ACS Publications. Most Trusted. Most Cited. Most Read
Properties of Electrodeposited CuSCN 2D Layers and Nanowires Influenced by Their Mixed Domain Structure
My Activity

Figure 1Loading Img
    Article

    Properties of Electrodeposited CuSCN 2D Layers and Nanowires Influenced by Their Mixed Domain Structure
    Click to copy article linkArticle link copied!

    View Author Information
    CEA, INAC/SPrAM (UMR 5819 CEA-CNRS-Univ. J. Fourier-Grenoble I), Laboratoire d′Électronique Moléculaire, Organique et Hybride, 17 rue des Martyrs, 38054 Grenoble, France
    CEA, LITEN/DTS, Laboratoire des Technologies pour les Modules Photovoltaïques, Savoie Technolac, BP 332, 50 Avenue du Lac Léman, 73377 Le Bourget-du-Lac, France
    § CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble, France
    Department of Physics, College of Sciences, Centre of Nanohealth, Swansea University, Swansea SA2 8PP, Wales, U.K.
    *(D.A.) E-mail: [email protected]
    *(P.R.D.) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2014, 118, 29, 16095–16103
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp412499f
    Published June 26, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Electrodeposited copper thiocyanate (CuSCN) thin films and nanowires have been investigated by X-ray photoelectron spectroscopy (XPS), Raman, and optical spectroscopy. In addition, atomic force microscopy (AFM) together with scanning and transmission electron microscopy (SEM and TEM) have been employed for structural characterization. The multiple technique approach allows the correlation between structural, chemical, and electrical properties that are unique to the structure of this material. It has been found that CuSCN thin films and nanowires exhibit high crystalline quality with a close to stoichiometric composition. The XPS and Raman spectra suggest that the thiocyanate ion is bound to copper mainly through its S-end, with approximately 12–14% bound via the N-end. The applied absorption spectroscopy (Tauc and Urbach plots) points toward the possible coexistence of two large band gaps for the electrodeposited CuSCN. While its interpretation may be problematic from a purely physical perspective, we believe that this is a direct consequence of the occurrence of two CuSCN domains identified by XPS and Raman. A prominent absorption tail is observed that is assigned as either being due to the high concentration of the traps or a result of coexisting CuSCN domains. This absorption tail should not be an obstacle for the use of the copper thiocyanate in electronic devices, as the trap density could be reduced by annealing. In addition, nonannealed electrodeposited CuSCN thin films and nanowires of this type have recently been integrated into polymer solar cells and high efficiency has been obtained.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    TEM, XPS, and Raman spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 56 publications.

    1. Kaiwei Liang, Xinran Li, Guocheng Lv, Xuelian Yu, Zhongwei Liu, Libing Liao, Xiaoqiang An. Cu2O Photocathodes with Bidirectional CuSCN Layers to Improve Charge Separation for Enhanced Photoelectrochemical Water Splitting. Crystal Growth & Design 2024, 24 (16) , 6592-6598. https://doi.org/10.1021/acs.cgd.4c00412
