ACS Publications. Most Trusted. Most Cited. Most Read
Ab Initio Study of the Decomposition of 2,5-Dimethylfuran
My Activity

Figure 1Loading Img
    Article

    Ab Initio Study of the Decomposition of 2,5-Dimethylfuran
    Click to copy article linkArticle link copied!

    View Author Information
    Combustion Chemistry Centre, National University of Ireland, Galway, Ireland
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2011, 115, 32, 8877–8888
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp2039477
    Published June 16, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The initial steps in the thermal decomposition of 2,5-dimethylfuran are identified as scission of the C–H bond in the methyl side chain and formation of β- and α-carbenes via 3,2-H and 2,3-methyl shifts, respectively. A variety of channels are explored which prise the aromatic ring open and lead to a number of intermediates whose basic properties are essentially unknown. Once the furan ring is opened demethylation to yield highly unsaturated species such as allenylketenes appears to be a feature of this chemistry. The energetics of H abstraction by the hydroxyl radical (and other abstracting species) from a number of mono- and disubstituted methyl furans has been studied. H-atom addition to 2,5-dimethylfuran followed by methyl elimination is shown to be the most important route to formation of the less reactive 2-methylfuran. Identification of 2-ethenylfuran as an C6H6O intermediate in 2,5-dimethylfuran flames is probably not correct and is more likely the isomeric 2,5-dimethylene-2,5-dihydrofuran for which credible formation channels exist.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Table of calculated rate constants and geometries, frequencies, hindered rotor barriers, and energetics of most species, including transition states. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 82 publications.

    1. Qiongxuan Zhu, Lili Xing, Zhiyuan Ma, Liuchao Lian, Jing Zhu, Haojie Li, Mengjie Liu, Xuetao Wang. Theoretical Investigation on the Reaction Kinetics of OH with Furfural. The Journal of Physical Chemistry A 2025, 129 (12) , 2932-2945. https://doi.org/10.1021/acs.jpca.4c06221
    2. Charles Westbrook, Karl Alexander Heufer, Alina Wildenberg. Key Chemical Kinetic Steps in Reaction Mechanisms for Fuels from Biomass: A Perspective. Energy & Fuels 2021, 35 (19) , 15339-15359. https://doi.org/10.1021/acs.energyfuels.1c02210
    3. Chengyu Zhou, Yachao Chang, Pengzhi Wang, Bo Niu, Ming Jia. Construction of a Skeletal Oxidation Mechanism for 2,5-Dimethylfuran Using Decoupling Methodology and Reaction Class-Based Global Sensitivity Analysis. Energy & Fuels 2020, 34 (12) , 16654-16665. https://doi.org/10.1021/acs.energyfuels.0c03086
    4. Charlotte A. Whelan, Julia Eble, Zara S. Mir, Mark A. Blitz, Paul W. Seakins, Matthias Olzmann, Daniel Stone. Kinetics of the Reactions of Hydroxyl Radicals with Furan and Its Alkylated Derivatives 2-Methyl Furan and 2,5-Dimethyl Furan. The Journal of Physical Chemistry A 2020, 124 (37) , 7416-7426. https://doi.org/10.1021/acs.jpca.0c06321
    5. Katiuska Alexandrino. Comprehensive Review of the Impact of 2,5-Dimethylfuran and 2-Methylfuran on Soot Emissions: Experiments in Diesel Engines and at Laboratory-Scale. Energy & Fuels 2020, 34 (6) , 6598-6623. https://doi.org/10.1021/acs.energyfuels.0c00492
