ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Time-Domain SFG Spectroscopy Using Mid-IR Pulse Shaping: Practical and Intrinsic Advantages

View Author Information
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
Cite this: J. Phys. Chem. B 2011, 115, 11, 2536–2546
Publication Date (Web):March 2, 2011
https://doi.org/10.1021/jp200757x
Copyright © 2011 American Chemical Society

    Article Views

    3187

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 100 publications.

    1. Amin Yousefi, Dennis K. Hore. Using Structural Information to Fit Vibrational Sum Frequency Spectra. The Journal of Physical Chemistry C 2024, 128 (17) , 7252-7265. https://doi.org/10.1021/acs.jpcc.3c08498
    2. Zhi-Chao Huang-Fu, Yuqin Qian, Gang-Hua Deng, Tong Zhang, Sydney Schmidt, Jesse Brown, Yi Rao. Development of Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG) for Vibronic and Solvent Couplings of Molecules at Interfaces and Surfaces. ACS Physical Chemistry Au 2023, 3 (4) , 374-385. https://doi.org/10.1021/acsphyschemau.3c00011
    3. Naoki Nagatsuka, Shota Kamibashira, Noboru Shibata, Takanori Koitaya, Kazuya Watanabe. Hydroxyl Formation on Pt(553). The Journal of Physical Chemistry C 2023, 127 (17) , 8104-8112. https://doi.org/10.1021/acs.jpcc.3c02010
    4. Naoki Nagatsuka, Noboru Shibata, Toya Muratani, Kazuya Watanabe. Proton Configuration in Water Chain on Pt(533). The Journal of Physical Chemistry Letters 2022, 13 (33) , 7660-7666. https://doi.org/10.1021/acs.jpclett.2c01378
    5. Vasileios Balos, Tobias Garling, Alvaro Diaz Duque, Ben John, Martin Wolf, Martin Thämer. Phase-Sensitive Vibrational Sum and Difference Frequency-Generation Spectroscopy Enabling Nanometer-Depth Profiling at Interfaces. The Journal of Physical Chemistry C 2022, 126 (26) , 10818-10832. https://doi.org/10.1021/acs.jpcc.2c01324
    6. SubirMahamudAssociate Professor of ChemistryRaoYiAssistant Professor, Analytical/Physical ChemistryFranz M. Geiger, Northwestern University, Aleia Bellcross, PhD candidate at Northwestern University. Environmental Interfacial Spectroscopy. 2022https://doi.org/10.1021/acsinfocus.7e5016
    7. Haoyuan Wang, Wei Xiong. Revealing the Molecular Physics of Lattice Self-Assembly by Vibrational Hyperspectral Imaging. Langmuir 2022, 38 (10) , 3017-3031. https://doi.org/10.1021/acs.langmuir.1c03313
    8. Tong Zhang, Zhi-Chao Huangfu, Yuqin Qian, Zhou Lu, Hong Gao, Yi Rao. Spectral Phase Measurements of Heterodyne Detection in Interfacial Broadband Electronic Spectroscopy. The Journal of Physical Chemistry C 2022, 126 (5) , 2823-2832. https://doi.org/10.1021/acs.jpcc.1c09692
    9. Verena Pramhaas Günther Rupprechter . Sum Frequency Generation in Ambient Environments: Vibrational Spectroscopy at Solid/Gas and Solid/Liquid Interfaces. , 119-145. https://doi.org/10.1021/bk-2021-1396.ch006
    10. Taegon Lee, Juntaek Oh, Sanghee Nah, Dae Sik Choi, Hanju Rhee, Minhaeng Cho. Time-Variable Chiroptical Vibrational Sum-Frequency Generation Spectroscopy of Chiral Chemical Solution. The Journal of Physical Chemistry Letters 2021, 12 (41) , 10218-10224. https://doi.org/10.1021/acs.jpclett.1c02479
    11. Jennifer C. Flanagan, Mason L. Valentine, Carlos R. Baiz. Ultrafast Dynamics at Lipid–Water Interfaces. Accounts of Chemical Research 2020, 53 (9) , 1860-1868. https://doi.org/10.1021/acs.accounts.0c00302
