ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of PEG-Modified BODIPY Dyes in Organic and Aqueous Solutions
My Activity

Figure 1Loading Img
    Article

    Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of PEG-Modified BODIPY Dyes in Organic and Aqueous Solutions
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
    Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
    *E-mail: [email protected] (A.J.B.); [email protected] (J.R.).
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 11, 5599–5609
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp312166w
    Published March 7, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A set polyethylene glycol (PEG)-appended BODIPY architectures (BOPEG1BOPEG3) have been prepared and studied in CH2Cl2, H2O:CH3CN (1:1) and aqueous solutions. BOPEG1 and BOPEG2 both contain a short PEG chain and differ in substitution about the BODIPY framework. BOPEG3 is comprised of a fully substituted BODIPY moiety linked to a PEG polymer that is roughly 13 units in length. The photophysics and electrochemical properties of these compounds have been thoroughly characterized in CH2Cl2 and aqueous CH3CN solutions. The behavior of BOPEG1BOPEG3 correlates with established rules of BODIPY stability based on substitution about the BODIPY moiety. Electrogenerated chemiluminescence (ECL) for each of these compounds was also monitored. BOPEG1, which is unsubstituted at the 2- and 6-positions dimerized upon electrochemical oxidation while BOPEG2, which contains ethyl groups at the 2- and 6-positions, was much more robust and served as an excellent ECL luminophore. BOPEG3 is highly soluble in water due to the long PEG tether and demonstrated modest ECL activity in aqueous solutions using tri-n-propylamine (TPrA) as a coreactant. As such, BOPEG3 represents the first BODIPY derivative that has been shown to display ECL in water without the need for an organic cosolvent, and marks an important step in the development of BODIPY based ECL probes for various biosensing applications.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Spectroscopic and voltammetric data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 53 publications.

    1. Pengxue Wu, Liang Zhang, Guilan Zhang, Linfeng Cheng, Fanglin Zhang, Yulan Li, Yingfeng Lei, Honglan Qi, Chengxiao Zhang, Qiang Gao. Highly Sensitive Electrochemiluminescence Biosensing Method for SARS-CoV-2 N Protein Incorporating the Micelle Probes of Quantum Dots and Dibenzoyl Peroxide Using the Screen-Printed Carbon Electrode Modified with a Carboxyl-Functionalized Graphene. Analytical Chemistry 2024, 96 (43) , 17345-17352. https://doi.org/10.1021/acs.analchem.4c04024
    2. Yifei Yue, Xingzi Zou, Lihui Liu, Xuejing Liu, Baohua Zhang, Bolin Zhao, Mei Chen, Yuxuan Fu, Yuwei Zhang, Li Niu. Cyanuric Acid-Functionalized Perovskite Nanocrystals toward Low Interface Impedance, High Environmental Stability, and Superior Electrochemiluminescence. ACS Applied Materials & Interfaces 2024, 16 (6) , 7531-7542. https://doi.org/10.1021/acsami.3c13936
    3. Xiaoting Fang, Zhiguang Li, Yuyue Zhao, Diqing Yue, Lu Zhang, Xiaoliang Wei. Multielectron Organic Redoxmers for Energy-Dense Redox Flow Batteries. ACS Materials Letters 2022, 4 (2) , 277-306. https://doi.org/10.1021/acsmaterialslett.1c00668
    4. Bolin Zhao, Yelin Luo, Xiaodan Qu, Qiong Hu, Jinhui Zou, Ying He, Zhenbang Liu, Yuwei Zhang, Yu Bao, Wei Wang, Li Niu. Graphite-like Carbon Nitride Nanotube for Electrochemiluminescence Featuring High Efficiency, High Stability, and Ultrasensitive Ion Detection Capability. The Journal of Physical Chemistry Letters 2021, 12 (45) , 11191-11198. https://doi.org/10.1021/acs.jpclett.1c02824