    6. Isabelle Weber, Philipp Friese, Matthias Olzmann. H-Atom-Forming Reaction Pathways in the Pyrolysis of Furan, 2-Methylfuran, and 2,5-Dimethylfuran: A Shock-Tube and Modeling Study. The Journal of Physical Chemistry A 2018, 122 (32) , 6500-6508. https://doi.org/10.1021/acs.jpca.8b05346
    7. Jason M. Hudzik and Joseph W. Bozzelli . Reaction Paths and Chemical Activation Reactions of 2-Methyl-5-Furanyl Radical with 3O2. The Journal of Physical Chemistry A 2017, 121 (39) , 7309-7323. https://doi.org/10.1021/acs.jpca.7b06650
    8. Jason M. Hudzik and Joseph W. Bozzelli . Thermochemistry of Hydroxyl and Hydroperoxide Substituted Furan, Methylfuran, and Methoxyfuran. The Journal of Physical Chemistry A 2017, 121 (23) , 4523-4544. https://doi.org/10.1021/acs.jpca.7b02343
    9. James P. A. Lockhart, C. Franklin Goldsmith, John B. Randazzo, Branko Ruscic, and Robert S. Tranter . An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers. The Journal of Physical Chemistry A 2017, 121 (20) , 3827-3850. https://doi.org/10.1021/acs.jpca.7b01186
    10. Nathanael M. Kidwell, Deepali N. Mehta-Hurt, Joseph A. Korn, and Timothy S. Zwier . Infrared and Electronic Spectroscopy of the Jet-Cooled 5-Methyl-2-furanylmethyl Radical Derived from the Biofuel 2,5-Dimethylfuran. The Journal of Physical Chemistry A 2016, 120 (32) , 6434-6443. https://doi.org/10.1021/acs.jpca.6b05877
    11. Nan Xu, Chenglong Tang, Xin Meng, Xiangshan Fan, Zemin Tian, and Zuohua Huang . Experimental and Kinetic Study on the Ignition Delay Times of 2,5-Dimethylfuran and the Comparison to 2-Methylfuran and Furan. Energy & Fuels 2015, 29 (8) , 5372-5381. https://doi.org/10.1021/acs.energyfuels.5b00906
    12. Katiuska Alexandrino, Ángela Millera, Rafael Bilbao, and María U. Alzueta . Interaction between 2,5-Dimethylfuran and Nitric Oxide: Experimental and Modeling Study. Energy & Fuels 2014, 28 (6) , 4193-4198. https://doi.org/10.1021/ef5005573
    13. Judith Wurmel and John M. Simmie . Thermochemistry and Kinetics of Angelica and Cognate Lactones. The Journal of Physical Chemistry A 2014, 118 (23) , 4172-4183. https://doi.org/10.1021/jp502310v
    14. Alexander C. Davis and S. Mani Sarathy . Computational Study of the Combustion and Atmospheric Decomposition of 2-Methylfuran. The Journal of Physical Chemistry A 2013, 117 (33) , 7670-7685. https://doi.org/10.1021/jp403085u
    15. Baptiste Sirjean, René Fournet, Pierre-Alexandre Glaude, Frédérique Battin-Leclerc, Weijing Wang, and Matthew A. Oehlschlaeger . Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. The Journal of Physical Chemistry A 2013, 117 (7) , 1371-1392. https://doi.org/10.1021/jp308901q
    16. Lixia Wei, Zheming Li, Laihui Tong, Zhandong Wang, Hanfeng Jin, Mingfa Yao, Zunqing Zheng, Chongming Wang, and Hongming Xu . Primary Combustion Intermediates in Lean and Rich Low-Pressure Premixed Laminar 2-Methylfuran/Oxygen/Argon Flames. Energy & Fuels 2012, 26 (11) , 6651-6660. https://doi.org/10.1021/ef301173z
    17. Baptiste Sirjean and René Fournet . Theoretical Study of the Thermal Decomposition of the 5-Methyl-2-furanylmethyl Radical. The Journal of Physical Chemistry A 2012, 116 (25) , 6675-6684. https://doi.org/10.1021/jp303680h
    18. Qiongxuan Zhu, Lili Xing, Liuchao Lian, Jing Zhu, Xuetao Wang. Theoretical investigation on the reaction kinetics of H with furfural. Computational and Theoretical Chemistry 2025, 1248 , 115190. https://doi.org/10.1016/j.comptc.2025.115190
