ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

In Situ Methane Recovery and Carbon Dioxide Sequestration in Methane Hydrates: A Molecular Dynamics Simulation Study

View Author Information
Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
Cite this: J. Phys. Chem. B 2011, 115, 51, 15295–15302
Publication Date (Web):November 17, 2011
https://doi.org/10.1021/jp2088675
Copyright © 2011 American Chemical Society

    Article Views

    1716

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (6 MB)

    Abstract

    Abstract Image

    One intriguing idea for the simultaneous recovery of energy and sequestration of global warming gas is proposed by the transformation of methane hydrates to carbon dioxide hydrates with the injection of liquid CO2. Here we use molecular dynamics simulations to show that the replacement can take place without melting of the network of hydrogen-bonded water molecules. Depending on the distance to the interface between the liquid CO2 and solid clathrate hydrate, we find that the replacement occurs either via direct swapping of methane and CO2 or via a transient co-occupation of both methane and CO2 in one cavity. Our results suggest that, with a careful design of the operation condition, it is possible to replace methane from methane hydrates with CO2 in the solid phase without much change in the geological stability.

    Cited By

    This article is cited by 74 publications.

    1. Isaac Wilson, Sweta Saini, Hari Sreenivasan, Chandan Sahu, Shanker Krishna, Pawan Gupta. Review and Perspectives of Energy-Efficient Methane Production from Natural Gas Hydrate Reservoirs Using Carbon Dioxide Exchange Technology. Energy & Fuels 2023, 37 (14) , 9841-9872. https://doi.org/10.1021/acs.energyfuels.3c00715
    2. Yogendra Kumar, Jitendra S. Sangwai. Environmentally Sustainable Large-Scale CO2 Sequestration through Hydrates in Offshore Basins: Ab Initio Comprehensive Analysis of Subsea Parameters and Economic Perspective. Energy & Fuels 2023, 37 (13) , 8739-8764. https://doi.org/10.1021/acs.energyfuels.3c00581
    3. Kavya Mrudula Tadepalli, Rajnish Kumar. Can Ammonia Be Used To Enhance the CO2 Sequestration in Methane Hydrates: A Molecular Dynamics Perspective. Energy & Fuels 2022, 36 (18) , 10583-10590. https://doi.org/10.1021/acs.energyfuels.2c01721
    4. Jinjie Liu, Ran Fu, Yanwen Lin, Qiao Shi, Yisi Liu, Tong Li, Zhisen Zhang, Jianyang Wu. Mechanical Destabilization and Cage Transformations in Water Vacancy-Contained CO2 Hydrates. ACS Sustainable Chemistry & Engineering 2022, 10 (31) , 10339-10350. https://doi.org/10.1021/acssuschemeng.2c03072
    5. Pinqiang Cao, Jianlong Sheng, Henrik Andersen Sveinsson, Jianyang Wu, Fulong Ning. Electric Field-Controlled Structural Instability and Mechanical Properties of Methane Hydrates. Crystal Growth & Design 2022, 22 (5) , 3107-3118. https://doi.org/10.1021/acs.cgd.2c00008
    6. Ke-Feng Yan, Hao Chen, Zhao-Yang Chen, Xiao-Sen Li, Chun-Gang Xu, Yu Zhang, Zhi-Ming Xia, Yi-Song Yu. Effect of H2O Molecules on the CO2 Replacement in CH4 Hydrate Behavior by Molecular Simulation. Energy & Fuels 2021, 35 (9) , 8126-8140. https://doi.org/10.1021/acs.energyfuels.1c00363
    7. Yanhong Wang, Xuemei Lang, Shuanshi Fan, Shenglong Wang, Chi Yu, Gang Li. Review on Enhanced Technology of Natural Gas Hydrate Recovery by Carbon Dioxide Replacement. Energy & Fuels 2021, 35 (5) , 3659-3674. https://doi.org/10.1021/acs.energyfuels.0c04138
    8. Ke Xu, Li Yang, Jinjie Liu, Zhisen Zhang, Jianyang Wu. Mechanical Properties of CH4–CO2 Heteroclathrate Hydrates. Energy & Fuels 2020, 34 (11) , 14368-14378. https://doi.org/10.1021/acs.energyfuels.0c02430
