ACS Publications. Most Trusted. Most Cited. Most Read
Atmospheric Fate of Methacrolein. 2. Formation of Lactone and Implications for Organic Aerosol Production
My Activity

Figure 1Loading Img
    Article

    Atmospheric Fate of Methacrolein. 2. Formation of Lactone and Implications for Organic Aerosol Production
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
    Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
    § Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
    *E-mail: H.G.K., [email protected]. Phone: 45-35320334. Fax: 45-35320322; P.O.W., [email protected]. Phone: 626-395-2447.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2012, 116, 24, 5763–5768
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp210853h
    Published March 27, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We investigate the oxidation of methacryloylperoxy nitrate (MPAN) and methacrylicperoxy acid (MPAA) by the hydroxyl radical (OH) theoretically, using both density functional theory [B3LYP] and explicitly correlated coupled cluster theory [CCSD(T)-F12]. These two compounds are produced following the abstraction of a hydrogen atom from methacrolein (MACR) by the OH radical. We use a RRKM master equation analysis to estimate that the oxidation of MPAN leads to formation of hydroxymethyl–methyl-α-lactone (HMML) in high yield. HMML production follows a low potential energy path from both MPAN and MPAA following addition of OH (via elimination of the NO3 and OH from MPAN and MPAA, respectively). We suggest that the subsequent heterogeneous phase chemistry of HMML may be the route to formation of 2-methylglyceric acid, a common component of organic aerosol produced in the oxidation of methacrolein. Oxidation of acrolein, a photo-oxidation product from 1,3-butadiene, is found to follow a similar route generating hydroxymethyl-α-lactone (HML).

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    IRC for the MPAN reaction; acrolein hydrogen abstraction reaction mechanism; relative energies and structures of APAN + OH and APAA + OH reactions; bond order and bond lengths in IEPOX and HML; tables with calculated relative energies. Details of RRKM master equation analysis and tables of yields. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 50 publications.

    1. Lillian N. Tran, Karizza A. Abellar, James D. Cope, Tran B. Nguyen. Second-Order Kinetic Rate Coefficients for the Aqueous-Phase Sulfate Radical (SO4•–) Oxidation of Some Atmospherically Relevant Organic Compounds. The Journal of Physical Chemistry A 2022, 126 (37) , 6517-6525. https://doi.org/10.1021/acs.jpca.2c04964
    2. Dongyu S. Wang, Catherine G. Masoud, Mrinali Modi, Lea Hildebrandt Ruiz. Isoprene–Chlorine Oxidation in the Presence of NOx and Implications for Urban Atmospheric Chemistry. Environmental Science & Technology 2022, 56 (13) , 9251-9264. https://doi.org/10.1021/acs.est.1c07048
    3. Karizza A. Abellar, James D. Cope, Tran B. Nguyen. Second-Order Kinetic Rate Coefficients for the Aqueous-Phase Hydroxyl Radical (OH) Oxidation of Isoprene-Derived Secondary Organic Aerosol Compounds at 298 K. Environmental Science & Technology 2021, 55 (20) , 13728-13736. https://doi.org/10.1021/acs.est.1c04606
    4. Houssni Lamkaddam, Aline Gratien, Edouard Pangui, Marc David, Florian Peinado, Jean-Michel Polienor, Murielle Jerome, Mathieu Cazaunau, Cécile Gaimoz, Bénédicte Picquet-Varrault, Ivan Kourtchev, Markus Kalberer, Jean-François Doussin. Role of Relative Humidity in the Secondary Organic Aerosol Formation from High-NOx Photooxidation of Long-Chain Alkanes: n-Dodecane Case Study. ACS Earth and Space Chemistry 2020, 4 (12) , 2414-2425. https://doi.org/10.1021/acsearthspacechem.0c00265