    19. Nikita Bystrov, Alexander Emelianov, Alexander Eremin, Pavel Yatsenko. EXPERIMENTAL STUDY OF FURAN OXIDATION BEHIND SHOCK WAVES. Heat Transfer Research 2025, 56 (3) , 31-52. https://doi.org/10.1615/HeatTransRes.2024054575
    20. Hongqing Feng, Xiaofan Chen, Ning Gao, Xiuxia Zhang, Xinlu Han. Reaction rate of HO2+ 5-methyl-2-furanyl methyl/2-furanyl methyl and its effect on combustion of 2, 5-dimethylfuran/2-methylfuran. Computational and Theoretical Chemistry 2024, 1239 , 114780. https://doi.org/10.1016/j.comptc.2024.114780
    21. Li Fu, Dapeng Liu, Zhenpeng Zhang, Sihao Wang, Yiran Zhang, Hongbo Ning, Wei Ren, Aamir Farooq. A theoretical and experimental study of 2-ethylfuran + OH reaction. Combustion and Flame 2024, 261 , 113321. https://doi.org/10.1016/j.combustflame.2024.113321
    22. Xinzhe Zhang, Na Di, Liuyang Xu, Hongwu Chen, Xingao Shu, Yiyang Wang, Yuyu Lin. Study on the formation process of soot from 2,5-dimethylfuran pyrolysis by ReaxFF molecular dynamics. Journal of Thermal Analysis and Calorimetry 2023, 148 (17) , 9145-9166. https://doi.org/10.1007/s10973-023-12301-2
    23. Lili Xing, Yunrui He, Jinglan Wang, Liuchao Lian, Zhanjun Cheng, Xuetao Wang, Mengjie Liu. The reactions of 2-furfuryl alcohol with hydrogen atom: A theoretical calculation and kinetic modeling analysis. Combustion and Flame 2023, 250 , 112627. https://doi.org/10.1016/j.combustflame.2023.112627
    24. Lili Xing, Jintao Cui, Liuchao Lian, Jinglan Wang, Huanhuan Wang, Yunrui He, Shaowei Wang, Xuetao Wang, Liyou Xu, Zhanjun Cheng. Ab initio kinetics of OH-initiated reactions of 2-furfuryl alcohol. Fuel 2023, 338 , 127325. https://doi.org/10.1016/j.fuel.2022.127325
    25. Charles K. Westbrook. Sustainable bio-oxygenate fuels. 2023, 91-115. https://doi.org/10.1016/B978-0-323-99213-8.00015-1
    26. Trung Thanh Bui, Hong Quan Luu, Anh Tuan Hoang, Ozcan Konur, Tuyen Huu, Minh Tuan Pham. A review on ignition delay times of 2,5-Dimethylfuran. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022, 44 (3) , 7160-7175. https://doi.org/10.1080/15567036.2020.1860163
    27. Luc-Sy Tran, Olivier Herbinet, Hans-Heinrich Carstensen, Frédérique Battin-Leclerc. Chemical kinetics of cyclic ethers in combustion. Progress in Energy and Combustion Science 2022, 92 , 101019. https://doi.org/10.1016/j.pecs.2022.101019
    28. Prashant Gupta, Mohit Raj Saxena, Rakesh Kumar Maurya. A Review on the Effect of Fuel Additives and EGR on Knocking Behavior of Spark Ignition Engine. 2022https://doi.org/10.4271/2022-01-1004
    29. Peidong Li, Wei He, Jinglan Wang, Shubao Song, Jing Wang, Tenglong Lv, Jiuzhong Yang, Zhanjun Cheng, Lixia Wei. Experimental and kinetic modeling investigations on low-temperature oxidation of 2-ethylfuran in a jet-stirred reactor. Combustion and Flame 2022, 241 , 112098. https://doi.org/10.1016/j.combustflame.2022.112098
    30. Hongqing Feng, Ning Gao, Zhirong Nan, Chaohe Yang. Effects of molecular structure and active sites of 2,5-DMF and 2-MF on reaction characteristics during auto-ignition. Computational and Theoretical Chemistry 2022, 1212 , 113687. https://doi.org/10.1016/j.comptc.2022.113687
    31. Gina M. Fioroni, Mohammad J. Rahimi, Charles K. Westbrook, Scott W. Wagnon, William J. Pitz, Seonah Kim, Robert L. McCormick. Chemical kinetic basis of synergistic blending for research octane number. Fuel 2022, 307 , 121865. https://doi.org/10.1016/j.fuel.2021.121865