    9. Masahiro Yasue, Yoshihiro Masuda, Yunfeng Liang. Estimation of Methane Recovery Efficiency from Methane Hydrate by the N2–CO2 Gas Mixture Injection Method. Energy & Fuels 2020, 34 (5) , 5236-5250. https://doi.org/10.1021/acs.energyfuels.9b03898
    10. Mohammad Reza Ghaani, Niall J. English. Molecular Dynamics Study of Propane Hydrate Dissociation: Nonequilibrium Analysis in Externally Applied Electric Fields. The Journal of Physical Chemistry C 2018, 122 (13) , 7504-7515. https://doi.org/10.1021/acs.jpcc.7b12238
    11. Hsuan Lo, Ming-Tsung Lee, and Shiang-Tai Lin . Water Vacancy Driven Diffusion in Clathrate Hydrates: Molecular Dynamics Simulation Study. The Journal of Physical Chemistry C 2017, 121 (15) , 8280-8289. https://doi.org/10.1021/acs.jpcc.7b00853
    12. Zhongjin He, Krishna M. Gupta, Praveen Linga, and Jianwen Jiang . Molecular Insights into the Nucleation and Growth of CH4 and CO2 Mixed Hydrates from Microsecond Simulations. The Journal of Physical Chemistry C 2016, 120 (44) , 25225-25236. https://doi.org/10.1021/acs.jpcc.6b07780
    13. Jyun-Yi Wu, Li-Jen Chen, Yan-Ping Chen, and Shiang-Tai Lin . Molecular Dynamics Study on the Growth Mechanism of Methane plus Tetrahydrofuran Mixed Hydrates. The Journal of Physical Chemistry C 2015, 119 (34) , 19883-19890. https://doi.org/10.1021/acs.jpcc.5b05393
    14. Xuebing Zhou, Deqing Liang, Shuai Liang, Lizhi Yi, and Fuhua Lin . Recovering CH4 from Natural Gas Hydrates with the Injection of CO2–N2 Gas Mixtures. Energy & Fuels 2015, 29 (2) , 1099-1106. https://doi.org/10.1021/ef5025824
    15. Minjun Cha, Kyuchul Shin, Huen Lee, Igor L. Moudrakovski, John A. Ripmeester, and Yutaek Seo . Kinetics of Methane Hydrate Replacement with Carbon Dioxide and Nitrogen Gas Mixture Using in Situ NMR Spectroscopy. Environmental Science & Technology 2015, 49 (3) , 1964-1971. https://doi.org/10.1021/es504888n
    16. Jyun-Yi Wu, Li-Jen Chen, Yan-Ping Chen, and Shiang-Tai Lin . Molecular Dynamics Study on the Equilibrium and Kinetic Properties of Tetrahydrofuran Clathrate Hydrates. The Journal of Physical Chemistry C 2015, 119 (3) , 1400-1409. https://doi.org/10.1021/jp5096536
    17. Bin Song, Andrew H. Nguyen, and Valeria Molinero . Can Guest Occupancy in Binary Clathrate Hydrates Be Tuned through Control of the Growth Temperature?. The Journal of Physical Chemistry C 2014, 118 (40) , 23022-23031. https://doi.org/10.1021/jp504852k
    18. Qing Yuan, Xiao-Hui Wang, Abhijit Dandekar, Chang-Yu Sun, Qing-Ping Li, Zheng-Wei Ma, Bei Liu, and Guang-Jin Chen . Replacement of Methane from Hydrates in Porous Sediments with CO2-in-Water Emulsions. Industrial & Engineering Chemistry Research 2014, 53 (31) , 12476-12484. https://doi.org/10.1021/ie501009y
    19. Saeid Sinehbaghizadeh, Agus Saptoro, Sepideh Amjad-Iranagh, Amir H. Mohammadi. Understanding the influences of different associated gas impurities and the kinetic modelling of biogas hydrate formation at the molecular scale. Energy 2023, 282 , 128893. https://doi.org/10.1016/j.energy.2023.128893
    20. Youngki Lee, Hyeonjin Kim, Wonhyeong Lee, Dong Woo Kang, Jae W. Lee, Yun-Ho Ahn. Thermodynamic and kinetic properties of CO2 hydrates and their applications in CO2 capture and separation. Journal of Environmental Chemical Engineering 2023, 11 (5) , 110933. https://doi.org/10.1016/j.jece.2023.110933
    21. Elizabeth Sargeant, Paramaconi Rodriguez. Determination of Kinematic Viscosity of Mg(ClO4)2 and KOH Brines Saturated with CO2 at Sub-Zero Temperatures. Molecules 2023, 28 (15) , 5641. https://doi.org/10.3390/molecules28155641
    22. Alberto Maria Gambelli, Federico Rossi, Giovanni Gigliotti. Benefits related to the use of 0.1 mf C3H8 in mixture with CO2 for the storage of carbon dioxide and for the recovery of methane via replacement techniques, in gas hydrates. Gas Science and Engineering 2023, 115 , 205028. https://doi.org/10.1016/j.jgsce.2023.205028
    23. Alberto Maria Gambelli, Xhino Rushani, Daniela Pezzolla, Federico Rossi, Giovanni Gigliotti. Production of CO2 Hydrates in Aqueous Mixtures Having (NH4)2SO4 at Different Concentrations; Definition of Consequences on the Process Evolution, Quantification of CO2 Captured and Validation of Hydrates Production as Technique for Ammonium Removal from Waste Water. Sustainability 2023, 15 (12) , 9841. https://doi.org/10.3390/su15129841
    24. André Guerra, Samuel Mathews, Jennifer Tram Su, Milan Marić, Phillip Servio, Alejandro D. Rey. Molecular dynamics predictions of transport properties for carbon dioxide hydrates under pre-nucleation conditions using TIP4P/Ice water and EPM2, TraPPE, and Zhang carbon dioxide potentials. Journal of Molecular Liquids 2023, 379 , 121674. https://doi.org/10.1016/j.molliq.2023.121674
    25. Q. Martinez, C. Chen, J. Xia, H. Bahai. Sequence-to-Sequence Change-Point Detection in Single-Particle Trajectories via Recurrent Neural Network for Measuring Self-Diffusion. Transport in Porous Media 2023, 147 (3) , 679-701. https://doi.org/10.1007/s11242-023-01923-7
    26. Saeid Sinehbaghizadeh, Agus Saptoro, Sepideh Amjad-Iranagh, Parisa Naeiji, Angnes Ngieng Tze Tiong, Amir H. Mohammadi. A comprehensive review on molecular dynamics simulation studies of phenomena and characteristics associated with clathrate hydrates. Fuel 2023, 338 , 127201. https://doi.org/10.1016/j.fuel.2022.127201
    27. Alberto Maria Gambelli, Federico Rossi. Review on the Usage of Small-Chain Hydrocarbons (C2—C4) as Aid Gases for Improving the Efficiency of Hydrate-Based Technologies. Energies 2023, 16 (8) , 3576. https://doi.org/10.3390/en16083576
    28. Yinglong Zhang, Mao Cui, Gongming Xin, Dexiang Li. Microscopic insights on the effects of flue gas components on CH4–CO2 replacement in natural gas hydrate. Gas Science and Engineering 2023, 112 , 204947. https://doi.org/10.1016/j.jgsce.2023.204947
    29. Alberto Maria Gambelli, Giovanni Serani, Federico Rossi. RELATION BETWEEN THE PRESSURE OF GASES AND THE HYDRATE FORMATION PROCESS: CONSEQUENCES FOR CO2/CH4 REPLACEMENT AND FOR STORAGE APPLICATIONS. Heat Transfer Research 2023, 54 (11) , 75-90. https://doi.org/10.1615/HeatTransRes.2023047366
    30. Alberto Maria Gambelli, Federico Rossi. Re-definition of the region suitable for CO2/CH4 replacement into hydrates as a function of the thermodynamic difference between CO2 hydrate formation and dissociation. Process Safety and Environmental Protection 2023, 169 , 132-141. https://doi.org/10.1016/j.psep.2022.10.085
    31. Xuewen Cao, Hongchao Wang, Kairan Yang, Shichuan Wu, Qian Chen, Jiang Bian. Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications. Journal of Petroleum Science and Engineering 2022, 219 , 111121. https://doi.org/10.1016/j.petrol.2022.111121
    32. Xuemin Zhang, Shanling Zhang, Shaoqi Yin, Guanyu HE, Jinping Li, Qingbai Wu. Research progress of the kinetics on natural gas hydrate replacement by CO2-containing mixed gas: A review. Journal of Natural Gas Science and Engineering 2022, 108 , 104837. https://doi.org/10.1016/j.jngse.2022.104837
    33. André Guerra, Samuel Mathews, Milan Marić, Phillip Servio, Alejandro D. Rey. All-Atom Molecular Dynamics of Pure Water–Methane Gas Hydrate Systems under Pre-Nucleation Conditions: A Direct Comparison between Experiments and Simulations of Transport Properties for the Tip4p/Ice Water Model. Molecules 2022, 27 (15) , 5019. https://doi.org/10.3390/molecules27155019
    34. Zhiming Xia, Qi Zhao, Zhaoyang Chen, Xiaosen Li, Yu Zhang, Chungang Xu, Kefeng Yan. Review of methods and applications for promoting gas hydrate formation process. Journal of Natural Gas Science and Engineering 2022, 101 , 104528. https://doi.org/10.1016/j.jngse.2022.104528
    35. Saman Alavi, John A. Ripmeester. Molecular Simulations of Clathrate Hydrates. 2022, 283-367. https://doi.org/10.1002/9783527695058.ch8
    36. Wen-Na Wei, Bo Li, Quan Gan, Yuan-Le Li. Research progress of natural gas hydrate exploitation with CO2 replacement: A review. Fuel 2022, 312 , 122873. https://doi.org/10.1016/j.fuel.2021.122873
    37. Shashika Gajanayake, Ranjith Pathegama Gamage, Pabasara Wanniarachchige, Decheng Zhang. Quantification of CO2 Replacement in Methane Gas Hydrates: A Molecular Dynamics Perspective. Journal of Natural Gas Science and Engineering 2022, 98 , 104396. https://doi.org/10.1016/j.jngse.2021.104396
    38. Kai Zhang, Hon Chung Lau. Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management. Energy 2022, 239 , 122231. https://doi.org/10.1016/j.energy.2021.122231
    39. Anshul Gupta, Gino V. Baron, Patrice Perreault, Silvia Lenaerts, Radu-George Ciocarlan, Pegie Cool, Paulo G.M. Mileo, Sven Rogge, Veronique Van Speybroeck, Geert Watson, Pascal Van Der Voort, Maarten Houlleberghs, Eric Breynaert, Johan Martens, Joeri F.M. Denayer. Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. Energy Storage Materials 2021, 41 , 69-107. https://doi.org/10.1016/j.ensm.2021.05.044
    40. Chanjuan Liu, Xuebing Zhou, Deqing Liang. Molecular insight into carbon dioxide hydrate formation from saline solution. RSC Advances 2021, 11 (50) , 31583-31589. https://doi.org/10.1039/D1RA04015D
    41. Mar’atus Sholihah, Wu-Yang Sean. Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach. Molecules 2021, 26 (16) , 5021. https://doi.org/10.3390/molecules26165021
    42. Rongrong Qi, Xuwen Qin, Hang Bian, Cheng Lu, Lu Yu, Chao Ma, . Overview of Molecular Dynamics Simulation of Natural Gas Hydrate at Nanoscale. Geofluids 2021, 2021 , 1-17. https://doi.org/10.1155/2021/6689254
    43. A. Arjun, Peter G. Bolhuis. Homogenous nucleation rate of CO2 hydrates using transition interface sampling. The Journal of Chemical Physics 2021, 154 (16) https://doi.org/10.1063/5.0044883
    44. Elke Kossel, Nikolaus K. Bigalke, Christian Deusner, Matthias Haeckel. Microscale Processes and Dynamics during CH4–CO2 Guest-Molecule Exchange in Gas Hydrates. Energies 2021, 14 (6) , 1763. https://doi.org/10.3390/en14061763
    45. Quang-Du Le, Carla T. Rodriguez, Ludovic N. Legoix, Claire Pirim, Bertrand Chazallon. Influence of the initial CH4-hydrate system properties on CO2 capture kinetics. Applied Energy 2020, 280 , 115843. https://doi.org/10.1016/j.apenergy.2020.115843
    46. Aliakbar Hassanpouryouzband, Edris Joonaki, Mehrdad Vasheghani Farahani, Satoshi Takeya, Carolyn Ruppel, Jinhai Yang, Niall J. English, Judith M. Schicks, Katriona Edlmann, Hadi Mehrabian, Zachary M. Aman, Bahman Tohidi. Gas hydrates in sustainable chemistry. Chemical Society Reviews 2020, 49 (15) , 5225-5309. https://doi.org/10.1039/C8CS00989A
    47. Xiao-Hui Yu, Yuan Liu, San-Ya Du, Xu Zheng, Jin-Long Zhu, Hong-Wu Xu, Jian-Zhong Zhang, Shi-Yu Du, Xiao-Cheng Zeng, J. S. Francisco, Chang-Qing Jin, Yu-Sheng Zhao, Hui Li. CH 4 Gas Extraction by CO 2 : Substitution in Clathrate Hydrate through Bimolecular Iteration*. Chinese Physics Letters 2020, 37 (4) , 048201. https://doi.org/10.1088/0256-307X/37/4/048201
    48. Hiroki Matsui, Jihui Jia, Takeshi Tsuji, Yunfeng Liang, Yoshihiro Masuda. Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide–nitrogen mixtures. Fuel 2020, 263 , 116640. https://doi.org/10.1016/j.fuel.2019.116640
    49. Javad Kondori, Lesley James, Sohrab Zendehboudi. Molecular scale modeling approach to evaluate stability and dissociation of methane and carbon dioxide hydrates. Journal of Molecular Liquids 2020, 297 , 111503. https://doi.org/10.1016/j.molliq.2019.111503
    50. Zhaoyang Ma, Pathegama Gamage Ranjith. Review of application of molecular dynamics simulations in geological sequestration of carbon dioxide. Fuel 2019, 255 , 115644. https://doi.org/10.1016/j.fuel.2019.115644
    51. Dolores Melgar, Mohammad Reza Ghaani, Marco Lauricella, Gareth S. O’Brien, Niall J. English. Acoustic-propagation properties of methane clathrate hydrates from non-equilibrium molecular dynamics. The Journal of Chemical Physics 2019, 151 (14) , 144505. https://doi.org/10.1063/1.5121712
    52. Yue Zhang, Li Zhao, Shuai Deng, Ruikai Zhao, Xianhua Nie, Yinan Liu. Effect of Nanobubble Evolution on Hydrate Process: A Review. Journal of Thermal Science 2019, 28 (5) , 948-961. https://doi.org/10.1007/s11630-019-1181-x
    53. Niall J. English, Mohammad Reza Ghaani. Hybrid versus global thermostatting in molecular-dynamics simulation of methane-hydrate crystallisation. Chinese Journal of Chemical Engineering 2019, 27 (9) , 2180-2188. https://doi.org/10.1016/j.cjche.2019.02.034
    54. Kaiyi Zhang, Guan Qin. Mechanistic and Kinetic Study of CO2-CH4 Exchange Process in Methane Hydrates Using Molecular Dynamics Simulation. 2019https://doi.org/10.2118/195457-MS
    55. Zhu Jin-Long, Zhao Yu-Sheng, Jin Chang-Qing, , , . Structure and properties of nature clathrate and its application in energy and enviromental science. Acta Physica Sinica 2019, 68 (1) , 018203. https://doi.org/10.7498/aps.68.20181639
    56. Vladimir Belosludov, Yulia Bozhko, Oleg Subbotin, Rodion Belosludov, Ravil Zhdanov, Kirill Gets, Yoshiyuki Kawazoe. Influence of N2 on Formation Conditions and Guest Distribution of Mixed CO2 + CH4 Gas Hydrates. Molecules 2018, 23 (12) , 3336. https://doi.org/10.3390/molecules23123336
    57. Mohammad Reza Ghaani, Niall J. English. Non-equilibrium molecular-dynamics study of electromagnetic-field-induced propane-hydrate dissociation. The Journal of Chemical Physics 2018, 149 (12) https://doi.org/10.1063/1.5029457
    58. Ioannis N. Tsimpanogiannis, Joseph Costandy, Panagiotis Kastanidis, Sally El Meragawi, Vasileios K. Michalis, Nikolaos I. Papadimitriou, Stylianos N. Karozis, Nikolaos I. Diamantonis, Othonas A. Moultos, George E. Romanos, Athanassios K. Stubos, Ioannis G. Economou. Using clathrate hydrates for gas storage and gas-mixture separations: experimental and computational studies at multiple length scales. Molecular Physics 2018, 116 (15-16) , 2041-2060. https://doi.org/10.1080/00268976.2018.1471224
    59. Conor J. Waldron, Niall J. English. System-density fluctuations and electro-dissociation of methane clathrate hydrates in externally-applied static electric fields. The Journal of Chemical Thermodynamics 2018, 117 , 68-80. https://doi.org/10.1016/j.jct.2017.08.016
    60. Yinan Liu, Li Zhao, Shuai Deng, Dongsheng Bai. Evolution of bubbles in decomposition and replacement process of methane hydrate. Molecular Simulation 2017, 43 (13-16) , 1061-1073. https://doi.org/10.1080/08927022.2017.1359745
    61. Javad Kondori, Sohrab Zendehboudi, M. Enamul Hossain. A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective. Journal of Petroleum Science and Engineering 2017, 159 , 754-772. https://doi.org/10.1016/j.petrol.2017.09.073
    62. Conor J. Waldron, Niall J. English. Global-density fluctuations in methane clathrate hydrates in externally applied electromagnetic fields. The Journal of Chemical Physics 2017, 147 (2) https://doi.org/10.1063/1.4990029
    63. Conor J. Waldron, Marco Lauricella, Niall J. English. Structural and dynamical properties of methane clathrate hydrates from molecular dynamics: Comparison of atomistic and more coarse-grained potential models. Fluid Phase Equilibria 2016, 413 , 235-241. https://doi.org/10.1016/j.fluid.2015.12.030
    64. Jyun-Yi Wu, Li-Jen Chen, Yan-Ping Chen, Shiang-Tai Lin. Molecular dynamics study on the nucleation of methane + tetrahydrofuran mixed guest hydrate. Physical Chemistry Chemical Physics 2016, 18 (15) , 9935-9947. https://doi.org/10.1039/C5CP06419H
    65. Vasileios K. Michalis, Ioannis N. Tsimpanogiannis, Athanassios K. Stubos, Ioannis G. Economou. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane–carbon dioxide–water hydrate system. Physical Chemistry Chemical Physics 2016, 18 (34) , 23538-23548. https://doi.org/10.1039/C6CP04647A
    66. J. M. Míguez, M. M. Conde, J.-P. Torré, F. J. Blas, M. M. Piñeiro, C. Vega. Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line. The Journal of Chemical Physics 2015, 142 (12) https://doi.org/10.1063/1.4916119
    67. Niall J. English, J.M.D. MacElroy. Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges. Chemical Engineering Science 2015, 121 , 133-156. https://doi.org/10.1016/j.ces.2014.07.047
    68. Chun-Gang Xu, Xiao-Sen Li. Research progress on methane production from natural gas hydrates. RSC Advances 2015, 5 (67) , 54672-54699. https://doi.org/10.1039/C4RA10248G
    69. Sheng‐li Li, Xiao‐Hui Wang, Chang‐Yu Sun, Qing‐Yuan, Guang‐Jin Chen. Methane Recovery from Natural Gas Hydrate in Porous Sediment Using Gaseous CO 2 , Liquid CO 2 , and CO 2 Emulsion. 2014, 357-370. https://doi.org/10.1002/9781118938607.ch21
    70. Brian C. Barnes, Gregg T. Beckham, David T. Wu, Amadeu K. Sum. Two-component order parameter for quantifying clathrate hydrate nucleation and growth. The Journal of Chemical Physics 2014, 140 (16) https://doi.org/10.1063/1.4871898
    71. Bo Ram Lee, Carolyn A. Koh, Amadeu K. Sum. Quantitative measurement and mechanisms for CH 4 production from hydrates with the injection of liquid CO 2. Phys. Chem. Chem. Phys. 2014, 16 (28) , 14922-14927. https://doi.org/10.1039/C4CP01780C
    72. Hiroyuki Komatsu, Masaki Ota, Richard L. Smith, Hiroshi Inomata. Review of CO2–CH4 clathrate hydrate replacement reaction laboratory studies – Properties and kinetics. Journal of the Taiwan Institute of Chemical Engineers 2013, 44 (4) , 517-537. https://doi.org/10.1016/j.jtice.2013.03.010
    73. Brian C Barnes, Amadeu K Sum. Advances in molecular simulations of clathrate hydrates. Current Opinion in Chemical Engineering 2013, 2 (2) , 184-190. https://doi.org/10.1016/j.coche.2012.12.002
    74. Qing Yuan, Chang-Yu Sun, Bei Liu, Xue Wang, Zheng-Wei Ma, Qing-Lan Ma, Lan-Ying Yang, Guang-Jin Chen, Qing-Ping Li, Shi Li, Ke Zhang. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2. Energy Conversion and Management 2013, 67 , 257-264. https://doi.org/10.1016/j.enconman.2012.11.018

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect