ACS Publications. Most Trusted. Most Cited. Most Read
Band Gap Narrowing versus Formation of Electronic States in the Gap in N−TiO2 Thin Films
My Activity

Figure 1Loading Img
    Article

    Band Gap Narrowing versus Formation of Electronic States in the Gap in N−TiO2 Thin Films
    Click to copy article linkArticle link copied!

    View Author Information
    Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla), Avenida Américo Vespucio 49, 41092 Sevilla, Spain, Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Avenida Reina Mercedes 49, 41012 Sevilla, Spain, and Department of Physical, Chemical and Natural Sciences, Universidad Pablo de Olavide, Carretera de Utrera, km 1, Sevilla, Spain
    * To whom correspondence should be addressed. E-mail: [email protected]
    †CSIC-Universidad de Sevilla.
    ‡Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla.
    §Universidad Pablo de Olavide.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2010, 114, 51, 22546–22557
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp104634j
    Published December 2, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    N-containing TiO2 thin films with different amounts of nitrogen have been prepared by plasma enhanced chemical vapor deposition (PECVD) by using different titanium precursors without (titanium isopropoxide, TTIP) and with (tetrakis diethylamino titanium, TDEAT and tetrakis dimethylamino titanium, TDMAT) nitrogen in their structures and different N2/O2 ratios as plasma gas. For low/high content of nitrogen, Ti−NO- and/or Ti−N-like species have been detected in the films by X-ray photoelectron spectroscopy (XPS). Their optical behavior is characterized by a red shift of their absorption edge when Ti−N species are a majority, and by an unmodified edge with localized absorption states in the gap when only Ti−NO-like species are present in the film. The experimental results have been interpreted by calculating the density of states of model systems consisting of a 2 × 2 × 3 repetition of the anatase unit cell. This basic structure incorporates nitrogen defects in either substitutional or interstitial lattice positions that are considered equivalent to the Ti−N- and Ti−NO-like species detected by XPS. To simulate the effect of, respectively, a low or a high concentration of nitrogen, calculations have been carried out by placing two nitrogen defects either in separated or in nearby positions of the anatase structure. The computational analysis reveals that the defects have different stabilization energies and confirm that an edge shift of the valence band is induced by the substitutional nitrogen centers, as observed when a high concentration of Ti−N species becomes incorporated into the films. In agreement with the experimental results, when only Ti-NO like species are detected by XPS, no band gap narrowing is obtained by the calculations that predict the appearance of localized electronic states in the gap. The fact that only these latter films present water wetting angle photoactivity when irradiated with visible light supports that the presence of Ti−NO-like species is a required condition for visible light photoactivity.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional information referred to in the text as S1−S8. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 37 publications.

    1. Qianqian Chen, Alp Ozkan, Basab Chattopadhyay, Kitty Baert, Claude Poleunis, Alisson Tromont, Rony Snyders, Arnaud Delcorte, Herman Terryn, Marie-Paule Delplancke-Ogletree, Yves H. Geerts, François Reniers. N-Doped TiO2 Photocatalyst Coatings Synthesized by a Cold Atmospheric Plasma. Langmuir 2019, 35 (22) , 7161-7168. https://doi.org/10.1021/acs.langmuir.9b00784
    2. Yunjie Yin, Ning Guo, Chaoxia Wang, and Qingqing Rao . Alterable Superhydrophobic–Superhydrophilic Wettability of Fabric Substrates Decorated with Ion–TiO2 Coating via Ultraviolet Radiation. Industrial & Engineering Chemistry Research 2014, 53 (37) , 14322-14328. https://doi.org/10.1021/ie502338y
    3. Hyeok Jee, You-Jeong Jung, Ji-Won Jang, Seung-Jae Lee, Hye-Won Seo. Unraveling discrepancies in plasma-assisted growth of nitrogen-doped titanium dioxide thin film: Insights from plasma energetics. Ceramics International 2025, 51 (3) , 3075-3085. https://doi.org/10.1016/j.ceramint.2024.11.283
    4. , Y. Zhang, Z. Ju, , C. Yao, , L. Liu, , X. Zhang, , J. Xing, , L. Cheng, . The synthesis, characterization, and thermal properties of a titanium (III) amidinate compound and its potential as a single chemical vapor deposition precursor for N/C-doped TiO2 film. Digest Journal of Nanomaterials and Biostructures 2024, 19 (4) , 1459-1469. https://doi.org/10.15251/DJNB.2024.194.1459
    5. Shixuan Wang, Juan Gao, Yanfen Wang, Haowen Lu, Sen Yang, Lingcheng Zheng, Yang Li, Gang He. Solar-powered detection of organic dyes using nitrogen-doped N-TiO2/Ag2O nanorod arrays. Microchimica Acta 2024, 191 (6) https://doi.org/10.1007/s00604-024-06429-7
    6. Kim-Hue T. Dinh, Phi Huu Bui, Nhat-Le Bui Dang, Thanh-Lieu T. Le, Hoang Nhat Hieu, Viet Huong Nguyen, Ngoc Linh Nguyen, Loan Le Thi Ngoc, Hao Van Bui. Fabrication of N-doped TiO2 and TiN nanorods by NH3 treatment: Evolution of morphology, structures, composition and optical properties. Ceramics International 2024, 50 (7) , 10241-10251. https://doi.org/10.1016/j.ceramint.2023.12.334
    7. Xinyi Zhang, Jingxia Yang, Jinjie Wang. Enhanced Cr(VI) Photocatalysis Reduction by Layered N‐doped TiO 2 Sheets from Template Free Solvothermal Method. ChemCatChem 2023, 15 (22) https://doi.org/10.1002/cctc.202301007
    8. Xinyue Cao, Yijiang Chen, Jianglong Tang, Huimin Zhang, Xiaoning Tang. Mechanistic study of nitrogen-modified titanium dioxide nanoparticles for enhancing the degradation of organic dyes and antibacterial properties under visible-light irradiation. Materials Today Communications 2023, 35 , 106166. https://doi.org/10.1016/j.mtcomm.2023.106166
    9. M.-B. Bouzourâa, A. En Naciri, Y. Battie, S. Dalmasso, S. Diliberto, A. Bouché, N. Chaoui. Correlation between optical and structural properties of nitrogen doped anatase TiO2 thin films. Optical Materials 2022, 133 , 112919. https://doi.org/10.1016/j.optmat.2022.112919
    10. Luz I. Ibarra-Rodriguez, Juan C. Pantoja-Espinoza, Edith Luévano-Hipólito, Luis F. Garay-Rodríguez, Alejandro López-Ortiz, Leticia M. Torres-Martínez, Virginia H. Collins-Martínez. Formic acid and hydrogen generation from the photocatalytic reduction of CO2 on visible light activated N-TiO2/CeO2/CuO composites. Journal of Photochemistry and Photobiology 2022, 11 , 100125. https://doi.org/10.1016/j.jpap.2022.100125
    11. Chad A. Beaudette, Qiaomiao Tu, Mohammad Ali Eslamisaray, Uwe R. Kortshagen. Plasma-Synthesized Nitrogen-Doped Titanium Dioxide Nanoparticles With Tunable Visible Light Absorption and Photocatalytic Activity. ASME Open Journal of Engineering 2022, 1 https://doi.org/10.1115/1.4053338
    12. Dejan Pjević, Tatjana Savić, Suzana Petrović, Davor Peruško, Mirjana Čomor, Janez Kovač. Influence of Nitrogen Incorporation Sites on Structural and Optical Properties of Sputtered TiO 2 -N Thin Films with Improved Visible Light Activity. ECS Journal of Solid State Science and Technology 2021, 10 (5) , 053002. https://doi.org/10.1149/2162-8777/abffb2
