions 2023, 242 , 231-251. https://doi.org/10.1039/D2FD00091A
    10. Yue Yu, Xiaoliang Zhang, Sam Dillon, Jia Chen, Yiyuan Chen, Hai-Ping Cheng, Xiao-Guang Zhang. Ampere field fluctuation from acoustic phonons as a possible source of spin decoherence. Journal of Physics and Chemistry of Solids 2022, 171 , 111000. https://doi.org/10.1016/j.jpcs.2022.111000
    11. Luca Bizzocchi, Silvia Alessandrini, Mattia Melosso, Víctor M. Rivilla, Cristina Puzzarini. Ab Initio Study of Fine and Hyperfine Interactions in Triplet POH. Molecules 2022, 27 (1) , 302. https://doi.org/10.3390/molecules27010302
    12. C. M. R. Rocha, H. Linnartz. High-level ab initio quartic force fields and spectroscopic characterization of C 2 N −. Physical Chemistry Chemical Physics 2021, 23 (46) , 26227-26240. https://doi.org/10.1039/D1CP03505C
    13. Ketan Sharma, Terry A. Miller, John F. Stanton. Vibronically coupled states: computational considerations and characterisation of vibronic and rovibronic spectroscopic parameters. International Reviews in Physical Chemistry 2021, 40 (2) , 165-298. https://doi.org/10.1080/0144235X.2021.1874118
    14. Yi Yan, Ketan Sharma, Terry A. Miller, Jinjun Liu. Rotational and fine structure of open-shell molecules in nearly degenerate electronic states. II. Interpretation of experimentally determined interstate coupling parameters of alkoxy radicals. The Journal of Chemical Physics 2020, 153 (17) https://doi.org/10.1063/5.0026212
    15. Cristina Puzzarini, Zoi Salta, Nicola Tasinato, Jacopo Lupi, Carlo Cavallotti, Vincenzo Barone. A twist on the reaction of the CN radical with methylamine in the interstellar medium: new hints from a state-of-the-art quantum-chemical study. Monthly Notices of the Royal Astronomical Society 2020, 496 (4) , 4298-4310. https://doi.org/10.1093/mnras/staa1652
    16. Oskar Asvany, Charles R. Markus, Thomas Salomon, Philipp C. Schmid, Shreyak Banhatti, Sandra Brünken, Filippo Lipparini, Jürgen Gauss, Stephan Schlemmer. High-resolution rovibrational spectroscopy of c- C 3 H 2 + : The ν 7 C–H antisymmetric stretching band. Journal of Molecular Structure 2020, 1214 , 128023. https://doi.org/10.1016/j.molstruc.2020.128023
    17. Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Guo, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. McClain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximilian Scheurer, Henry F. Schurkus, James E. T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu. Sokolov, Garnet Kin-Lic Chan. Recent developments in the P y SCF program package. The Journal of Chemical Physics 2020, 153 (2) https://doi.org/10.1063/5.0006074
    18. Devin A. Matthews, Lan Cheng, Michael E. Harding, Filippo Lipparini, Stella Stopkowicz, Thomas-C. Jagau, Péter G. Szalay, Jürgen Gauss, John F. Stanton. Coupled-cluster techniques for computational chemistry: The CFOUR program package. The Journal of Chemical Physics 2020, 152 (21) https://doi.org/10.1063/5.0004837
    19. Gabriele Cazzoli, Valerio Lattanzi, Till Kirsch, Jürgen Gauss, Belén Tercero, José Cernicharo, Cristina Puzzarini. Laboratory measurements and astronomical search for the HSO radical. Astronomy & Astrophysics 2016, 591 , A126. https://doi.org/10.1051/0004-6361/201628745
    20. Gabriele Cazzoli, Till Kirsch, Jürgen Gauss, Cristina Puzzarini. The rotational spectrum of 17O2 up to the THz region. Journal of Quantitative Spectroscopy and Radiative Transfer 2016, 168 , 10-16. https://doi.org/10.1016/j.jqsrt.2015.08.011
    21. Phillip S. Peters, Denis Duflot, Laurent Wiesenfeld, Céline Toubin. The H + CO ⇌ HCO reaction studied by ab initio benchmark calculations. The Journal of Chemical Physics 2013, 139 (16) https://doi.org/10.1063/1.4826171
    22. A. Collauto, A. Barbon, M. Zerbetto, M. Brustolon. An advanced approach to the evaluation of the spin-rotational term for a nitronyl nitroxide in fluid solution. Molecular Physics 2013, 111 (18-19) , 2933-2941. https://doi.org/10.1080/00268976.2013.798695
    23. Jinjun Liu, Dmitry Melnik, Terry A. Miller. Rotationally resolved ${\tilde{B}} \leftarrow {\tilde{X}}$B̃←X̃ electronic spectra of the isopropoxy radical: A comparative study. The Journal of Chemical Physics 2013, 139 (9) https://doi.org/10.1063/1.4819343
    24. Vincenzo Barone, Malgorzata Biczysko, Julien Bloino, Franco Egidi, Cristina Puzzarini. Accurate structure, thermodynamics, and spectroscopy of medium-sized radicals by hybrid coupled cluster/density functional theory approaches: The case of phenyl radical. The Journal of Chemical Physics 2013, 138 (23) https://doi.org/10.1063/1.4810863
    25. Cristina Puzzarini, Vincenzo Barone. Toward spectroscopic accuracy for open-shell systems: Molecular structure and hyperfine coupling constants of H2CN, H2CP, NH2, and PH2 as test cases. The Journal of Chemical Physics 2010, 133 (18) https://doi.org/10.1063/1.3503763

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2010, 114, 34, 9246–9252
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp103789x
    Published August 5, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    818

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.