    12. Ahmed Ghalgaoui, Martin Sterrer. Direct Spectroscopic Observation of Cyanide-Induced Restructuring of Pt at the Solid–Liquid Interface. The Journal of Physical Chemistry C 2020, 124 (7) , 4190-4195. https://doi.org/10.1021/acs.jpcc.0c00382
    13. Tobias Garling, R. Kramer Campen, Martin Wolf, Martin Thämer. A General Approach To Combine the Advantages of Collinear and Noncollinear Spectrometer Designs in Phase-Resolved Second-Order Nonlinear Spectroscopy. The Journal of Physical Chemistry A 2019, 123 (51) , 11022-11030. https://doi.org/10.1021/acs.jpca.9b09927
    14. Pengcheng Hu, Xu Li, Bolin Li, Xiaofeng Han, Furong Zhang, Keng C. Chou, Zhan Chen, Xiaolin Lu. Molecular Coupling between Organic Molecules and Metal. The Journal of Physical Chemistry Letters 2018, 9 (17) , 5167-5172. https://doi.org/10.1021/acs.jpclett.8b01765
    15. Jenée D. Cyran, Ellen H. G. Backus, Yuki Nagata, Mischa Bonn. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity. The Journal of Physical Chemistry B 2018, 122 (14) , 3667-3679. https://doi.org/10.1021/acs.jpcb.7b10574
    16. Ellen H. G. Backus, Jenée D. Cyran, Maksim Grechko, Yuki Nagata, Mischa Bonn. Time-Resolved Sum Frequency Generation Spectroscopy: A Quantitative Comparison Between Intensity and Phase-Resolved Spectroscopy. The Journal of Physical Chemistry A 2018, 122 (9) , 2401-2410. https://doi.org/10.1021/acs.jpca.7b12303
    17. Jarred Z. Olson, Patrik K. Johansson, David G. Castner, and Cody W. Schlenker . Operando Sum-Frequency Generation Detection of Electrolyte Redox Products at Active Si Nanoparticle Li-Ion Battery Interfaces. Chemistry of Materials 2018, 30 (4) , 1239-1248. https://doi.org/10.1021/acs.chemmater.7b04087
    18. Jan Philip Kraack and Peter Hamm . Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chemical Reviews 2017, 117 (16) , 10623-10664. https://doi.org/10.1021/acs.chemrev.6b00437
    19. Satoshi Nihonyanagi, Shoichi Yamaguchi, and Tahei Tahara . Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy. Chemical Reviews 2017, 117 (16) , 10665-10693. https://doi.org/10.1021/acs.chemrev.6b00728
    20. Haoyuan Wang, Tian Gao, and Wei Xiong . Self-Phase-Stabilized Heterodyne Vibrational Sum Frequency Generation Microscopy. ACS Photonics 2017, 4 (7) , 1839-1845. https://doi.org/10.1021/acsphotonics.7b00411
    21. Christopher C. Rich, Kathryn A. Lindberg, and Amber T. Krummel . Phase Acrobatics: The Influence of Excitonic Resonance and Gold Nonresonant Background on Heterodyne-Detected Vibrational Sum Frequency Generation Emission. The Journal of Physical Chemistry Letters 2017, 8 (7) , 1331-1337. https://doi.org/10.1021/acs.jpclett.7b00277
    22. Xiaolin Lu, Chi Zhang, Nathan Ulrich, Minyu Xiao, Yong-Hao Ma, and Zhan Chen . Studying Polymer Surfaces and Interfaces with Sum Frequency Generation Vibrational Spectroscopy. Analytical Chemistry 2017, 89 (1) , 466-489. https://doi.org/10.1021/acs.analchem.6b04320
    23. Shun-Li Chen, Li Fu, Zizwe A. Chase, Wei Gan, and Hong-Fei Wang . Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe. The Journal of Physical Chemistry C 2016, 120 (44) , 25511-25518. https://doi.org/10.1021/acs.jpcc.6b10215