    32. Pin Liu, Xiongmin Liu, Tei Saburi, Shiro Kubota, Pinxian Huang, Yuji Wada. The thermal stability and safety of 2, 5-dimethylfuran (DMF) oxidation. Thermochimica Acta 2021, 706 , 179078. https://doi.org/10.1016/j.tca.2021.179078
    33. Bo Wang, Ya-Feng Huang, Peng-Fei Wang, Xiao-Jie Liu, Chang Yu, Wei-Guang Li, Xiao-Feng Wang, Xiong-Min Liu. Oxidation characteristics and explosion risk of 2, 5-dimethylfuran at low temperature. Fuel 2021, 302 , 121102. https://doi.org/10.1016/j.fuel.2021.121102
    34. Andrea Giustini, Massimiliano Aschi, Heejune Park, Giovanni Meloni. Theoretical and experimental study on the O( 3 P) + 2,5-dimethylfuran reaction in the gas phase. Physical Chemistry Chemical Physics 2021, 23 (35) , 19424-19434. https://doi.org/10.1039/D1CP01724A
    35. Anh Tuan Hoang, Van Viet Pham. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable and Sustainable Energy Reviews 2021, 148 , 111265. https://doi.org/10.1016/j.rser.2021.111265
    36. Lili Xing, Liuchao Lian, Jintao Cui, Jinglan Wang, Zhanjun Cheng, Xin Wang. Ab initio and kinetics study of the thermal unimolecular decomposition of 2-furfuryl alcohol. Computational and Theoretical Chemistry 2021, 1202 , 113327. https://doi.org/10.1016/j.comptc.2021.113327
    37. Tamer M.M. Abdellatief, Mikhail A. Ershov, Vladimir M. Kapustin, Mohammad Ali Abdelkareem, Mohammed Kamil, A.G. Olabi. Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: A systematic review. Fuel 2021, 291 , 120112. https://doi.org/10.1016/j.fuel.2020.120112
    38. Anh Tuan Hoang, Sandro Nižetić, Van Viet Pham. A state-of-the-art review on emission characteristics of SI and CI engines fueled with 2,5-dimethylfuran biofuel. Environmental Science and Pollution Research 2021, 28 (5) , 4918-4950. https://doi.org/10.1007/s11356-020-11629-8
    39. Anh Tuan Hoang, Sandro Nižetić, Aykut I. Ölçer, Hwai Chyuan Ong. Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5-Dimethylfuran: Progress and prospective. Fuel 2021, 286 , 119337. https://doi.org/10.1016/j.fuel.2020.119337
    40. Saddam Al-Hammadi, Gabriel da Silva. Thermal decomposition and isomerization of furfural and 2-pyrone: a theoretical kinetic study. Physical Chemistry Chemical Physics 2021, 23 (3) , 2046-2054. https://doi.org/10.1039/D0CP05523A
    41. Florence H. Vermeire, Jiuzhong Yang, Chuangchuang Cao, Zhongkai Liu, Guy B. Marin, Kevin M. Van Geem. Thermal decomposition of furans with oxygenated substituents: A combined experimental and quantum chemical study. Proceedings of the Combustion Institute 2021, 38 (1) , 699-707. https://doi.org/10.1016/j.proci.2020.07.124
    42. Agnieszka Brzyska, Krzysztof Woliński. Driving proton transfer reactions in the 2-methylfuran ring with external forces. New Journal of Chemistry 2020, 44 (21) , 8784-8795. https://doi.org/10.1039/D0NJ00508H
    43. Zhenhua Gao, Erjiang Hu, Zhaohua Xu, Geyuan Yin, Zuohua Huang. Effect of 2,5-dimethylfuran addition on ignition delay times of n-heptane at high temperatures. Frontiers in Energy 2019, 13 (3) , 464-473. https://doi.org/10.1007/s11708-019-0609-z
    44. Zemin Tian, Jinghua Li, Yingwen Yan. A reduced mechanism for 2,5-dimetylfuran with assembled mechanism reduction methods. Fuel 2019, 250 , 52-64. https://doi.org/10.1016/j.fuel.2019.03.154
    45. Audrey R. Smith, Simone Di Muzio, Fabio Ramondo, Giovanni Meloni. Peroxy self-reaction leading to the formation of furfural. Physical Chemistry Chemical Physics 2019, 21 (20) , 10228-10237. https://doi.org/10.1039/C8CP07571A