    5. Yuki Kadoya, Machi Hata, Yoshiki Tanaka, Atsuhiro Hirohata, Yutaka Hitomi, Masahito Kodera. Dicopper(II) Complexes of p-Cresol-2,6-Bis(dpa) Amide-Tether Ligands: Large Enhancement of Oxidative DNA Cleavage, Cytotoxicity, and Mechanistic Insight by Intracellular Visualization. Inorganic Chemistry 2021, 60 (8) , 5474-5482. https://doi.org/10.1021/acs.inorgchem.0c02954
    6. Meredith M. Ogle, Ashleigh D. Smith McWilliams, Matthew J. Ware, Steven A. Curley, Stuart J. Corr, Angel A. Martí. Sensing Temperature in Vitro and in Cells Using a BODIPY Molecular Probe. The Journal of Physical Chemistry B 2019, 123 (34) , 7282-7289. https://doi.org/10.1021/acs.jpcb.9b04384
    7. Takahiro Kawajiri, Maho Kato, Hiroki Nakata, Ryota Goto, Shin-yo Aibara, Reiya Ohta, Hiromichi Fujioka, Hironao Sajiki, Yoshinari Sawama. Chemoselective Nucleophilic Functionalizations of Aromatic Aldehydes and Acetals via Pyridinium Salt Intermediates. The Journal of Organic Chemistry 2019, 84 (7) , 3853-3870. https://doi.org/10.1021/acs.joc.8b02965
    8. Jia-Li Liu, Zhi-Ling Tang, Jia-Qi Zhang, Ya-Qin Chai, Ying Zhuo, Ruo Yuan. Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for MicroRNA Detection with One-Step DNA Walker Amplification. Analytical Chemistry 2018, 90 (8) , 5298-5305. https://doi.org/10.1021/acs.analchem.8b00209
    9. Lingling Li, Ying Chen, and Jun-Jie Zhu . Recent Advances in Electrochemiluminescence Analysis. Analytical Chemistry 2017, 89 (1) , 358-371. https://doi.org/10.1021/acs.analchem.6b04675
    10. Jan Winsberg, Tino Hagemann, Simon Muench, Christian Friebe, Bernhard Häupler, Tobias Janoschka, Sabine Morgenstern, Martin D. Hager, and Ulrich S. Schubert . Poly(boron-dipyrromethene)—A Redox-Active Polymer Class for Polymer Redox-Flow Batteries. Chemistry of Materials 2016, 28 (10) , 3401-3405. https://doi.org/10.1021/acs.chemmater.6b00640
    11. Anyi Chen, Shaoyong Ma, Ying Zhuo, Yaqin Chai, and Ruo Yuan . In Situ Electrochemical Generation of Electrochemiluminescent Silver Naonoclusters on Target-Cycling Synchronized Rolling Circle Amplification Platform for MicroRNA Detection. Analytical Chemistry 2016, 88 (6) , 3203-3210. https://doi.org/10.1021/acs.analchem.5b04578
    12. Mahdi Hesari, Kalen N. Swanick, Jia-Sheng Lu, Ryan Whyte, Suning Wang, and Zhifeng Ding . Highly Efficient Dual-Color Electrochemiluminescence from BODIPY-Capped PbS Nanocrystals. Journal of the American Chemical Society 2015, 137 (35) , 11266-11269. https://doi.org/10.1021/jacs.5b07633
    13. Shubhra B. Maity, Saikat Banerjee, Kyoung Sunwoo, Jong Seung Kim, and Parimal K. Bharadwaj . A Fluorescent Chemosensor for Hg2+ and Cd2+ Ions in Aqueous Medium under Physiological pH and Its Applications in Imaging Living Cells. Inorganic Chemistry 2015, 54 (8) , 3929-3936. https://doi.org/10.1021/acs.inorgchem.5b00106
    14. Yupu Qiao, Tuda Si, Ming-Hsiu Yang, and Ryan A. Altman . Metal-Free Trifluoromethylation of Aromatic and Heteroaromatic Aldehydes and Ketones. The Journal of Organic Chemistry 2014, 79 (15) , 7122-7131. https://doi.org/10.1021/jo501289v
    15. Allen J. Pistner, Daniel A. Lutterman, Michael J. Ghidiu, Eric Walker, Glenn P. A. Yap, and Joel Rosenthal . Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5-Dimethylphlorin Architecture. The Journal of Physical Chemistry C 2014, 118 (26) , 14124-14132. https://doi.org/10.1021/jp5016824
    16. Honglan Qi, Justin J. Teesdale, Rachel C. Pupillo, Joel Rosenthal, and Allen J. Bard . Synthesis, Electrochemistry, and Electrogenerated Chemiluminescence of Two BODIPY-Appended Bipyridine Homologues. Journal of the American Chemical Society 2013, 135 (36) , 13558-13566. https://doi.org/10.1021/ja406731f