    24. Ahmed Ghalgaoui, Nassar Doudin, Florencia Calaza, Svetlozar Surnev, and Martin Sterrer . Ordered Au Nanoparticle Array on Au(111) through Coverage Control of Precursor Metal–Organic Chains. The Journal of Physical Chemistry C 2016, 120 (31) , 17418-17426. https://doi.org/10.1021/acs.jpcc.6b04630
    25. Anton Myalitsin, Shu-hei Urashima, Satoshi Nihonyanagi, Shoichi Yamaguchi, and Tahei Tahara . Water Structure at the Buried Silica/Aqueous Interface Studied by Heterodyne-Detected Vibrational Sum-Frequency Generation. The Journal of Physical Chemistry C 2016, 120 (17) , 9357-9363. https://doi.org/10.1021/acs.jpcc.6b03275
    26. Heather Vanselous and Poul B. Petersen . Extending the Capabilities of Heterodyne-Detected Sum-Frequency Generation Spectroscopy: Probing Any Interface in Any Polarization Combination. The Journal of Physical Chemistry C 2016, 120 (15) , 8175-8184. https://doi.org/10.1021/acs.jpcc.6b01252
    27. Christopher C. Rich, Max A. Mattson, and Amber T. Krummel . Direct Measurement of the Absolute Orientation of N3 Dye at Gold and Titanium Dioxide Surfaces with Heterodyne-Detected Vibrational SFG Spectroscopy. The Journal of Physical Chemistry C 2016, 120 (12) , 6601-6611. https://doi.org/10.1021/acs.jpcc.5b12649
    28. Christopher M. Lee, Kabindra Kafle, Shixin Huang, and Seong H. Kim . Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope. The Journal of Physical Chemistry B 2016, 120 (1) , 102-116. https://doi.org/10.1021/acs.jpcb.5b10290
    29. Yingmin Li, Jiaxi Wang, and Wei Xiong . Probing Electronic Structures of Organic Semiconductors at Buried Interfaces by Electronic Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (50) , 28083-28089. https://doi.org/10.1021/acs.jpcc.5b10725
    30. Jiaxi Wang, Melissa L. Clark, Yingmin Li, Camille L. Kaslan, Clifford P. Kubiak, and Wei Xiong . Short-Range Catalyst–Surface Interactions Revealed by Heterodyne Two-Dimensional Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry Letters 2015, 6 (21) , 4204-4209. https://doi.org/10.1021/acs.jpclett.5b02158
    31. Jia-Jung Ho, David R. Skoff, Ayanjeet Ghosh, and Martin T. Zanni . Structural Characterization of Single-Stranded DNA Monolayers Using Two-Dimensional Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry B 2015, 119 (33) , 10586-10596. https://doi.org/10.1021/acs.jpcb.5b07078
    32. Joshua K. Carr, Lu Wang, Santanu Roy, and James L. Skinner . Theoretical Sum Frequency Generation Spectroscopy of Peptides. The Journal of Physical Chemistry B 2015, 119 (29) , 8969-8983. https://doi.org/10.1021/jp507861t
    33. Jennifer E. Laaser, David R. Skoff, Jia-Jung Ho, Yongho Joo, Arnaldo L. Serrano, Jay D. Steinkruger, Padma Gopalan, Samuel H. Gellman, and Martin T. Zanni . Two-Dimensional Sum-Frequency Generation Reveals Structure and Dynamics of a Surface-Bound Peptide. Journal of the American Chemical Society 2014, 136 (3) , 956-962. https://doi.org/10.1021/ja408682s
    34. Mikhail Vinaykin and Alexander V. Benderskii . Orientational Dynamics in Sum Frequency Spectroscopic Line Shapes. The Journal of Physical Chemistry B 2013, 117 (49) , 15833-15842. https://doi.org/10.1021/jp408048a
    35. Bei Ding, Jennifer E. Laaser, Yuwei Liu, Pengrui Wang, Martin T. Zanni, and Zhan Chen . Site-Specific Orientation of an α-Helical Peptide Ovispirin-1 from Isotope-Labeled SFG Spectroscopy. The Journal of Physical Chemistry B 2013, 117 (47) , 14625-14634. https://doi.org/10.1021/jp408064b