    2. Nandapriya Manivelan, Vaiyapuri Soundharrajan, Jaekook Kim, Kandasamy Prabakar. Pentlandite Compound-Anchored CuSCN as a Stable Electrocatalyst in Highly Alkaline Solutions. ACS Sustainable Chemistry & Engineering 2024, 12 (1) , 48-58. https://doi.org/10.1021/acssuschemeng.3c04412
    3. Griffin C. Spence, Rachel C. Barbieri, David Pate, Lisa S. Graves, Ümit Özgür, Indika U. Arachchige. Sn-Induced Synthesis of Highly Crystalline and Size-Confined Si Nanorods at Moderately High Temperatures Using Hydrogen Silsesquioxane. The Journal of Physical Chemistry C 2023, 127 (24) , 11579-11590. https://doi.org/10.1021/acs.jpcc.3c01308
    4. Zhenxing Yang, Bingze Wu, Chunguang Zhai, Shifeng Niu, Bing Sun, Lingyan Dang, Cuimei Gu, Xiaolu Qi, Ye Tian, Junjie Li, Shuailing Ma, Mingguang Yao. Pressure-Dependent Structural and Band Gap Tuning of Semiconductor Copper(I) Thiocyanate (CuSCN). Inorganic Chemistry 2022, 61 (48) , 19274-19281. https://doi.org/10.1021/acs.inorgchem.2c03024
    5. Yolimar Gil, Raquel Gimeno-Muñoz, Ricardo Costa de Santana, Núria Aliaga-Alcalde, Pablo Fuentealba, Daniel Aravena, Arántzazu González-Campo, Evgenia Spodine. Luminescence of Macrocyclic Mononuclear DyIII Complexes and Their Immobilization on Functionalized Silicon-Based Surfaces. Inorganic Chemistry 2022, 61 (41) , 16347-16355. https://doi.org/10.1021/acs.inorgchem.2c02342
    6. Nirpendra Singh, Dalaver Anjum, Gobind Das, Issam Qattan, Shashikant Patole, Muhammad Sajjad. Phonon Dynamics and Transport Properties of Copper Thiocyanate and Copper Selenocyanate Pseudohalides. ACS Omega 2020, 5 (44) , 28637-28642. https://doi.org/10.1021/acsomega.0c03696
    7. Jinlu He, David Casanova, Wei-Hai Fang, Run Long, Oleg V. Prezhdo. MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI3/CuSCN Heterojunction. The Journal of Physical Chemistry Letters 2020, 11 (11) , 4481-4489. https://doi.org/10.1021/acs.jpclett.0c01467
    8. Prashant K. Baviskar, Sachin R. Rondiya, Girish P. Patil, Babasaheb R. Sankapal, Habib M. Pathan, Padmakar G. Chavan, Nelson Y. Dzade. ZnO/CuSCN Nano-Heterostructure as a Highly Efficient Field Emitter: a Combined Experimental and Theoretical Investigation. ACS Omega 2020, 5 (12) , 6715-6724. https://doi.org/10.1021/acsomega.0c00006
    9. Ladislav Kavan, Zuzana Vlčková Živcová, Pavel Hubík, Neha Arora, M. Ibrahim Dar, Shaik M. Zakeeruddin, Michael Grätzel. Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics. ACS Applied Energy Materials 2019, 2 (6) , 4264-4273. https://doi.org/10.1021/acsaem.9b00496
    10. Muhammad T. Sajjad, Jinhyung Park, Dorian Gaboriau, Jonathon R. Harwell, Fabrice Odobel, Peter Reiss, Ifor D. W. Samuel, Dmitry Aldakov. CuSCN Nanowires as Electrodes for p-Type Quantum Dot Sensitized Solar Cells: Charge Transfer Dynamics and Alumina Passivation. The Journal of Physical Chemistry C 2018, 122 (9) , 5161-5170. https://doi.org/10.1021/acs.jpcc.7b12619
    11. Minh Q. Ho, Richard J Alan Esteves, Gotluru Kedarnath, and Indika U. Arachchige . Size-Dependent Optical Properties of Luminescent Zn3P2 Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (19) , 10576-10584. https://doi.org/10.1021/acs.jpcc.5b01747
    12. Richard J Alan Esteves, Minh Q. Ho, and Indika U. Arachchige . Nanocrystalline Group IV Alloy Semiconductors: Synthesis and Characterization of Ge1–xSnx Quantum Dots for Tunable Bandgaps. Chemistry of Materials 2015, 27 (5) , 1559-1568. https://doi.org/10.1021/cm503983b