    17. Gabriel A. Andrade, Allen J. Pistner, Glenn P. A. Yap, Daniel A. Lutterman, and Joel Rosenthal . Photocatalytic Conversion of CO2 to CO Using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties. ACS Catalysis 2013, 3 (8) , 1685-1692. https://doi.org/10.1021/cs400332y
    18. Tobias Sprenger, Thomas Schwarze, Hans‐Jürgen Holdt, Axel Hentsch, Marc Nazaré. Benzo‐Crown‐Ether Functionalized O‐BODIPY Probes for Cations – A Selective Fluorescent Probe for Ba 2+. Chemistry – A European Journal 2024, 30 (45) https://doi.org/10.1002/chem.202401928
    19. Sisi Chen, Yitian Huang, Lihong Gao, Shupei Zhang, Yanjie Chen, Feng Lin, Hong Dai. π-conjugated polypyrene network as new electrochemiluminescence emitters: Crosslinked conjugated backbone accelerates charge transport and enhances luminescence. Sensors and Actuators B: Chemical 2024, 403 , 134964. https://doi.org/10.1016/j.snb.2023.134964
    20. Shu-Shu Song, Jiale Zhan, Hao-Tian Zhu, Jing-Yi Bao, Ai-Jun Wang, Pei-Xin Yuan, Jiu-Ju Feng. Palladium nanospheres-embedded metal–organic frameworks to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4′-difluoroboradiazene in aqueous solution for ultrasensitive Cu 2+ detection. The Analyst 2024, 149 (2) , 426-434. https://doi.org/10.1039/D3AN01729J
    21. Ryotaro Onoue, Hiroyuki Watanabe, Masahiro Ono. Synthesis and biological evaluation of bi-modal BODIPY-conjugated Hoechst applicable for Auger-electron and photodynamic cancer therapy. Bioorganic & Medicinal Chemistry Letters 2023, 96 , 129534. https://doi.org/10.1016/j.bmcl.2023.129534
    22. Georgina Armendariz-Vidales, Pria Ramkissoon, Peter J. Barnard, Conor F. Hogan. Potential-controlled visible and near-infrared electrochemiluminescence from a BODIPY-DO3A macrocycle conjugate. Electrochimica Acta 2023, 468 , 143144. https://doi.org/10.1016/j.electacta.2023.143144
    23. Yanqing Fan, Shimin Fan, Lin Liu, Shengzhu Guo, Jing He, Xiaonan Li, Zhe Lian, Weijie Guo, Xuebo Chen, Ying Wang, Hua Jiang. Efficient manipulation of Förster resonance energy transfer through host–guest interaction enables tunable white-light emission and devices in heterotopic bisnanohoops. Chemical Science 2023, 14 (40) , 11121-11130. https://doi.org/10.1039/D3SC04358D
    24. Kaiqing Wu, Yongjun Zheng, Ran Chen, Zhixin Zhou, Songqin Liu, Yanfei Shen, Yuanjian Zhang. Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosensors and Bioelectronics 2023, 223 , 115031. https://doi.org/10.1016/j.bios.2022.115031
    25. Siphamandla Sithebe. 2-{9-(10-Bromoanthracenyl)}-1,3-dihydro-1H-[d]-1,3,2-benzodiazaborole. Molbank 2023, 2023 (1) , M1569. https://doi.org/10.3390/M1569
    26. Ryotaro Onoue, Hiroyuki Watanabe, Masahiro Ono. Hoechst-tagged radioiodinated BODIPY derivative for Auger-electron cancer therapy. Chemical Communications 2023, 59 (7) , 928-931. https://doi.org/10.1039/D2CC05405A
    27. Zhiyuan Xu, Fan Wu, Da Zhu, Haomin Fu, Zhen Shen, Jianping Lei. BODIPY-based metal–organic frameworks as efficient electrochemiluminescence emitters for telomerase detection. Chemical Communications 2022, 58 (82) , 11515-11518. https://doi.org/10.1039/D2CC04722E
    28. Xin Zhang, Peilin Wang, Yixin Nie, Qiang Ma. Recent development of organic nanoemitter-based ECL sensing application. TrAC Trends in Analytical Chemistry 2021, 143 , 116410. https://doi.org/10.1016/j.trac.2021.116410
    29. Thaissa L. Silva, Tamires A. Do Nascimento, Andresa K. A. De Almeida, Shaiani M. G. Melo, Julio C. S. Da Silva, Jadriane A. Xavier, André F. A. Xavier, Danyelle C. Santos, Jay Wadhawan, Flavio S. Emery, Marilia O. F. Goulart. Decorating BODIPY with Electron‐Withdrawing NO Group: Spectroelectrochemical Consequences and Computational Investigation. ChemElectroChem 2021, 8 (15) , 2921-2934. https://doi.org/10.1002/celc.202100609