    36. Yujin Tong, Ana Vila Verde, and R. Kramer Campen . The Free OD at the Air/D2O Interface Is Structurally and Dynamically Heterogeneous. The Journal of Physical Chemistry B 2013, 117 (39) , 11753-11764. https://doi.org/10.1021/jp406577v
    37. Jennifer E. Laaser and Martin T. Zanni . Extracting Structural Information from the Polarization Dependence of One- and Two-Dimensional Sum Frequency Generation Spectra. The Journal of Physical Chemistry A 2013, 117 (29) , 5875-5890. https://doi.org/10.1021/jp307721y
    38. Fadel Y. Shalhout, Sergey Malyk, and Alexander V. Benderskii . Relative Phase Change of Nearby Resonances in Temporally Delayed Sum Frequency Spectra. The Journal of Physical Chemistry Letters 2012, 3 (23) , 3493-3497. https://doi.org/10.1021/jz3014437
    39. Zhen Zhang and Yuan Guo , Zhou Lu, Luis Velarde, and Hong-fei Wang . Resolving Two Closely Overlapping −CN Vibrations and Structure in the Langmuir Monolayer of the Long-Chain Nonadecanenitrile by Polarization Sum Frequency Generation Vibrational Spectroscopy. The Journal of Physical Chemistry C 2012, 116 (4) , 2976-2987. https://doi.org/10.1021/jp210138s
    40. Ruben E. Pool, Jan Versluis, Ellen H. G. Backus, and Mischa Bonn . Comparative Study of Direct and Phase-Specific Vibrational Sum-Frequency Generation Spectroscopy: Advantages and Limitations. The Journal of Physical Chemistry B 2011, 115 (51) , 15362-15369. https://doi.org/10.1021/jp2079023
    41. Alexander D. Curtis, Matthew C. Asplund, and James E. Patterson . Use of Variable Time-Delay Sum-Frequency Generation for Improved Spectroscopic Analysis. The Journal of Physical Chemistry C 2011, 115 (39) , 19303-19310. https://doi.org/10.1021/jp2069368
    42. Alexander D. Curtis, Scott R. Burt, Angela R. Calchera, and James E. Patterson . Limitations in the Analysis of Vibrational Sum-Frequency Spectra Arising from the Nonresonant Contribution. The Journal of Physical Chemistry C 2011, 115 (23) , 11550-11559. https://doi.org/10.1021/jp200915z
    43. Ratnadip De, Neus A. Calvet, Benjamin Dietzek‐Ivanšić. Charge Transfer Dynamics in Organic–Inorganic Hybrid Heterostructures—Insights by Vibrational‐Sum Frequency Generation Spectroscopy. Angewandte Chemie International Edition 2024, 63 (19) https://doi.org/10.1002/anie.202313574
    44. Ratnadip De, Neus A. Calvet, Benjamin Dietzek‐Ivanšić. Ladungstransferdynamiken in organisch–anorganischen hybriden Heterostrukturen – Einblicke mithilfe von Summenfrequenzspektroskopie. Angewandte Chemie 2024, 136 (19) https://doi.org/10.1002/ange.202313574
    45. Tuhin Khan, Ben John, Richarda Niemann, Alexander Paarmann, Martin Wolf, Martin Thämer. Compact oblique-incidence nonlinear widefield microscopy with paired-pixel balanced imaging. Optics Express 2023, 31 (18) , 28792. https://doi.org/10.1364/OE.495903
    46. Wei Guo, Qiantong Song, Jiawei Xue, Zhichao Huangfu, Yuhan He, Yongyan Zhang, Xiaolin Liu, Jun Bao, Zhaohui Wang. Characterization of infrared free electron laser output profile through sum frequency generation spectroscopy. Spectroscopy Letters 2023, 56 (4) , 218-226. https://doi.org/10.1080/00387010.2023.2201294
    47. Alexander J. Farnsworth, Shawn C. Averett, Matthew C. Asplund, James E. Patterson. Temporal Profile of Nonresonant Sum-Frequency Signal from Single-Crystal Silicon Depends on Crystal Orientation. Applied Spectroscopy 2023, 77 (3) , 239-245. https://doi.org/10.1177/00037028221141729