    5. Lindsay D. Yee, Gabriel Isaacman-VanWertz, Rebecca A. Wernis, Nathan M. Kreisberg, Marianne Glasius, Matthieu Riva, Jason D. Surratt, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Brett. B. Palm, Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Jose L. Jimenez, Yingjun Liu, Pawel K. Misztal, Paulo Artaxo, Juarez Viegas, Antonio Manzi, Rodrigo A. F. de Souza, Eric S. Edgerton, Karsten Baumann, Allen H. Goldstein. Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. Environmental Science & Technology 2020, 54 (10) , 5980-5991. https://doi.org/10.1021/acs.est.0c00805
    6. J. Stuart Grossert, Jeremy E. Melanson, Louis Ramaley. Fragmentation Pathways of Cationized, Saturated, Short-Chain Triacylglycerols: Lithiated and Sodiated Tripropanoyl- and Trihexanoylglycerol. Journal of the American Society for Mass Spectrometry 2020, 31 (1) , 34-46. https://doi.org/10.1021/jasms.9b00046
    7. Li Xing, Manish Shrivastava, Tzung-May Fu, Pontus Roldin, Yun Qian, Lu Xu, Nga L. Ng, John Shilling, Alla Zelenyuk, Christopher D. Cappa. Parameterized Yields of Semivolatile Products from Isoprene Oxidation under Different NOx Levels: Impacts of Chemical Aging and Wall-Loss of Reactive Gases. Environmental Science & Technology 2018, 52 (16) , 9225-9234. https://doi.org/10.1021/acs.est.8b00373
    8. Piyali Chatterjee, Arup K. Ghosh, Monoj Samanta, Tapas Chakraborty. Barrierless Proton Transfer in the Weak C–H···O Hydrogen Bonded Methacrolein Dimer upon Nonresonant Multiphoton Ionization in the Gas Phase. The Journal of Physical Chemistry A 2018, 122 (25) , 5563-5573. https://doi.org/10.1021/acs.jpca.8b02597
    9. Paul O. Wennberg, Kelvin H. Bates, John D. Crounse, Leah G. Dodson, Renee C. McVay, Laura A. Mertens, Tran B. Nguyen, Eric Praske, Rebecca H. Schwantes, Matthew D. Smarte, Jason M. St Clair, Alexander P. Teng, Xuan Zhang, John H. Seinfeld. Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chemical Reviews 2018, 118 (7) , 3337-3390. https://doi.org/10.1021/acs.chemrev.7b00439
    10. Kallie Jiang, Daniel R. Hill, and Matthew J. Elrod . Assessing the Potential for Oligomer Formation from the Reactions of Lactones in Secondary Organic Aerosols. The Journal of Physical Chemistry A 2018, 122 (1) , 292-302. https://doi.org/10.1021/acs.jpca.7b10411
    11. Ying-Hsuan Lin, Maiko Arashiro, Phillip W. Clapp, Tianqu Cui, Kenneth G. Sexton, William Vizuete, Avram Gold, Ilona Jaspers, Rebecca C. Fry, and Jason D. Surratt . Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol. Environmental Science & Technology 2017, 51 (14) , 8166-8175. https://doi.org/10.1021/acs.est.7b01967
    12. Gabriel da Silva . Decomposition of Pyruvic Acid on the Ground-State Potential Energy Surface. The Journal of Physical Chemistry A 2016, 120 (2) , 276-283. https://doi.org/10.1021/acs.jpca.5b10078
    13. Jesse H. Kroll, Christopher Y. Lim, Sean H. Kessler, and Kevin R. Wilson . Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon. The Journal of Physical Chemistry A 2015, 119 (44) , 10767-10783. https://doi.org/10.1021/acs.jpca.5b06946
    14. Jordan E. Krechmer, Matthew M. Coggon, Paola Massoli, Tran B. Nguyen, John D. Crounse, Weiwei Hu, Douglas A. Day, Geoffrey S. Tyndall, Daven K. Henze, Jean C. Rivera-Rios, John B. Nowak, Joel R. Kimmel, Roy L. Mauldin, III, Harald Stark, John T. Jayne, Mikko Sipilä, Heikki Junninen, Jason M. St. Clair, Xuan Zhang, Philip A. Feiner, Li Zhang, David O. Miller, William H. Brune, Frank N. Keutsch, Paul O. Wennberg, John H. Seinfeld, Douglas R. Worsnop, Jose L. Jimenez, Manjula R. Canagaratna. Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology 2015, 49 (17) , 10330-10339. https://doi.org/10.1021/acs.est.5b02031
    15. Lu Xu, Matthew S. Kollman, Chen Song, John E. Shilling, and Nga L. Ng . Effects of NOx on the Volatility of Secondary Organic Aerosol from Isoprene Photooxidation. Environmental Science & Technology 2014, 48 (4) , 2253-2262. https://doi.org/10.1021/es404842g
    16. John D. Crounse, Lasse B. Nielsen, Solvejg Jørgensen, Henrik G. Kjaergaard, and Paul O. Wennberg . Autoxidation of Organic Compounds in the Atmosphere. The Journal of Physical Chemistry Letters 2013, 4 (20) , 3513-3520. https://doi.org/10.1021/jz4019207
    17. Havala O. T. Pye, Robert W. Pinder, Ivan R. Piletic, Ying Xie, Shannon L. Capps, Ying-Hsuan Lin, Jason D. Surratt, Zhenfa Zhang, Avram Gold, Deborah J. Luecken, William T. Hutzell, Mohammed Jaoui, John H. Offenberg, Tadeusz E. Kleindienst, Michael Lewandowski, and Edward O. Edney . Epoxide Pathways Improve Model Predictions of Isoprene Markers and Reveal Key Role of Acidity in Aerosol Formation. Environmental Science & Technology 2013, 47 (19) , 11056-11064. https://doi.org/10.1021/es402106h
    18. John D. Crounse, Hasse C. Knap, Kristian B. Ørnsø, Solvejg Jørgensen, Fabien Paulot, Henrik G. Kjaergaard, and Paul O. Wennberg . Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following Addition of OH and O2. The Journal of Physical Chemistry A 2012, 116 (24) , 5756-5762. https://doi.org/10.1021/jp211560u
    19. Marie Luise Luttkus, Erik Hans Hoffmann, Andreas Tilgner, Jana Wackermann, Hartmut Herrmann, Ralf Wolke. URMELL – part II: semi-explicit isoprene and aromatics gasSOA modelling. Environmental Science: Atmospheres 2024, 4 (12) , 1413-1433. https://doi.org/10.1039/D4EA00075G
    20. Sahir Gagan, Kumar Sarang, Krzysztof J. Rudzinski, Ruizhe Liu, Rafal Szmigielski, Yue Zhang. Synthetic strategies for oxidation products from biogenic volatile organic compounds in the atmosphere: A review. Atmospheric Environment 2023, 312 , 120017. https://doi.org/10.1016/j.atmosenv.2023.120017
    21. Zhongkai Liu, Xuefeng Fan, Haodong Chen, Qifeng Hou, Feng Zhang, Jiuzhong Yang, Long Zhao, Bin Yang. Exploring low-temperature oxidation of methacrolein with insights into fuel molecular structure effects. Combustion and Flame 2023, 248 , 112528. https://doi.org/10.1016/j.combustflame.2022.112528
    22. Xiaoxiao Lin, Rongrong Hu, Ziji Ma, Hao Yue, Zuoying Wen, Cuihong Zhang, Christa Fittschen, Weijun Zhang, Xiaofeng Tang. Cl-Initiated oxidation of methacrolein under NO x -free conditions studied by VUV photoionization mass spectrometry. Physical Chemistry Chemical Physics 2022, 24 (29) , 17471-17478. https://doi.org/10.1039/D2CP02101C
    23. Z. N. Xu, W. Nie, Y. L. Liu, P. Sun, D. D. Huang, C. Yan, J. Krechmer, P. L. Ye, Z. Xu, X. M. Qi, C. J. Zhu, Y. Y. Li, T. Y. Wang, L. Wang, X. Huang, R. Z. Tang, S. Guo, G. L. Xiu, Q. Y. Fu, D. Worsnop, X. G. Chi, A. J. Ding. Multifunctional Products of Isoprene Oxidation in Polluted Atmosphere and Their Contribution to SOA. Geophysical Research Letters 2021, 48 (1) https://doi.org/10.1029/2020GL089276
    24. Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, Jacqueline F. Hamilton. Low-NO atmospheric oxidation pathways in a polluted megacity. Atmospheric Chemistry and Physics 2021, 21 (3) , 1613-1625. https://doi.org/10.5194/acp-21-1613-2021
    25. Marek Martínek, Jiří Váňa, Peter Šebej, Rafael Navrátil, Tomáš Slanina, Lucie Ludvíková, Jana Roithová, Petr Klán. Photochemistry of a 9‐Dithianyl‐Pyronin Derivative: A Cornucopia of Reaction Intermediates Lead to Common Photoproducts. ChemPlusChem 2020, 85 (10) , 2230-2242. https://doi.org/10.1002/cplu.202000370
    26. . Gas‐Phase Reactions Related to Secondary Organic Aerosols. 2020, 107-243. https://doi.org/10.1002/9781119422419.ch3
    27. Dongmei Cai, Xinke Wang, Jianmin Chen, Xiang Li. Molecular Characterization of Organosulfates in Highly Polluted Atmosphere Using Ultra‐High‐Resolution Mass Spectrometry. Journal of Geophysical Research: Atmospheres 2020, 125 (8) https://doi.org/10.1029/2019JD032253
    28. M.E. Jenkin, M.A.H. Khan, D.E. Shallcross, R. Bergström, D. Simpson, K.L.C. Murphy, A.R. Rickard. The CRI v2.2 reduced degradation scheme for isoprene. Atmospheric Environment 2019, 212 , 172-182. https://doi.org/10.1016/j.atmosenv.2019.05.055
    29. Shino Toma, Steve Bertman, Christopher Groff, Fulizi Xiong, Paul B. Shepson, Paul Romer, Kaitlin Duffey, Paul Wooldridge, Ronald Cohen, Karsten Baumann, Eric Edgerton, Abigail R. Koss, Joost de Gouw, Allen Goldstein, Weiwei Hu, Jose L. Jimenez. Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013. Atmospheric Chemistry and Physics 2019, 19 (3) , 1867-1880. https://doi.org/10.5194/acp-19-1867-2019
    30. Juhi Nagori, Ruud H. H. Janssen, Juliane L. Fry, Maarten Krol, Jose L. Jimenez, Weiwei Hu, Jordi Vilà-Guerau de Arellano. Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US. Atmospheric Chemistry and Physics 2019, 19 (2) , 701-729. https://doi.org/10.5194/acp-19-701-2019
    31. Rebecca H. Schwantes, Sophia M. Charan, Kelvin H. Bates, Yuanlong Huang, Tran B. Nguyen, Huajun Mai, Weimeng Kong, Richard C. Flagan, John H. Seinfeld. Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions. Atmospheric Chemistry and Physics 2019, 19 (11) , 7255-7278. https://doi.org/10.5194/acp-19-7255-2019
    32. Kelvin H. Bates, Daniel J. Jacob. A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol. Atmospheric Chemistry and Physics 2019, 19 (14) , 9613-9640. https://doi.org/10.5194/acp-19-9613-2019
    33. Jean-François Müller, Trissevgeni Stavrakou, Jozef Peeters. Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1) – Part 1: Chemical mechanism. Geoscientific Model Development 2019, 12 (6) , 2307-2356. https://doi.org/10.5194/gmd-12-2307-2019
    34. Momei Qin, Xuesong Wang, Yongtao Hu, Xiang Ding, Yu Song, Mengmeng Li, Petros Vasilakos, Athanasios Nenes, Armistead G. Russell. Simulating Biogenic Secondary Organic Aerosol During Summertime in China. Journal of Geophysical Research: Atmospheres 2018, 123 (19) https://doi.org/10.1029/2018JD029185
    35. Tomáš Slanina, Peter Šebej. Visible-light-activated photoCORMs: rational design of CO-releasing organic molecules absorbing in the tissue-transparent window. Photochemical & Photobiological Sciences 2018, 17 (6) , 692-710. https://doi.org/10.1039/c8pp00096d
    36. Yanan Xing, Huan Li, Liubin Huang, Huihui Wu, Hengqing Shen, Zhongming Chen. The production of formaldehyde and hydroxyacetone in methacrolein photooxidation: New insights into mechanism and effects of water vapor. Journal of Environmental Sciences 2018, 66 , 1-11. https://doi.org/10.1016/j.jes.2017.05.037
    37. Maiko Arashiro, Ying-Hsuan Lin, Zhenfa Zhang, Kenneth G. Sexton, Avram Gold, Ilona Jaspers, Rebecca C. Fry, Jason D. Surratt. Effect of secondary organic aerosol from isoprene-derived hydroxyhydroperoxides on the expression of oxidative stress response genes in human bronchial epithelial cells. Environmental Science: Processes & Impacts 2018, 20 (2) , 332-339. https://doi.org/10.1039/C7EM00439G
    38. Joel Brito, Evelyn Freney, Pamela Dominutti, Agnes Borbon, Sophie L. Haslett, Anneke M. Batenburg, Aurelie Colomb, Regis Dupuy, Cyrielle Denjean, Frederic Burnet, Thierry Bourriane, Adrien Deroubaix, Karine Sellegri, Stephan Borrmann, Hugh Coe, Cyrille Flamant, Peter Knippertz, Alfons Schwarzenboeck. Assessing the role of anthropogenic and biogenic sources on PM1 over southern West Africa using aircraft measurements. Atmospheric Chemistry and Physics 2018, 18 (2) , 757-772. https://doi.org/10.5194/acp-18-757-2018
    39. Paul G. Wenthold, Damodar Koirala, Arpad Somogyi, J. C. Poutsma. Infrared spectroscopic confirmation of α‐lactone formation in the dissociation of a gaseous amino acid. Journal of Physical Organic Chemistry 2017, 30 (2) https://doi.org/10.1002/poc.3606
    40. Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Matthew K. Newburn, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Ryan Thalman, Joel Brito, Samara Carbone, Paulo Artaxo, Allen H. Goldstein, Antonio O. Manzi, Rodrigo A. F. Souza, Fan Mei, John E. Shilling, Stephen R. Springston, Jian Wang, Jason D. Surratt, M. Lizabeth Alexander, Jose L. Jimenez, Scot T. Martin. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics 2017, 17 (11) , 6611-6629. https://doi.org/10.5194/acp-17-6611-2017
    41. James M. Cash, Mathew R. Heal, Ben Langford, Julia Drewer. A review of stereochemical implications in the generation of secondary organic aerosol from isoprene oxidation. Environmental Science: Processes & Impacts 2016, 18 (11) , 1369-1380. https://doi.org/10.1039/C6EM00354K
    42. Y. S. La, M. Camredon, P. J. Ziemann, R. Valorso, A. Matsunaga, V. Lannuque, J. Lee-Taylor, A. Hodzic, S. Madronich, B. Aumont. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation. Atmospheric Chemistry and Physics 2016, 16 (3) , 1417-1431. https://doi.org/10.5194/acp-16-1417-2016
    43. Damodar Koirala, Sampath Ranasinghe Kodithuwakkuge, Paul G. Wenthold. Mass spectrometric study of the decomposition pathways of canonical amino acids and α‐lactones in the gas phase. Journal of Physical Organic Chemistry 2015, 28 (10) , 635-644. https://doi.org/10.1002/poc.3464
    44. Tran B. Nguyen, Kelvin H. Bates, John D. Crounse, Rebecca H. Schwantes, Xuan Zhang, Henrik G. Kjaergaard, Jason D. Surratt, Peng Lin, Alexander Laskin, John H. Seinfeld, Paul O. Wennberg. Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere. Physical Chemistry Chemical Physics 2015, 17 (27) , 17914-17926. https://doi.org/10.1039/C5CP02001H
    45. M. E. Jenkin, J. C. Young, A. R. Rickard. The MCM v3.3.1 degradation scheme for isoprene. Atmospheric Chemistry and Physics 2015, 15 (20) , 11433-11459. https://doi.org/10.5194/acp-15-11433-2015
    46. K. P. Wyche, P. S. Monks, K. L. Smallbone, J. F. Hamilton, M. R. Alfarra, A. R. Rickard, G. B. McFiggans, M. E. Jenkin, W. J. Bloss, A. C. Ryan, C. N. Hewitt, A. R. MacKenzie. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets. Atmospheric Chemistry and Physics 2015, 15 (14) , 8077-8100. https://doi.org/10.5194/acp-15-8077-2015
    47. T. B. Nguyen, J. D. Crounse, R. H. Schwantes, A. P. Teng, K. H. Bates, X. Zhang, J. M. St. Clair, W. H. Brune, G. S. Tyndall, F. N. Keutsch, J. H. Seinfeld, P. O. Wennberg. Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds. Atmospheric Chemistry and Physics 2014, 14 (24) , 13531-13549. https://doi.org/10.5194/acp-14-13531-2014
    48. R. H. H. Janssen, J. Vilà‐Guerau de Arellano, J. L. Jimenez, L. N. Ganzeveld, N. H. Robinson, J. D. Allan, H. Coe, T. A. M. Pugh. Influence of boundary layer dynamics and isoprene chemistry on the organic aerosol budget in a tropical forest. Journal of Geophysical Research: Atmospheres 2013, 118 (16) , 9351-9366. https://doi.org/10.1002/jgrd.50672
    49. Ying-Hsuan Lin, Haofei Zhang, Havala O. T. Pye, Zhenfa Zhang, Wendy J. Marth, Sarah Park, Maiko Arashiro, Tianqu Cui, Sri Hapsari Budisulistiorini, Kenneth G. Sexton, William Vizuete, Ying Xie, Deborah J. Luecken, Ivan R. Piletic, Edward O. Edney, Libero J. Bartolotti, Avram Gold, Jason D. Surratt. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proceedings of the National Academy of Sciences 2013, 110 (17) , 6718-6723. https://doi.org/10.1073/pnas.1221150110
    50. Arup Kumar Ghosh, Aparajeo Chattopadhyay, Anamika Mukhopadhyay, Tapas Chakraborty. Isomeric effects on fragmentations of crotonaldehyde and methacrolein in low-energy electron–molecule collisions. Chemical Physics Letters 2013, 561-562 , 24-30. https://doi.org/10.1016/j.cplett.2013.01.026

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2012, 116, 24, 5763–5768
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp210853h
    Published March 27, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    1491

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.