    13. Ronen Gertman, Adi Harush, and Iris Visoly-Fisher . Nanostructured Photocathodes for Infrared Photodetectors and Photovoltaics. The Journal of Physical Chemistry C 2015, 119 (4) , 1683-1689. https://doi.org/10.1021/jp510484n
    14. Qianfei Zhao, Hongying Yang, Linlin Tong. Evaluation of Cyanide Leaching Behavior of Typical Associated Copper Minerals in Gold Concentrates Based on Solution Chemistry and Interfacial Physicochemical Properties Analysis. JOM 2024, 76 (12) , 7218-7230. https://doi.org/10.1007/s11837-024-06840-8
    15. Fulin Wang, Man Zhou, Weiya Huang, Kangqiang Lu, Shaobo Ouyang, Wentao Xiang, Chensheng Zhou, Changlin Yu, Kai Yang. One-pot molten-salt construction of channels for hole transport and mass transfer over CoS 2 nanocubes for visible-light-driven CO 2 reduction. Inorganic Chemistry Frontiers 2024, 11 (14) , 4297-4306. https://doi.org/10.1039/D4QI00925H
    16. Jingkun Wang, Jidong Sun, Yuliang Liu, Xun Zhang, Kai Cheng, Yupeng Chen, Fangzhou Zhou, Jujie Luo, Tianbao Li, Junjie Guo, Bingshe Xu. The CuSCN layer between BiVO4 and NiFeOx for facilitating photogenerated carrier transfer and water oxidation kinetics. Journal of Colloid and Interface Science 2024, 666 , 57-65. https://doi.org/10.1016/j.jcis.2024.04.017
    17. Malik Ashtar, Jianxing Yang, Ying Yang, Khairia Mohammed Al-Ahmary, Dawei Cao. Improved photodetection performance of self-powered UV photodetector based on PZT/CuSCN heterojunction. Solar Energy Materials and Solar Cells 2024, 270 , 112812. https://doi.org/10.1016/j.solmat.2024.112812
    18. Yingying Li, Zhewei Chen, Wenjie Zhou, Qi Wang, Yuan Zhang, Tao Song, Baoquan Sun, Steffen Duhm. Solution treatment controls charge-transfer states and energy-level alignment at hybrid CuSCN-organic interfaces. RSC Applied Interfaces 2024, 1 (3) , 492-501. https://doi.org/10.1039/D3LF00244F
    19. Yujin Liu, Yilong Meng, Junqing Liu, Qingduan Li, Zhong Ji. Self-powered and broadband CuSCN/Si heterojunction photodetector for multi-color imaging based on diffuse reflection mode. Nanotechnology 2023, 34 (45) , 455203. https://doi.org/10.1088/1361-6528/acee06
    20. Sancan Han, Qingqiang Zhao, Qing Hou, Yuanpeng Ding, Jiale Quan, Yixin Zhang, Fangyu Wu, Yifei Lu, Hehua Zhang, Huijun Li, Ding Wang, Enming Song. Flexible, active P-typed copper(I) thiocyanate (p-CuSCN) films as self-powered photodetectors for large-scale optoelectronic systems. Materials Today Electronics 2023, 5 , 100048. https://doi.org/10.1016/j.mtelec.2023.100048
    21. Deborah Biggio, Marzia Fantauzzi, Bernhard Elsener, Davide Atzei, Antonella Rossi. The role of organic compounds in artificial saliva for corrosion studies: Evidence from X‐ray photoelectron spectroscopy. Surface and Interface Analysis 2023, 55 (6-7) , 450-456. https://doi.org/10.1002/sia.7149
    22. Isaac Montoya De Los Santos, Alan A. Pérez-Orozco, Diego A. Liña-Martínez, Maykel Courel, Carlos A. Meza-Avendaño, Jorge A. Borrego-Pérez, Laura M. Pérez, David Laroze. Towards a CdTe Solar Cell Efficiency Promotion: The Role of ZnO:Al and CuSCN Nanolayers. Nanomaterials 2023, 13 (8) , 1335. https://doi.org/10.3390/nano13081335