    48. Mariem Guesmi, Petra Veselá, Karel Žídek. Targeted generation of complex temporal pulse profiles. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-07875-0
    49. Nasim Mirzajani, Clare L. Keenan, Sarah R. Melton, Sarah B. King. Accurate phase detection in time-domain heterodyne SFG spectroscopy. Optics Express 2022, 30 (21) , 39162. https://doi.org/10.1364/OE.473098
    50. Md. Shafiul Azam, Dennis Hore. The utility of Raman spectra in aiding the interpretation of surface structure at aqueous interfaces. Journal of Raman Spectroscopy 2022, 53 (10) , 1805-1819. https://doi.org/10.1002/jrs.6397
    51. James D. Pickering, Mikkel Bregnhøj, Mette H. Rasmussen, Kris Strunge, Tobias Weidner. Tutorials in vibrational sum frequency generation spectroscopy. III. Collecting, processing, and analyzing vibrational sum frequency generation spectra. Biointerphases 2022, 17 (4) https://doi.org/10.1116/6.0001951
    52. Hui Wang, Xiao-Hua Hu, Hong-Fei Wang. Temporal and chirp effects of laser pulses on the spectral line shape in sum-frequency generation vibrational spectroscopy. The Journal of Chemical Physics 2022, 156 (20) https://doi.org/10.1063/5.0088506
    53. Benjamin Doughty, Lu Lin, Uvinduni I. Premadasa, Ying-Zhong Ma. Considerations in upconversion: A practical guide to sum-frequency generation spectrometer design and implementation. Biointerphases 2022, 17 (2) https://doi.org/10.1116/6.0001817
    54. James D. Pickering, Mikkel Bregnhøj, Adam S. Chatterley, Mette H. Rasmussen, Kris Strunge, Tobias Weidner. Tutorials in vibrational sum frequency generation spectroscopy. I. The foundations. Biointerphases 2022, 17 (1) https://doi.org/10.1116/6.0001401
    55. Gang-Hua Deng, Yuqin Qian, Tong Zhang, Jian Han, Hanning Chen, Yi Rao. Two-dimensional electronic–vibrational sum frequency spectroscopy for interactions of electronic and nuclear motions at interfaces. Proceedings of the National Academy of Sciences 2021, 118 (34) https://doi.org/10.1073/pnas.2100608118
    56. Xinting Liu, Bo-Han Li, Yu Liang, Wen Zeng, Huang Li, Chuanyao Zhou, Zefeng Ren, Xueming Yang. Efficient generation of narrowband picosecond pulses from a femtosecond laser. Review of Scientific Instruments 2021, 92 (8) https://doi.org/10.1063/5.0056050
    57. Florian Nicolai, Niklas Müller, Cristian Manzoni, Giulio Cerullo, Tiago Buckup. Acousto-optic modulator based dispersion scan for phase characterization and shaping of femtosecond mid-infrared pulses. Optics Express 2021, 29 (13) , 20970. https://doi.org/10.1364/OE.427154
    58. Haoyuan Wang, Wei Xiong. Vibrational Sum-Frequency Generation Hyperspectral Microscopy for Molecular Self-Assembled Systems. Annual Review of Physical Chemistry 2021, 72 (1) , 279-306. https://doi.org/10.1146/annurev-physchem-090519-050510
    59. Tobias Schweizer, Bruno G. Nicolau, Priscila Cavassin, Thomas Feurer, Natalie Banerji, Julien Réhault. High-resolution phase-sensitive sum frequency generation spectroscopy by time-domain ptychography. Optics Letters 2020, 45 (21) , 6082. https://doi.org/10.1364/OL.403339