    13. Qi Wang, Hanna He, Jingyi Luan, Yougen Tang, Dan Huang, Zhiguang Peng, Haiyan Wang. Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochimica Acta 2019, 309 , 242-252. https://doi.org/10.1016/j.electacta.2019.04.051
    14. M.-B. Bouzourâa, Y. Battie, A. En Naciri, F. Araiedh, F. Ducos, N. Chaoui. N 2 + ion bombardment effect on the band gap of anatase TiO2 ultrathin films. Optical Materials 2019, 88 , 282-288. https://doi.org/10.1016/j.optmat.2018.11.045
    15. Madhavi V., Kondaiah P., Mohan Rao G.. Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis. Applied Surface Science 2018, 436 , 708-719. https://doi.org/10.1016/j.apsusc.2017.11.279
    16. Joseba Esparza, Gonzalo García Fuentes, Rebeca Bueno, Rafael Rodríguez, José Antonio García, Ana Isabel Vitas, Victor Rico, Agustín R. Gonzalez-Elipe. Antibacterial response of titanium oxide coatings doped by nitrogen plasma immersion ion implantation. Surface and Coatings Technology 2017, 314 , 67-71. https://doi.org/10.1016/j.surfcoat.2016.11.002
    17. Le Thao, Trinh Dang, Wilawan Khanitchaidecha, Duangdao Channei, Auppatham Nakaruk. Photocatalytic Degradation of Organic Dye under UV‐A Irradiation Using TiO2‐Vetiver Multifunctional Nano Particles. Materials 2017, 10 (2) , 122. https://doi.org/10.3390/ma10020122
    18. Jinhuan Lin, Dingtao Ma, Yongliang Li, Peixin Zhang, Hongwei Mi, Libo Deng, Lingna Sun, Xiangzhong Ren. In situ nitrogen doping of TiO 2 by plasma enhanced atomic layer deposition for enhanced sodium storage performance. Dalton Trans. 2017, 46 (38) , 13101-13107. https://doi.org/10.1039/C7DT03303F
    19. Qian Fang, Jianting Tang, Huamei Zou, Tiejun Cai, Qian Deng. Preparation of N-Doped Mesoporous TiO 2 Using Nitromethane as Nitrogen Source and Their High Photocatalytic Performance. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2016, 46 (5) , 766-774. https://doi.org/10.1080/15533174.2014.989590
    20. Sunfeng Li, Xing Wang, Qinqin He, Qi Chen, Yanli Xu, Hanbiao Yang, Mengmeng Lü, Fengyu Wei, Xueting Liu. Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes. Chinese Journal of Catalysis 2016, 37 (3) , 367-377. https://doi.org/10.1016/S1872-2067(15)61033-6
    21. Amine Achour, Raul Lucio Porto, Mohamed-Akram Soussou, Mohammad Islam, Mohammed Boujtita, Kaltouma Ait Aissa, Laurent Le Brizoual, Abdou Djouadi, Thierry Brousse. Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. Journal of Power Sources 2015, 300 , 525-532. https://doi.org/10.1016/j.jpowsour.2015.09.012
    22. Yi Zhang, Mariadriana Creatore, Quan-Bao Ma, Aishah El Boukili, Lu Gao, Marcel A. Verheijen, M.W.G.M. (Tiny) Verhoeven, Emiel. J.M. Hensen. Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition. Applied Surface Science 2015, 330 , 476-486. https://doi.org/10.1016/j.apsusc.2014.12.197
    23. H. Fakhouri, F. Arefi-Khonsari, A.K. Jaiswal, J. Pulpytel. Enhanced visible light photoactivity and charge separation in TiO2/TiN bilayer thin films. Applied Catalysis A: General 2015, 492 , 83-92. https://doi.org/10.1016/j.apcata.2014.12.030
    24. Sunfeng Li, Xing Wang, Qi Chen, Qinqin He, Mengmeng Lv, Xueting Liu, Jianping Lv, Fengyu Wei. Synthesis and photocatalytic activity of N-K 2 Ti 4 O 9 /UiO-66 composites. RSC Advances 2015, 5 (66) , 53198-53206. https://doi.org/10.1039/C5RA05477J
    25. Francesca Spadavecchia, Michele Ceotto, Leonardo Lo Presti, Chiara Aieta, Iolanda Biraghi, Daniela Meroni, Silvia Ardizzone, Giuseppe Cappelletti. Second Generation Nitrogen Doped Titania Nanoparticles: A Comprehensive Electronic and Microstructural Picture. Chinese Journal of Chemistry 2014, 32 (12) , 1195-1213. https://doi.org/10.1002/cjoc.201400502
    26. Houssam Fakhouri, Jerome Pulpytel, Wilson Smith, Alireza Zolfaghari, Hamid Reza Mortaheb, Fateme Meshkini, Reza Jafari, Eliane Sutter, Farzaneh Arefi-Khonsari. Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering. Applied Catalysis B: Environmental 2014, 144 , 12-21. https://doi.org/10.1016/j.apcatb.2013.06.028
    27. Jian Zhu, Fujian Lv, Shengxiong Xiao, Zhenfeng Bian, Gerd Buntkowsky, Colin Nuckolls, Hexing Li. Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF 2. Nanoscale 2014, 6 (24) , 14648-14651. https://doi.org/10.1039/C4NR05598E
    28. Manuel Macias‐Montero, A. Nicolas Filippin, Zineb Saghi, Francisco J. Aparicio, Angel Barranco, Juan P. Espinos, Fabian Frutos, Agustin R. Gonzalez‐Elipe, Ana Borras. Vertically Aligned Hybrid Core/Shell Semiconductor Nanowires for Photonics Applications. Advanced Functional Materials 2013, 23 (48) , 5981-5989. https://doi.org/10.1002/adfm.201301120
    29. Pablo Romero-Gomez, Carmen Lopez-Santos, Ana Borras, Juan Pedro Espinos, Alberto Palmero, Agustin R. Gonzalez-Elipe. Enhancement of visible light-induced surface photo-activity of nanostructured N–TiO2 thin films modified by ion implantation. Chemical Physics Letters 2013, 582 , 95-99. https://doi.org/10.1016/j.cplett.2013.07.025
    30. Biswajit Mishra, Deepa Khushalani. Nanomaterial‐Based Photocatalysts. 2013, 469-493. https://doi.org/10.1002/9781118609811.ch13
    31. Antonia Terriza, Aránzazu Díaz‐Cuenca, Francisco Yubero, Angel Barranco, Agustín R. González‐Elipe, Juan Luis Gonzalez Caballero, José Vilches, Mercedes Salido. Light induced hydrophilicity and osteoblast adhesion promotion on amorphous TiO 2. Journal of Biomedical Materials Research Part A 2013, 101A (4) , 1026-1035. https://doi.org/10.1002/jbm.a.34405
    32. Sun Ja Kim, Ke Xu, Harish Parala, Radim Beranek, Michal Bledowski, Kirill Sliozberg, Hans‐Werner Becker, Detlef Rogalla, Davide Barreca, Chiara Maccato, Cinzia Sada, Wolfgang Schuhmann, Roland A. Fischer, Anjana Devi. Intrinsic Nitrogen‐doped CVD‐grown TiO 2 Thin Films from All‐N‐coordinated Ti Precursors for Photoelectrochemical Applications. Chemical Vapor Deposition 2013, 19 (1-3) , 45-52. https://doi.org/10.1002/cvde.201206996
    33. Caihua Zhou, Xiang Zhao. Effects of interfacial structure and polarity on charge transfer between carbonaceous nanomaterials and rutile (110) surface. Computational Materials Science 2013, 69 , 180-185. https://doi.org/10.1016/j.commatsci.2012.11.046
    34. R. Gago, A. Redondo-Cubero, M. Vinnichenko, J. Lehmann, F. Munnik, F.J. Palomares. Spectroscopic evidence of NOx formation and band-gap narrowing in N-doped TiO2 films grown by pulsed magnetron sputtering. Materials Chemistry and Physics 2012, 136 (2-3) , 729-736. https://doi.org/10.1016/j.matchemphys.2012.07.049
    35. Manuel Macias-Montero, Ana Borras, Zineb Saghi, Pablo Romero-Gomez, Juan R. Sanchez-Valencia, Juan C. Gonzalez, Angel Barranco, Paul Midgley, Jose Cotrino, Agustin R. Gonzalez-Elipe. Superhydrophobic supported Ag-NPs@ZnO-nanorods with photoactivity in the visible range. J. Mater. Chem. 2012, 22 (4) , 1341-1346. https://doi.org/10.1039/C1JM13512K
    36. Jianmin Shi, Doh-Kwon Lee, Han-Ill Yoo, Jürgen Janek, Klaus-Dieter Becker. Oxidation kinetics of nitrogen doped TiO2−δ thin films. Physical Chemistry Chemical Physics 2012, 14 (37) , 12930. https://doi.org/10.1039/c2cp42559a
    37. Gyula Halasi, Imre Ugrai, Frigyes Solymosi. Photocatalytic decomposition of ethanol on TiO2 modified by N and promoted by metals. Journal of Catalysis 2011, 281 (2) , 309-317. https://doi.org/10.1016/j.jcat.2011.05.016

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2010, 114, 51, 22546–22557
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp104634j
    Published December 2, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    1230

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.