    46. Yuanyuan Li, Yanzhen Gan, Zexing Cao. Computational insight into excited states of the ring‐opening radicals from the pyrolysis of furan biofuels. Journal of Computational Chemistry 2019, 40 (9) , 1057-1065. https://doi.org/10.1002/jcc.25594
    47. Charles K. Westbrook, Henry J. Curran. Detailed kinetics of fossil and renewable fuel combustion. 2019, 363-443. https://doi.org/10.1016/B978-0-444-64087-1.00007-3
    48. Florence H. Vermeire, Hans-Heinrich Carstensen, Olivier Herbinet, Frédérique Battin-Leclerc, Guy B. Marin, Kevin M. Van Geem. The thermal decomposition of furfural: molecular chemistry unraveled. Proceedings of the Combustion Institute 2019, 37 (1) , 445-452. https://doi.org/10.1016/j.proci.2018.05.119
    49. Rupali Tripathi, Ultan Burke, Ajoy K. Ramalingam, Changyoul Lee, Alexander C. Davis, Liming Cai, Hatem Selim, Ravi X. Fernandes, K. Alexander Heufer, S. Mani Sarathy, Heinz Pitsch. Oxidation of 2-methylfuran and 2-methylfuran/n-heptane blends: An experimental and modeling study. Combustion and Flame 2018, 196 , 54-70. https://doi.org/10.1016/j.combustflame.2018.05.032
    50. Yuanyuan Li, Zexing Cao, Chaoyuan Zhu. TDDFT studies for electronic excitations of the intermediates and radicals in the pyrolysis of 2,5-dimethylfuran. AIP Advances 2018, 8 (6) https://doi.org/10.1063/1.5030511
    51. Mazen A. Eldeeb, Benjamin Akih-Kumgeh. Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels. Energies 2018, 11 (3) , 512. https://doi.org/10.3390/en11030512
    52. Earl Christensen, Gina M. Fioroni, Seonah Kim, Lisa Fouts, Erica Gjersing, Robert S. Paton, Robert L. McCormick. Experimental and theoretical study of oxidative stability of alkylated furans used as gasoline blend components. Fuel 2018, 212 , 576-585. https://doi.org/10.1016/j.fuel.2017.10.066
    53. Haruka Yoshizawa, Hiroki Nagashima, Yoshinori Murakami, Kazuo Takahashi. Kinetic Studies on the Reactions of Atomic Oxygen with Furan, 2-Methylfuran, and 2,5-Dimethylfuran at Elevated Temperatures. Chemistry Letters 2017, 46 (8) , 1207-1210. https://doi.org/10.1246/cl.170467
    54. Luc-Sy Tran, Zhandong Wang, Hans-Heinrich Carstensen, Christian Hemken, Frédérique Battin-Leclerc, Katharina Kohse-Höinghaus. Comparative experimental and modeling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan. Combustion and Flame 2017, 181 , 251-269. https://doi.org/10.1016/j.combustflame.2017.03.030
    55. Shiliang Wu, Hongwei Yang, Jun Hu, Dekui Shen, Huiyan Zhang, Rui Xiao. Pyrolysis of furan and its derivatives at 1100 °C: PAH products and DFT study. Journal of Analytical and Applied Pyrolysis 2016, 120 , 252-257. https://doi.org/10.1016/j.jaap.2016.05.013
    56. Nan Xu, Yingtao Wu, Chenglong Tang, Peng Zhang, Xin He, Zhi Wang, Zuohua Huang. Experimental study of 2,5-dimethylfuran and 2-methylfuran in a rapid compression machine: Comparison of the ignition delay times and reactivity at low to intermediate temperature. Combustion and Flame 2016, 168 , 216-227. https://doi.org/10.1016/j.combustflame.2016.03.016
    57. Kotaro Tanaka, Naozumi Isobe, Kota Sato, Ryosuke Okada, Hiroya Okada, Yoshiki Fujisawa, Mitsuru Konno. Ignition Characteristics of 2,5-Dimethylfuran Compared with Gasoline and Ethanol. SAE International Journal of Engines 2016, 9 (1) , 39-46. https://doi.org/10.4271/2015-01-1806
    58. Xinlei Liu, Hu Wang, Lixia Wei, Jialin Liu, Rolf D. Reitz, Mingfa Yao. Development of a reduced toluene reference fuel (TRF)-2,5-dimethylfuran-polycyclic aromatic hydrocarbon (PAH) mechanism for engine applications. Combustion and Flame 2016, 165 , 453-465. https://doi.org/10.1016/j.combustflame.2015.12.030
    59. Nan Xu, Jing Gong, Zuohua Huang. Review on the production methods and fundamental combustion characteristics of furan derivatives. Renewable and Sustainable Energy Reviews 2016, 54 , 1189-1211. https://doi.org/10.1016/j.rser.2015.10.118
    60. Xinlei Liu, Mingfa Yao, Yang Wang, Zhandong Wang, Hanfeng Jin, Lixia Wei. Experimental and kinetic modeling study of a rich and a stoichiometric low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flames. Combustion and Flame 2015, 162 (12) , 4586-4597. https://doi.org/10.1016/j.combustflame.2015.09.017
    61. Bedanta Gogoi, Abhijeet Raj, Mhd Maher Alrefaai, Samuel Stephen, Tharalekshmy Anjana, Vinu Pillai, Shrinivas Bojanampati. Effects of 2,5-dimethylfuran addition to diesel on soot nanostructures and reactivity. Fuel 2015, 159 , 766-775. https://doi.org/10.1016/j.fuel.2015.07.038
    62. Mazen A. Eldeeb, Benjamin Akih-Kumgeh. Investigation of 2,5-dimethyl furan and iso-octane ignition. Combustion and Flame 2015, 162 (6) , 2454-2465. https://doi.org/10.1016/j.combustflame.2015.02.013
    63. Carrigan J. Hayes, Donald R. Burgess, Jeffrey A. Manion. Combustion Pathways of Biofuel Model Compounds. 2015, 103-187. https://doi.org/10.1016/bs.apoc.2015.09.001
    64. Katiuska Alexandrino, Ángela Millera, Rafael Bilbao, María U. Alzueta. Novel aspects in the pyrolysis and oxidation of 2,5-dimethylfuran. Proceedings of the Combustion Institute 2015, 35 (2) , 1717-1725. https://doi.org/10.1016/j.proci.2014.06.002
    65. Yong Qian, Lifeng Zhu, Yue Wang, Xingcai Lu. Recent progress in the development of biofuel 2,5-dimethylfuran. Renewable and Sustainable Energy Reviews 2015, 41 , 633-646. https://doi.org/10.1016/j.rser.2014.08.085
    66. Zhanjun Cheng, Lili Xing, Meirong Zeng, Weile Dong, Feng Zhang, Fei Qi, Yuyang Li. Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures. Combustion and Flame 2014, 161 (10) , 2496-2511. https://doi.org/10.1016/j.combustflame.2014.03.022
    67. Yasar Uygun, Sakiko Ishihara, Herbert Olivier. A high pressure ignition delay time study of 2-methylfuran and tetrahydrofuran in shock tubes. Combustion and Flame 2014, 161 (10) , 2519-2530. https://doi.org/10.1016/j.combustflame.2014.04.004
    68. E. Gras, S. Chassaing. Carbenes and Nitrenes. 2014, 199-231. https://doi.org/10.1002/9781118560273.ch4
    69. Casimir Togbé, Luc-Sy Tran, Dong Liu, Daniel Felsmann, Patrick Oßwald, Pierre-Alexandre Glaude, Baptiste Sirjean, René Fournet, Frédérique Battin-Leclerc, Katharina Kohse-Höinghaus. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part III: 2,5-Dimethylfuran. Combustion and Flame 2014, 161 (3) , 780-797. https://doi.org/10.1016/j.combustflame.2013.05.026
    70. Luc-Sy Tran, Casimir Togbé, Dong Liu, Daniel Felsmann, Patrick Oßwald, Pierre-Alexandre Glaude, René Fournet, Baptiste Sirjean, Frédérique Battin-Leclerc, Katharina Kohse-Höinghaus. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part II: 2-Methylfuran. Combustion and Flame 2014, 161 (3) , 766-779. https://doi.org/10.1016/j.combustflame.2013.05.027