    60. Niklas Müller, Tiago Buckup, Marcus Motzkus. Flexible pulse shaping for sum frequency microspectroscopies. Journal of the Optical Society of America B 2020, 37 (1) , 117. https://doi.org/10.1364/JOSAB.37.000117
    61. Yingmin Li, Bo Xiang, Wei Xiong. Heterodyne transient vibrational SFG to reveal molecular responses to interfacial charge transfer. The Journal of Chemical Physics 2019, 150 (11) https://doi.org/10.1063/1.5066237
    62. Yi Rao, Yuqin Qian, Gang-Hua Deng, Ashlie Kinross, Nicholas J. Turro, Kenneth B. Eisenthal. Molecular rotation in 3 dimensions at an air/water interface using femtosecond time resolved sum frequency generation. The Journal of Chemical Physics 2019, 150 (9) https://doi.org/10.1063/1.5080228
    63. Azhad U. Chowdhury, Brianna R. Watson, Ying-Zhong Ma, Robert L. Sacci, Daniel A. Lutterman, Tessa R. Calhoun, Benjamin Doughty. A new approach to vibrational sum frequency generation spectroscopy using near infrared pulse shaping. Review of Scientific Instruments 2019, 90 (3) https://doi.org/10.1063/1.5084971
    64. Ruidan Zhang, Xingxing Peng, Zhirun Jiao, Ting Luo, Chuanyao Zhou, Xueming Yang, Zefeng Ren. Flexible high-resolution broadband sum-frequency generation vibrational spectroscopy for intrinsic spectral line widths. The Journal of Chemical Physics 2019, 150 (7) https://doi.org/10.1063/1.5066580
    65. Yin Song, Arkaprabha Konar, Riley Sechrist, Ved Prakash Roy, Rong Duan, Jared Dziurgot, Veronica Policht, Yassel Acosta Matutes, Kevin J. Kubarych, Jennifer P. Ogilvie. Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared. Review of Scientific Instruments 2019, 90 (1) https://doi.org/10.1063/1.5055244
    66. Trevor L. Courtney, Christopher J. Kliewer. Rotational coherence beating in molecular oxygen: Coupling between electronic spin and nuclear angular momenta. The Journal of Chemical Physics 2018, 149 (23) https://doi.org/10.1063/1.5058766
    67. Wei-Chen Yang, Dennis K. Hore. Broadband models and their consequences on line shape analysis in vibrational sum-frequency spectroscopy. The Journal of Chemical Physics 2018, 149 (17) https://doi.org/10.1063/1.5053128
    68. Martin Thämer, R. Kramer Campen, Martin Wolf. Detecting weak signals from interfaces by high accuracy phase-resolved SFG spectroscopy. Physical Chemistry Chemical Physics 2018, 20 (40) , 25875-25882. https://doi.org/10.1039/C8CP04239J
    69. Isaac G. Prichett, Aaron M. Massari. Simplified sum frequency generation using a narrow free-spectral-range etalon. Optics Letters 2018, 43 (19) , 4747. https://doi.org/10.1364/OL.43.004747
    70. Maksim Grechko, Michael Schleeger, Mischa Bonn. Resolution along both infrared and visible frequency axes in second-order Fourier-transform vibrational sum-frequency generation spectroscopy. Chemical Physics 2018, 512 , 27-35. https://doi.org/10.1016/j.chemphys.2018.05.006
    71. Jérémy R. Rouxel, Markus Kowalewski, Kochise Bennett, Shaul Mukamel. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics. Physical Review Letters 2018, 120 (24) https://doi.org/10.1103/PhysRevLett.120.243902
    72. Azhad U. Chowdhury, Fangjie Liu, Brianna R. Watson, Rana Ashkar, John Katsaras, C. Patrick Collier, Daniel A. Lutterman, Ying-Zhong Ma, Tessa R. Calhoun, Benjamin Doughty. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light. Optics Letters 2018, 43 (9) , 2038. https://doi.org/10.1364/OL.43.002038