    23. Jianhua Li, Xilin Zhang, Zhifang Zhang, Tianxiao Liu, Lei Chen, Zhiyong Liu. Linear pseudo-halogen anion passivating defects for MAPbI3 perovskite solar cells. Physica B: Condensed Matter 2023, 651 , 414591. https://doi.org/10.1016/j.physb.2022.414591
    24. Guangbo Liu, Huasen Lu, Yingshuang Xu, Qinghao Quan, Honghao Lv, Xuejing Cui, Jie Chen, Luhua Jiang, R. Jürgen Behm. Photo-assisted seawater-electrolyte Mg/H2O batteries for simultaneous generation of electricity and hydrogen. Chemical Engineering Journal 2023, 455 , 140875. https://doi.org/10.1016/j.cej.2022.140875
    25. Jiyao Wei, Xuemin Guo, Hui Yang, Acan Liu, Wenxiao Zhang, Chunyan Lu, Xiaodong Li, Junfeng Fang. Successive ionic layer adsorption and reaction processed CuSCN for efficient inverted perovskite solar cells. Journal of Alloys and Compounds 2022, 925 , 166760. https://doi.org/10.1016/j.jallcom.2022.166760
    26. Chao Wu, Fengmin Wu, Haizheng Hu, Shunli Wang, Aiping Liu, Daoyou Guo. Review of self-powered solar-blind photodetectors based on Ga2O3. Materials Today Physics 2022, 28 , 100883. https://doi.org/10.1016/j.mtphys.2022.100883
    27. Bingjun Wang, Sungho Nam, Saurav Limbu, Ji‐Seon Kim, Moritz Riede, Donal D. C. Bradley. Properties and Applications of Copper(I) Thiocyanate Hole‐Transport Interlayers Processed from Different Solvents. Advanced Electronic Materials 2022, 8 (7) https://doi.org/10.1002/aelm.202101253
    28. Muhammad Ali Tariq, Nadia Shahzad, Abdul Sattar, Muneeza Ahmad, Mustafa Anwar, Muhammad Imran Shahzad. Role of bi-layered CuSCN based hole transport films to realize highly efficient and stable perovskite solar cells. Surfaces and Interfaces 2022, 28 , 101657. https://doi.org/10.1016/j.surfin.2021.101657
    29. Ming-Ru Wen, Sheng-Hsiung Yang, Wei-Sheng Chen. Solution-Processed Smooth Copper Thiocyanate Layer with Improved Hole Injection Ability for the Fabrication of Quantum Dot Light-Emitting Diodes. Nanomaterials 2022, 12 (1) , 154. https://doi.org/10.3390/nano12010154
    30. Min Kim, Antonio Alfano, Giovanni Perotto, Michele Serri, Nicola Dengo, Alessandro Mezzetti, Silvia Gross, Mirko Prato, Marco Salerno, Antonio Rizzo, Roberto Sorrentino, Enrico Cescon, Gaudenzio Meneghesso, Fabio Di Fonzo, Annamaria Petrozza, Teresa Gatti, Francesco Lamberti. Moisture resistance in perovskite solar cells attributed to a water-splitting layer. Communications Materials 2021, 2 (1) https://doi.org/10.1038/s43246-020-00104-z
    31. K. Ramachandran, C. Jeganathan, R. Prabhakaran, M. Wakisaka, G. Paruthimal Kalaignan, S. Karuppuchamy. High performing air stable inverted perovskite solar cells using nanostructured CuSCN thin film as hole transport material. Solar Energy Materials and Solar Cells 2021, 231 , 111116. https://doi.org/10.1016/j.solmat.2021.111116
    32. K. Ramachandran, C. Jeganathan, S. Karuppuchamy. Surfactant assisted electrochemical growth of ultra-thin CuSCN nanowires for inverted perovskite solar cell applications. Organic Electronics 2021, 95 , 106214. https://doi.org/10.1016/j.orgel.2021.106214
    33. Pei Ning, Junhui Liang, Linghui Li, Da Chen, Laishun Qin, Xin Yao, Huayu Chen, Yuexiang Huang. In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport. Journal of Colloid and Interface Science 2021, 590 , 407-414. https://doi.org/10.1016/j.jcis.2020.12.126