    71. Lixia Wei, Laihui Tong, Jia Xu, Zhandong Wang, Hanfeng Jin, Mingfa Yao, Zunqing Zheng, Haiying Li, Hongming Xu. PRIMARY COMBUSTION INTERMEDIATES IN LOW-PRESSURE PREMIXED LAMINAR 2,5-DIMETHYLFURAN/OXYGEN/ARGON FLAMES. Combustion Science and Technology 2014, 186 (3) , 355-376. https://doi.org/10.1080/00102202.2013.857666
    72. Kieran P. Somers, John M. Simmie, Wayne K. Metcalfe, Henry J. Curran. The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study. Physical Chemistry Chemical Physics 2014, 16 (11) , 5349. https://doi.org/10.1039/c3cp54915a
    73. Kieran P. Somers, John M. Simmie, Fiona Gillespie, Christine Conroy, Gráinne Black, Wayne K. Metcalfe, Frédérique Battin-Leclerc, Patricia Dirrenberger, Olivier Herbinet, Pierre-Alexandre Glaude, Philippe Dagaut, Casimir Togbé, Kenji Yasunaga, Ravi X. Fernandes, Changyoul Lee, Rupali Tripathi, Henry J. Curran. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame 2013, 160 (11) , 2291-2318. https://doi.org/10.1016/j.combustflame.2013.06.007
    74. John M. Simmie, Kieran P. Somers, Kenji Yasunaga, Henry J. Curran. A Quantum Chemical Study of the Abnormal Reactivity of 2‐Methoxyfuran. International Journal of Chemical Kinetics 2013, 45 (8) , 531-541. https://doi.org/10.1002/kin.20793
    75. John M. Simmie, Judith Würmel. Harmonising Production, Properties and Environmental Consequences of Liquid Transport Fuels from Biomass—2,5‐Dimethylfuran as a Case Study. ChemSusChem 2013, 6 (1) , 36-41. https://doi.org/10.1002/cssc.201200738
    76. Robert S. Tranter, Kenneth Brezinsky. Shock Tube Studies of Combustion Relevant Elementary Chemical Reactions and Submechanisms. 2013, 629-652. https://doi.org/10.1007/978-1-4471-5307-8_24
    77. Baptiste Sirjean, René Fournet. Theoretical study of the reaction 2,5-dimethylfuran + H → products. Proceedings of the Combustion Institute 2013, 34 (1) , 241-249. https://doi.org/10.1016/j.proci.2012.05.027
    78. Marko Djokic, Hans-Heinrich Carstensen, Kevin M. Van Geem, Guy B. Marin. The thermal decomposition of 2,5-dimethylfuran. Proceedings of the Combustion Institute 2013, 34 (1) , 251-258. https://doi.org/10.1016/j.proci.2012.05.066
    79. Philipp Friese, John M. Simmie, Matthias Olzmann. The reaction of 2,5-dimethylfuran with hydrogen atoms – An experimental and theoretical study. Proceedings of the Combustion Institute 2013, 34 (1) , 233-239. https://doi.org/10.1016/j.proci.2012.05.075
    80. K.P. Somers, J.M. Simmie, F. Gillespie, U. Burke, J. Connolly, W.K. Metcalfe, F. Battin-Leclerc, P. Dirrenberger, O. Herbinet, P.-A. Glaude, H.J. Curran. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proceedings of the Combustion Institute 2013, 34 (1) , 225-232. https://doi.org/10.1016/j.proci.2012.06.113
    81. Baptiste Sirjean, René Fournet. Unimolecular decomposition of 2,5-dimethylfuran: a theoretical chemical kinetic study. Phys. Chem. Chem. Phys. 2013, 15 (2) , 596-611. https://doi.org/10.1039/C2CP41927K
    82. Jimmy Phuong, Simon Kim, Reuben Thomas, Luoping Zhang. Predicted toxicity of the biofuel candidate 2,5‐dimethylfuran in environmental and biological systems. Environmental and Molecular Mutagenesis 2012, 53 (6) , 478-487. https://doi.org/10.1002/em.21702

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2011, 115, 32, 8877–8888
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp2039477
    Published June 16, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1450

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.