    73. Freeda Yesudas, Mark Mero, Janina Kneipp, Zsuzsanna Heiner. Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz. The Journal of Chemical Physics 2018, 148 (10) https://doi.org/10.1063/1.5016629
    74. K. Kubarych, V.P. Roy, K.R. Daley. Interfacial Water Dynamics. 2018, 443-461. https://doi.org/10.1016/B978-0-12-409547-2.13241-X
    75. Bo Xiang, Yingmin Li, C. Huy Pham, Francesco Paesani, Wei Xiong. Ultrafast direct electron transfer at organic semiconductor and metal interfaces. Science Advances 2017, 3 (11) https://doi.org/10.1126/sciadv.1701508
    76. Jianping Wang. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. International Reviews in Physical Chemistry 2017, 36 (3) , 377-431. https://doi.org/10.1080/0144235X.2017.1321856
    77. Hong-Fei Wang. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues. Progress in Surface Science 2016, 91 (4) , 155-182. https://doi.org/10.1016/j.progsurf.2016.10.001
    78. Feng Wei, Wen-xiu Xia, Zhong-jin Hu, Wen-hui Li, Ji-ying Zhang, Wan-quan Zheng. Laser Linewidth and Spectral Resolution in Infrared Scanning Sum Frequency Generation Vibrational Spectroscopy System. Chinese Journal of Chemical Physics 2016, 29 (2) , 171-178. https://doi.org/10.1063/1674-0068/29/cjcp1601001
    79. Shun-Li Chen, Li Fu, Wei Gan, Hong-Fei Wang. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy. The Journal of Chemical Physics 2016, 144 (3) https://doi.org/10.1063/1.4940145
    80. Shawn C. Averett, Angela R. Calchera, James E. Patterson. Polarization and phase characteristics of nonresonant sum-frequency generation response from a silicon (111) surface. Optics Letters 2015, 40 (21) , 4879. https://doi.org/10.1364/OL.40.004879
    81. Bolei Xu, Yajing Wu, Dezheng Sun, Hai-Lung Dai, Yi Rao. Stabilized phase detection of heterodyne sum frequency generation for interfacial studies. Optics Letters 2015, 40 (19) , 4472. https://doi.org/10.1364/OL.40.004472
    82. Brian P. Molesky, Zhenkun Guo, Andrew M. Moran. Femtosecond stimulated Raman spectroscopy by six-wave mixing. The Journal of Chemical Physics 2015, 142 (21) https://doi.org/10.1063/1.4914095
    83. Mischa Bonn, Yuki Nagata, Ellen H. G. Backus. Untersuchung der Struktur und Dynamik von Wasser an der Wasser‐Luft‐Grenzfläche mittels oberflächenspezifischer Schwingungsspektroskopie. Angewandte Chemie 2015, 127 (19) , 5652-5669. https://doi.org/10.1002/ange.201411188
    84. Mischa Bonn, Yuki Nagata, Ellen H. G. Backus. Molecular Structure and Dynamics of Water at the Water–Air Interface Studied with Surface‐Specific Vibrational Spectroscopy. Angewandte Chemie International Edition 2015, 54 (19) , 5560-5576. https://doi.org/10.1002/anie.201411188
    85. Hong-Fei Wang, Luis Velarde, Wei Gan, Li Fu. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization, and Orientation. Annual Review of Physical Chemistry 2015, 66 (1) , 189-216. https://doi.org/10.1146/annurev-physchem-040214-121322
    86. Daniel B. O’Brien, Aaron M. Massari. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. II. Consideration for higher order terms. The Journal of Chemical Physics 2015, 142 (2) https://doi.org/10.1063/1.4904926
    87. Charalambos Chrysostomou, Huseyin Seker, Nizamettin Aydin. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences. Advances in Bioinformatics 2015, 2015 , 1-10. https://doi.org/10.1155/2015/909765