    30. Francesca Arcudi, Luka Ðorđević, Sara Rebeccani, Michele Cacioppo, Alessandra Zanut, Giovanni Valenti, Francesco Paolucci, Maurizio Prato. Lighting up the Electrochemiluminescence of Carbon Dots through Pre‐ and Post‐Synthetic Design. Advanced Science 2021, 8 (13) https://doi.org/10.1002/advs.202100125
    31. Yao Lu, Hong Ke, Yang Wang, Yao Zhang, Huan Li, Chusen Huang, Nengqin Jia. A ratiometric electrochemiluminescence resonance energy transfer platform based on novel dye BODIPY derivatives for sensitive detection of lactoferrin. Biosensors and Bioelectronics 2020, 170 , 112664. https://doi.org/10.1016/j.bios.2020.112664
    32. Vyacheslav V. Sentyurin, Oleg A. Levitskiy, Tatiana V. Magdesieva. Molecular design of ambipolar redox-active molecules II: closed-shell systems. Current Opinion in Electrochemistry 2020, 24 , 6-14. https://doi.org/10.1016/j.coelec.2020.05.005
    33. Yang Yang, Gui-Bing Hu, Wen-Bin Liang, Li-Ying Yao, Wei Huang, Yong-Jiang Zhang, Jin-Ling Zhang, Jun-Mao Wang, Ruo Yuan, Dong-Rong Xiao. An AIEgen-based 2D ultrathin metal–organic layer as an electrochemiluminescence platform for ultrasensitive biosensing of carcinoembryonic antigen. Nanoscale 2020, 12 (10) , 5932-5941. https://doi.org/10.1039/C9NR10712F
    34. Enrique Rivera-González, Elizabeth K. Galván-Miranda, Martha Aguilar-Martínez, Norberto Farfán, Elba Xochitiotzi-Flores, Norma A. Macías Ruvalcaba. Electroreduction of 8-(thiophen-2-yl)- and 8-(phenyl)- dipyrrometheneboron difluorides. A mechanistic study by cyclic voltammetric digital simulation. Electrochimica Acta 2019, 317 , 375-383. https://doi.org/10.1016/j.electacta.2019.05.127
    35. Isabel Wen Badon, Joomin Lee, Temmy Pegarro Vales, Byoung Ki Cho, Ho-Joong Kim. Synthesis and photophysical characterization of highly water-soluble PEGylated BODIPY derivatives for cellular imaging. Journal of Photochemistry and Photobiology A: Chemistry 2019, 377 , 214-219. https://doi.org/10.1016/j.jphotochem.2019.03.050
    36. Lingyan Feng, Li Wu, Feifei Xing, Lianzhe Hu, Jinsong Ren, Xiaogang Qu. Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols. Biosensors and Bioelectronics 2017, 98 , 378-385. https://doi.org/10.1016/j.bios.2017.07.016
    37. Ryoichi Ishimatsu, Hirosato Shintaku, Chihaya Adachi, Koji Nakano, Toshihiko Imato. Electrogenerated Chemiluminescence of a BODIPY Derivative with Extended Conjugation. ChemistrySelect 2017, 2 (32) , 10531-10536. https://doi.org/10.1002/slct.201702449
    38. Niklas Heiland, Clemens Cidarér, Camilla Rohr, Mathias Piescheck, Johannes Ahrens, Martin Bröring, Uwe Schröder. Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries. ChemSusChem 2017, 10 (21) , 4215-4222. https://doi.org/10.1002/cssc.201701109
    39. Giovanni Valenti, Andrea Fiorani, Haidong Li, Neso Sojic, Francesco Paolucci. Essential Role of Electrode Materials in Electrochemiluminescence Applications. ChemElectroChem 2016, 3 (12) , 1990-1997. https://doi.org/10.1002/celc.201600602
    40. Zekeriya Biyiklioglu, Turgut Keleş. Design, Synthesis, Characterization and Electrochemical Properties of BODIPY Dyes Containing Mono, Bis-2-Naphthyloxyhexyloxy and 4-(Benzyloxy)Phenoxyhexyloxy Groups. Journal of Fluorescence 2016, 26 (6) , 2257-2266. https://doi.org/10.1007/s10895-016-1921-1
    41. Prashant Chauhan, Kenneth Chu, Ning Yan, Zhifeng Ding. Comparison study of electrochemiluminescence of boron-dipyrromethene (BODIPY) dyes in aprotic and aqueous solutions. Journal of Electroanalytical Chemistry 2016, 781 , 181-189. https://doi.org/10.1016/j.jelechem.2016.06.022
    42. Hangqing Xie, Xiaodong Li, Linlin Zhao, Lu Han, Wenbo Zhao, Xiaoqiang Chen. Electrochemiluminescence performance of nitroolefin-based fluorescein in different solutions and its application for the detection of cysteine. Sensors and Actuators B: Chemical 2016, 222 , 226-231. https://doi.org/10.1016/j.snb.2015.08.049
    43. Zhiqun Xu, Xiaofeng Yi, Qiao Wu, Yincan Zhu, Minrui Ou, Xiaoping Xu. First report on a BODIPY-based fluorescent probe for sensitive detection of oxytetracycline: application for the rapid determination of oxytetracycline in milk, honey and pork. RSC Advances 2016, 6 (92) , 89288-89297. https://doi.org/10.1039/C6RA19459A
    44. Mahdi Hesari, Zhifeng Ding. Review—Electrogenerated Chemiluminescence: Light Years Ahead. Journal of The Electrochemical Society 2016, 163 (4) , H3116-H3131. https://doi.org/10.1149/2.0161604jes
    45. Bo Zheng, Randy P. Sabatini, Wen-Fu Fu, Min-Sik Eum, William W. Brennessel, Lidong Wang, David W. McCamant, Richard Eisenberg. Light-driven generation of hydrogen: New chromophore dyads for increased activity based on Bodipy dye and Pt(diimine)(dithiolate) complexes. Proceedings of the National Academy of Sciences 2015, 112 (30) https://doi.org/10.1073/pnas.1509310112
    46. Douglas R. Rice, Haiying Gan, Bradley D. Smith. Bacterial imaging and photodynamic inactivation using zinc(ii)-dipicolylamine BODIPY conjugates. Photochemical & Photobiological Sciences 2015, 14 (7) , 1271-1281. https://doi.org/10.1039/c5pp00100e
    47. Kalen N. Swanick, Martina Sandroni, Zhifeng Ding, Eli Zysman‐Colman. Enhanced Electrochemiluminescence from a Stoichiometric Ruthenium(II)–Iridium(III) Complex Soft Salt. Chemistry – A European Journal 2015, 21 (20) , 7435-7440. https://doi.org/10.1002/chem.201406533
    48. Mahdi Hesari, Jia-sheng Lu, Suning Wang, Zhifeng Ding. Efficient electrochemiluminescence of a boron-dipyrromethene (BODIPY) dye. Chemical Communications 2015, 51 (6) , 1081-1084. https://doi.org/10.1039/C4CC08671F
    49. Justin J. Teesdale, Allen J. Pistner, Glenn P.A. Yap, Ying-Zhong Ma, Daniel A. Lutterman, Joel Rosenthal. Reduction of CO2 using a rhenium bipyridine complex containing ancillary BODIPY moieties. Catalysis Today 2014, 225 , 149-157. https://doi.org/10.1016/j.cattod.2013.10.091
    50. Yafei Wang, Long Chen, Reda M. El-Shishtawy, Saadullah G. Aziz, Klaus Müllen. Synthesis and optophysical properties of dimeric aza-BODIPY dyes with a push–pull benzodipyrrolidone core. Chem. Commun. 2014, 50 (78) , 11540-11542. https://doi.org/10.1039/C4CC03759F
    51. Liang Wang, Jing Cao, Jian-wei Wang, Qun Chen, Ai-jun Cui, Ming-yang He. Facile synthesis of dimeric BODIPY and its catalytic activity for sulfide oxidation under visible light. RSC Adv. 2014, 4 (28) , 14786-14790. https://doi.org/10.1039/C4RA01501K
    52. Juergen Bartelmess, Walter W. Weare, Narah Latortue, Christina Duong, Daniel S. Jones. meso-Pyridyl BODIPYs with tunable chemical, optical and electrochemical properties. New Journal of Chemistry 2013, 37 (9) , 2663. https://doi.org/10.1039/c3nj00426k
    53. Alexander B. Nepomnyashchii, Allen J. Bard, Jonathan K. Leland, Jeff D. Debad, George B. Sigal, James L. Wilbur, Jacob N. Wohlstadter. Chemiluminescence, Electrogenerated. 2000, 1-12. https://doi.org/10.1002/9780470027318.a5302.pub2

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 11, 5599–5609
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp312166w
    Published March 7, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    3378

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.