    34. Zuzana Vlčková Živcová, Milan Bouša, Matěj Velický, Otakar Frank, Ladislav Kavan. In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates. Nanomaterials 2021, 11 (5) , 1256. https://doi.org/10.3390/nano11051256
    35. Jingmin Yan, Yanhua Wang, Yubo Tu, Peiwei Han, Xiang Liu, Shufeng Ye. Green Treatment of Cyanide Tailings Using a “Filter Press BackWash–Chemical Precipitation–Gaseous Membrane Absorption” Method. Applied Sciences 2021, 11 (5) , 2091. https://doi.org/10.3390/app11052091
    36. Genghua Yan, Zhong Ji, Zhuowei Li, Bangqi Jiang, Min Kuang, Xiang Cai, Ye Yuan, Wenjie Mai. All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging. Science China Materials 2021, 64 (1) , 198-208. https://doi.org/10.1007/s40843-020-1358-5
    37. Paulo Valente, Andrés Seré, Carlos J. Pereyra, Lucía Campo, Enzo Spera, Judith Castillo, Samuel A. Helvia, Rodrigo del Río, Daniel Ramírez, Gonzalo Riveros, Katherine Álvarez, Bárbara González, Ricardo E. Marotti, Enrique A. Dalchiele. Comparative analysis between nanorods and nanowires by using depolarized and diffuse light. Optics Communications 2021, 478 , 126393. https://doi.org/10.1016/j.optcom.2020.126393
    38. Linfeng Pan, Yuhang Liu, Liang Yao, Dan Ren, Kevin Sivula, Michael Grätzel, Anders Hagfeldt. Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-13987-5
    39. Marzia Fantauzzi, Bernhard Elsener, Federica Cocco, Cristiana Passiu, Antonella Rossi. Model Protective Films on Cu-Zn Alloys Simulating the Inner Surfaces of Historical Brass Wind Instruments by EIS and XPS. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00272
    40. Yena Ji, Han Ju Lee, Seonjeong Lee, Kyung Gook Cho, Keun Hyung Lee, Kihyon Hong. High‐Performance P‐Type Copper(I) Thiocyanate Thin Film Transistors Processed from Solution at Low Temperature. Advanced Materials Interfaces 2019, 6 (19) https://doi.org/10.1002/admi.201900883
    41. Ziming Zhao, Haidong Yang, Yan Zhu, Sha Luo, Jiantai Ma. Interfacial N–Cu–S coordination mode of CuSCN/C 3 N 4 with enhanced electrocatalytic activity for hydrogen evolution. Nanoscale 2019, 11 (27) , 12938-12945. https://doi.org/10.1039/C9NR02860A
    42. Wenli Chen, Jie Zhao, Bei Liu, Baochang Cheng, Yanhe Xiao, Shuijin Lei. Back-to-back Interface diodes induced symmetrical negative differential resistance and reversible bipolar resistive switching in β-CuSCN trigonal pyramid micro/nanoarray. Applied Surface Science 2019, 480 , 13-25. https://doi.org/10.1016/j.apsusc.2019.02.101
    43. Kanghua Li, Siyu Wang, Chao Chen, Rokas Kondrotas, Manchen Hu, Shuaicheng Lu, Chong Wang, Wei Chen, Jiang Tang. 7.5% n–i–p Sb 2 Se 3 solar cells with CuSCN as a hole-transport layer. Journal of Materials Chemistry A 2019, 7 (16) , 9665-9672. https://doi.org/10.1039/C9TA01773A
    44. Yanqi Lv, Yi Guo, Heng Zhang, Xingfu Zhou, Hongling Chen. Enhanced efficiency and stability of fully air-processed TiO2 nanorods array based perovskite solar cell using commercial available CuSCN and carbon. Solar Energy 2018, 173 , 7-16. https://doi.org/10.1016/j.solener.2018.07.057
    45. Truong-Giang Vo, Jian-Ming Chiu, Yian Tai, Chia-Ying Chiang. Turnip-inspired BiVO4/CuSCN nanostructure with close to 100% suppression of surface recombination for solar water splitting. Solar Energy Materials and Solar Cells 2018, 185 , 415-424. https://doi.org/10.1016/j.solmat.2018.05.054
    46. Nilushi Wijeyasinghe, Flurin Eisner, Leonidas Tsetseris, Yen‐Hung Lin, Akmaral Seitkhan, Jinhua Li, Feng Yan, Olga Solomeshch, Nir Tessler, Panos Patsalas, Thomas D. Anthopoulos. p‐Doping of Copper(I) Thiocyanate (CuSCN) Hole‐Transport Layers for High‐Performance Transistors and Organic Solar Cells. Advanced Functional Materials 2018, 28 (31) https://doi.org/10.1002/adfm.201802055
    47. Hsueh-Pin Lin, Xuan-Jun Lin, Dung-Ching Perng. Electrodeposited CuSCN metal-semiconductor-metal high performance deep-ultraviolet photodetector. Applied Physics Letters 2018, 112 (2) https://doi.org/10.1063/1.5010772
    48. Nilushi Wijeyasinghe, Anna Regoutz, Flurin Eisner, Tian Du, Leonidas Tsetseris, Yen‐Hung Lin, Hendrik Faber, Pichaya Pattanasattayavong, Jinhua Li, Feng Yan, Martyn A. McLachlan, David J. Payne, Martin Heeney, Thomas D. Anthopoulos. Copper(I) Thiocyanate (CuSCN) Hole‐Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin‐Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Advanced Functional Materials 2017, 27 (35) https://doi.org/10.1002/adfm.201701818
    49. Daniel Ramírez, Gonzalo Riveros, Katherine Álvarez, Bárbara González, Carlos J. Pereyra, Enrique A. Dalchiele, Ricardo E. Marotti, Daniel Ariosa, Francisco Martín, José R. Ramos-Barrado. Electrochemical synthesis of CuSCN nanostructures, tuning the morphological and structural characteristics: From nanorods to nanostructured layers. Materials Science in Semiconductor Processing 2017, 68 , 226-237. https://doi.org/10.1016/j.mssp.2017.06.030
    50. Pichaya Pattanasattayavong, Vinich Promarak, Thomas D. Anthopoulos. Electronic Properties of Copper(I) Thiocyanate (CuSCN). Advanced Electronic Materials 2017, 3 (3) https://doi.org/10.1002/aelm.201600378
    51. Daniel Ramírez, Katherine Álvarez, Gonzalo Riveros, Bárbara González, Enrique A. Dalchiele. Electrodeposition of CuSCN seed layers and nanowires: A microelectrogravimetric approach. Electrochimica Acta 2017, 228 , 308-318. https://doi.org/10.1016/j.electacta.2017.01.053
    52. Leonidas Tsetseris. Copper thiocyanate: polytypes, defects, impurities, and surfaces. Journal of Physics: Condensed Matter 2016, 28 (29) , 295801. https://doi.org/10.1088/0953-8984/28/29/295801
    53. Naba R. Paudel, Yanfa Yan. Application of copper thiocyanate for high open‐circuit voltages of CdTe solar cells. Progress in Photovoltaics: Research and Applications 2016, 24 (1) , 94-101. https://doi.org/10.1002/pip.2660
    54. Leonidas Tsetseris. Two-dimensional copper thio- and seleno-cyanates. Physical Chemistry Chemical Physics 2016, 18 (11) , 7837-7840. https://doi.org/10.1039/C6CP00438E
    55. Leonidas Tsetseris. Two-dimensional cyanates: stabilization through hydrogenation. Physical Chemistry Chemical Physics 2016, 18 (21) , 14662-14666. https://doi.org/10.1039/C6CP02613C
    56. Xiaoyan Gan, Keyong Liu, Xiangjun Du, Liling Guo, Hanxing Liu. Bath temperature and deposition potential dependences of CuSCN nanorod arrays prepared by electrochemical deposition. Journal of Materials Science 2015, 50 (24) , 7866-7874. https://doi.org/10.1007/s10853-015-9267-7

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2014, 118, 29, 16095–16103
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp412499f
    Published June 26, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1622

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.