    88. Yuki Nagata, Taisuke Hasegawa, Ellen H. G. Backus, Kota Usui, Seiji Yoshimune, Tatsuhiko Ohto, Mischa Bonn. The surface roughness, but not the water molecular orientation varies with temperature at the water–air interface. Physical Chemistry Chemical Physics 2015, 17 (36) , 23559-23564. https://doi.org/10.1039/C5CP04022A
    89. C.S. Tian, Y.R. Shen. Recent progress on sum-frequency spectroscopy. Surface Science Reports 2014, 69 (2-3) , 105-131. https://doi.org/10.1016/j.surfrep.2014.05.001
    90. Jijin Wang, Henri Dubost, Ahmed Ghalgaoui, Wanquan Zheng, Serge Carrez, Aimeric Ouvrard, Bernard Bourguignon. Effect of visible pulse shaping on the accuracy of relative intensity measurements in BBSFG vibrational spectroscopy. Surface Science 2014, 626 , 26-39. https://doi.org/10.1016/j.susc.2014.03.017
    91. Luis Velarde, Zhou Lu, Hong-fei Wang. Coherent Vibrational Dynamics and High-resolution Nonlinear Spectroscopy: A Comparison with the Air/DMSO Liquid Interface. Chinese Journal of Chemical Physics 2013, 26 (6) , 710-720. https://doi.org/10.1063/1674-0068/26/06/710-720
    92. Alexander D. Curtis, Angela R. Calchera, Matthew C. Asplund, James E. Patterson. Observation of sub-surface phenyl rings in polystyrene with vibrationally resonant sum-frequency generation. Vibrational Spectroscopy 2013, 68 , 71-81. https://doi.org/10.1016/j.vibspec.2013.05.011
    93. Luis Velarde, Hong-fei Wang. Capturing inhomogeneous broadening of the –CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). The Journal of Chemical Physics 2013, 139 (8) https://doi.org/10.1063/1.4818996
    94. Satoshi Nihonyanagi, Jahur A. Mondal, Shoichi Yamaguchi, Tahei Tahara. Structure and Dynamics of Interfacial Water Studied by Heterodyne-Detected Vibrational Sum-Frequency Generation. Annual Review of Physical Chemistry 2013, 64 (1) , 579-603. https://doi.org/10.1146/annurev-physchem-040412-110138
    95. Lee J. Richter. Nonlinear Vibrational Spectroscopy. 2013, 137-161. https://doi.org/10.1007/978-3-642-34243-1_5
    96. Luis Velarde, Hong-Fei Wang. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS). Physical Chemistry Chemical Physics 2013, 15 (46) , 19970. https://doi.org/10.1039/c3cp52577e
    97. Ken-ichi Inoue, Kazuya Watanabe, Yoshiyasu Matsumoto. Instantaneous vibrational frequencies of diffusing and desorbing adsorbates: CO/Pt(111). The Journal of Chemical Physics 2012, 137 (2) https://doi.org/10.1063/1.4733720
    98. Luis Velarde, Xian-yi Zhang, Zhou Lu, Alan G. Joly, Zheming Wang, Hong-fei Wang. Communication: Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: Resolving interfacial inhomogeneities of “identical” molecular groups. The Journal of Chemical Physics 2011, 135 (24) https://doi.org/10.1063/1.3675629
    99. Wei Xiong, Jennifer E. Laaser, Randy D. Mehlenbacher, Martin T. Zanni. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy. Proceedings of the National Academy of Sciences 2011, 108 (52) , 20902-20907. https://doi.org/10.1073/pnas.1115055108
    100. Li Fu, Zhuguang Wang, Elsa C.Y. Yan. Chiral Vibrational Structures of Proteins at Interfaces Probed by Sum Frequency Generation Spectroscopy. International Journal of Molecular Sciences 2011, 12 (12) , 9404-9425. https://doi.org/10.3390/ijms12129404

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect