ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Electric Double Layer Has a Life of Its Own

View Author Information
Sorbonne Universités, UPMC Univ. Paris 06, UMR 8234 PHENIX, 75005 Paris, France
CNRS, UMR 8234 PHENIX, 75005 Paris, France
Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS, FR3459, 80039 Amiens Cedex, France
§ Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
Princeton Center for Theoretical Science, Princeton, New Jersey 08544, United States
Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, 3584 CE Utrecht, The Netherlands
# Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
% Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
*E-mail [email protected] (B.R.).
Cite this: J. Phys. Chem. C 2014, 118, 32, 18291–18298
Publication Date (Web):May 27, 2014
https://doi.org/10.1021/jp503224w
Copyright © 2014 American Chemical Society

Article Views

4229

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)

Abstract

Abstract Image

Using molecular dynamics simulations with recently developed importance sampling methods, we show that the differential capacitance of a model ionic liquid based double-layer capacitor exhibits an anomalous dependence on the applied electrical potential. Such behavior is qualitatively incompatible with standard mean-field theories of the electrical double layer but is consistent with observations made in experiment. The anomalous response results from structural changes induced in the interfacial region of the ionic liquid as it develops a charge density to screen the charge induced on the electrode surface. These structural changes are strongly influenced by the out-of-plane layering of the electrolyte and are multifaceted, including an abrupt local ordering of the ions adsorbed in the plane of the electrode surface, reorientation of molecular ions, and the spontaneous exchange of ions between different layers of the electrolyte close to the electrode surface. The local ordering exhibits signatures of a first-order phase transition, which would indicate a singular charge-density transition in a macroscopic limit.

Cited By

This article is cited by 177 publications.

  1. Shern R. Tee, Debra J. Searles. Constant Potential and Constrained Charge Ensembles for Simulations of Conductive Electrodes. Journal of Chemical Theory and Computation 2023, 19 (10) , 2758-2768. https://doi.org/10.1021/acs.jctc.3c00153
  2. Yuming Zhao, Chuan Xiao, Elieser Mejia, Aditya Garg, Junyeob Song, Amit Agrawal, Wei Zhou. Voltage Modulation of Nanoplasmonic Metal Luminescence from Nano-Optoelectrodes in Electrolytes. ACS Nano 2023, 17 (9) , 8634-8645. https://doi.org/10.1021/acsnano.3c01491
  3. Bulti Pramanick, Trivender Kumar, Sumanta Chowdhury, Aditi Halder, Prem Felix Siril. Graphene-Supported Palladium Nanostructures as Highly Active Catalysts for Formic Acid Oxidation Reaction. ACS Applied Energy Materials 2022, 5 (11) , 13480-13491. https://doi.org/10.1021/acsaem.2c02118
  4. Guillaume Jeanmairet, Benjamin Rotenberg, Mathieu Salanne. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chemical Reviews 2022, 122 (12) , 10860-10898. https://doi.org/10.1021/acs.chemrev.1c00925
  5. Md Masuduzzaman, BoHung Kim. Unraveling the Molecular Interface and Boundary Problems in an Electrical Double Layer and Electroosmotic Flow. Langmuir 2022, 38 (23) , 7244-7255. https://doi.org/10.1021/acs.langmuir.2c00734
  6. Betul Uralcan, Irem Beyza Uralcan. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. ACS Applied Materials & Interfaces 2022, 14 (14) , 16800-16808. https://doi.org/10.1021/acsami.1c24088
  7. Igor M. Telles, Yan Levin, Alexandre P. dos Santos. Reversal of Electroosmotic Flow in Charged Nanopores with Multivalent Electrolyte. Langmuir 2022, 38 (12) , 3817-3823. https://doi.org/10.1021/acs.langmuir.1c03475
  8. Nikhil V. S. Avula, Anwesa Karmakar, Rahul Kumar, Sundaram Balasubramanian. Efficient Parametrization of Force Field for the Quantitative Prediction of the Physical Properties of Ionic Liquid Electrolytes. Journal of Chemical Theory and Computation 2021, 17 (7) , 4274-4290. https://doi.org/10.1021/acs.jctc.1c00268
  9. Yaroslav Groda, Maxym Dudka, Alexei A. Kornyshev, Gleb Oshanin, Svyatoslav Kondrat. Superionic Liquids in Conducting Nanoslits: Insights from Theory and Simulations. The Journal of Physical Chemistry C 2021, 125 (9) , 4968-4976. https://doi.org/10.1021/acs.jpcc.0c10836
  10. Iuliia V. Voroshylova, Heigo Ers, Borja Docampo-Álvarez, Piret Pikma, Vladislav B. Ivaništšev, M. Natália D.S. Cordeiro. Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid–Au Interface. The Journal of Physical Chemistry Letters 2020, 11 (24) , 10408-10413. https://doi.org/10.1021/acs.jpclett.0c03212
  11. Thomas Ludwig, Joseph A. Gauthier, Colin F. Dickens, Kristopher S. Brown, Stefan Ringe, Karen Chan, Jens K. Nørskov. Atomistic Insight into Cation Effects on Binding Energies in Cu-Catalyzed Carbon Dioxide Reduction. The Journal of Physical Chemistry C 2020, 124 (45) , 24765-24775. https://doi.org/10.1021/acs.jpcc.0c07004
  12. Silvia Di Lecce, Alexei A. Kornyshev, Michael Urbakh, Fernando Bresme. Lateral Ordering in Nanoscale Ionic Liquid Films between Charged Surfaces Enhances Lubricity. ACS Nano 2020, 14 (10) , 13256-13267. https://doi.org/10.1021/acsnano.0c05043
  13. Matheus Girotto, Adriano Mesquita Alencar. Modified 3D Ewald Summation for Slab Geometry at Constant Potential. The Journal of Physical Chemistry B 2020, 124 (36) , 7842-7848. https://doi.org/10.1021/acs.jpcb.0c03510
  14. Heigo Ers, Meeri Lembinen, Maksim Mišin, Ari P. Seitsonen, Maxim V. Fedorov, Vladislav B. Ivaništšev. Graphene–Ionic Liquid Interfacial Potential Drop from Density Functional Theory-Based Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2020, 124 (36) , 19548-19555. https://doi.org/10.1021/acs.jpcc.0c02964
  15. Manuel Meusel, Matthias Lexow, Afra Gezmis, Simon Schötz, Margareta Wagner, Andreas Bayer, Florian Maier, Hans-Peter Steinrück. Atomic Force and Scanning Tunneling Microscopy of Ordered Ionic Liquid Wetting Layers from 110 K up to Room Temperature. ACS Nano 2020, 14 (7) , 9000-9010. https://doi.org/10.1021/acsnano.0c03841
  16. Yong-Lei Wang, Bin Li, Sten Sarman, Francesca Mocci, Zhong-Yuan Lu, Jiayin Yuan, Aatto Laaksonen, Michael D. Fayer. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews 2020, 120 (13) , 5798-5877. https://doi.org/10.1021/acs.chemrev.9b00693
  17. Jannes Seebeck, Peter Schiffels, Sabine Schweizer, Jörg-Rüdiger Hill, Robert Horst Meißner. Electrical Double Layer Capacitance of Curved Graphite Electrodes. The Journal of Physical Chemistry C 2020, 124 (10) , 5515-5521. https://doi.org/10.1021/acs.jpcc.9b10428
  18. Samuel W. Coles, Chanbum Park, Rohit Nikam, Matej Kanduč, Joachim Dzubiella, Benjamin Rotenberg. Correlation Length in Concentrated Electrolytes: Insights from All-Atom Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2020, 124 (9) , 1778-1786. https://doi.org/10.1021/acs.jpcb.9b10542
  19. Tangming Mo, Sheng Bi, Yuan Zhang, Volker Presser, Xuehang Wang, Yury Gogotsi, Guang Feng. Ion Structure Transition Enhances Charging Dynamics in Subnanometer Pores. ACS Nano 2020, 14 (2) , 2395-2403. https://doi.org/10.1021/acsnano.9b09648
  20. Yi-Jung Tu, Samuel Delmerico, Jesse G. McDaniel. Inner Layer Capacitance of Organic Electrolytes from Constant Voltage Molecular Dynamics. The Journal of Physical Chemistry C 2020, 124 (5) , 2907-2922. https://doi.org/10.1021/acs.jpcc.0c00299
  21. Margherita Buraschi, Stefano Sansotta, Dirk Zahn. Polarization Effects in Dynamic Interfaces of Platinum Electrodes and Ionic Liquid Phases: A Molecular Dynamics Study. The Journal of Physical Chemistry C 2020, 124 (3) , 2002-2007. https://doi.org/10.1021/acs.jpcc.9b10354
  22. Joseph A. Gauthier, Colin F. Dickens, Hendrik H. Heenen, Sudarshan Vijay, Stefan Ringe, Karen Chan. Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics. Journal of Chemical Theory and Computation 2019, 15 (12) , 6895-6906. https://doi.org/10.1021/acs.jctc.9b00717
  23. Nicklas Hjalmarsson, Erik Bergendal, Yong-Lei Wang, Bulat Munavirov, Daniel Wallinder, Sergei Glavatskih, Teodor Aastrup, Rob Atkin, István Furó, Mark W. Rutland. Electro-Responsive Surface Composition and Kinetics of an Ionic Liquid in a Polar Oil. Langmuir 2019, 35 (48) , 15692-15700. https://doi.org/10.1021/acs.langmuir.9b02119
  24. Sergei V. Kalinin, Ondrej Dyck, Nina Balke, Sabine Neumayer, Wan-Yu Tsai, Rama Vasudevan, David Lingerfelt, Mahshid Ahmadi, Maxim Ziatdinov, Matthew T. McDowell, Evgheni Strelcov. Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS Nano 2019, 13 (9) , 9735-9780. https://doi.org/10.1021/acsnano.9b02687
  25. Samuel W. Coles, Vladislav B. Ivaništšev. Simulation of a Solvate Ionic Liquid at a Polarizable Electrode with a Constant Potential. The Journal of Physical Chemistry C 2019, 123 (7) , 3935-3943. https://doi.org/10.1021/acs.jpcc.8b09369
  26. Rachel Downing, Guilherme Volpe Bossa, Sylvio May. The Role of Ion–Ion Correlations for the Differential Capacitance of Ionic Liquids. The Journal of Physical Chemistry C 2018, 122 (50) , 28537-28544. https://doi.org/10.1021/acs.jpcc.8b09756
  27. Jiale Ma, Qiangqiang Meng, Chun Chan, Zhen Li, Yonghui Zhang, Jun Fan. Alkyl Tail Aggregations Break Long-Range Ordering of Ionic Liquids Confined in Subnanometer Pores. The Journal of Physical Chemistry C 2018, 122 (48) , 27314-27322. https://doi.org/10.1021/acs.jpcc.8b06263
  28. Phwey S. Gil, Sara J. Jorgenson, Adriaan R. Riet, D. J. Lacks. Relationships between Molecular Structure, Interfacial Structure, and Dynamics of Ionic Liquids near Neutral and Charged Surfaces. The Journal of Physical Chemistry C 2018, 122 (48) , 27462-27468. https://doi.org/10.1021/acs.jpcc.8b08644
  29. Guilherme Colherinhas, Thaciana Malaspina, Eudes Eterno Fileti. Storing Energy in Biodegradable Electrochemical Supercapacitors. ACS Omega 2018, 3 (10) , 13869-13875. https://doi.org/10.1021/acsomega.8b01980
  30. Zhujie Li, Guillaume Jeanmairet, Trinidad Méndez-Morales, Benjamin Rotenberg, Mathieu Salanne. Capacitive Performance of Water-in-Salt Electrolytes in Supercapacitors: A Simulation Study. The Journal of Physical Chemistry C 2018, 122 (42) , 23917-23924. https://doi.org/10.1021/acs.jpcc.8b07557
  31. Zhou Yu, Chao Fang, Jingsong Huang, Bobby G. Sumpter, Rui Qiao. Molecular Structure and Dynamics of Interfacial Polymerized Ionic Liquids. The Journal of Physical Chemistry C 2018, 122 (39) , 22494-22503. https://doi.org/10.1021/acs.jpcc.8b06065
  32. Zhou Yu, Chao Fang, Jingsong Huang, Bobby G. Sumpter, Rui Qiao. Solvate Ionic Liquids at Electrified Interfaces. ACS Applied Materials & Interfaces 2018, 10 (38) , 32151-32161. https://doi.org/10.1021/acsami.8b10387
  33. Naresh C. Osti, Alejandro Gallegos, Boris Dyatkin, Jianzhong Wu, Yury Gogotsi, Eugene Mamontov. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors. The Journal of Physical Chemistry C 2018, 122 (19) , 10476-10481. https://doi.org/10.1021/acs.jpcc.8b02521
  34. Alper Tunga Celebi, Ali Beskok. Molecular and Continuum Transport Perspectives on Electroosmotic Slip Flows. The Journal of Physical Chemistry C 2018, 122 (17) , 9699-9709. https://doi.org/10.1021/acs.jpcc.8b02519
  35. Fei Zhang, Chao Fang, Rui Qiao. Effects of Water on Mica–Ionic Liquid Interfaces. The Journal of Physical Chemistry C 2018, 122 (16) , 9035-9045. https://doi.org/10.1021/acs.jpcc.8b01405
  36. Batyr Garlyyev, Song Xue, Sebastian Watzele, Daniel Scieszka, Aliaksandr S. Bandarenka. Influence of the Nature of the Alkali Metal Cations on the Electrical Double-Layer Capacitance of Model Pt(111) and Au(111) Electrodes. The Journal of Physical Chemistry Letters 2018, 9 (8) , 1927-1930. https://doi.org/10.1021/acs.jpclett.8b00610
  37. Anton Ruzanov, Meeri Lembinen, Heigo Ers, José M. García de la Vega, Isabel Lage-Estebanez, Enn Lust, and Vladislav B. Ivaništšev . Density Functional Theory Study of Ionic Liquid Adsorption on Circumcoronene Shaped Graphene. The Journal of Physical Chemistry C 2018, 122 (5) , 2624-2631. https://doi.org/10.1021/acs.jpcc.7b12156
  38. Aimin Ge, Pablo E. Videla, Gwendolynne L. Lee, Benjamin Rudshteyn, Jia Song, Clifford P. Kubiak, Victor S. Batista, and Tianquan Lian . Interfacial Structure and Electric Field Probed by in Situ Electrochemical Vibrational Stark Effect Spectroscopy and Computational Modeling. The Journal of Physical Chemistry C 2017, 121 (34) , 18674-18682. https://doi.org/10.1021/acs.jpcc.7b05563
  39. Matheus Girotto, Thiago Colla, Alexandre P. dos Santos, and Yan Levin . Lattice Model of an Ionic Liquid at an Electrified Interface. The Journal of Physical Chemistry B 2017, 121 (26) , 6408-6415. https://doi.org/10.1021/acs.jpcb.7b02258
  40. Juan P. Garrahan , Phillip L. Geissler , David T. Limmer . Virtual Issue in Memory of David Chandler. The Journal of Physical Chemistry B 2017, 121 (21) , 5309-5311. https://doi.org/10.1021/acs.jpcb.7b04830
  41. Ian C. Bourg, Sang Soo Lee, Paul Fenter, Christophe Tournassat. Stern Layer Structure and Energetics at Mica–Water Interfaces. The Journal of Physical Chemistry C 2017, 121 (17) , 9402-9412. https://doi.org/10.1021/acs.jpcc.7b01828
  42. Alpha A. Lee and Susan Perkin . Ion–Image Interactions and Phase Transition at Electrolyte–Metal Interfaces. The Journal of Physical Chemistry Letters 2016, 7 (14) , 2753-2757. https://doi.org/10.1021/acs.jpclett.6b01324
  43. Betul Uralcan, Ilhan A. Aksay, Pablo G. Debenedetti, and David T. Limmer . Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2333-2338. https://doi.org/10.1021/acs.jpclett.6b00859
  44. Alexander M. Smith, Alpha A. Lee, and Susan Perkin . The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. The Journal of Physical Chemistry Letters 2016, 7 (12) , 2157-2163. https://doi.org/10.1021/acs.jpclett.6b00867
  45. Justin B. Haskins, James J. Wu, and John W. Lawson . Computational and Experimental Study of Li-Doped Ionic Liquids at Electrified Interfaces. The Journal of Physical Chemistry C 2016, 120 (22) , 11993-12011. https://doi.org/10.1021/acs.jpcc.6b02449
  46. Benjamin Rotenberg and Mathieu Salanne . Structural Transitions at Ionic Liquid Interfaces. The Journal of Physical Chemistry Letters 2015, 6 (24) , 4978-4985. https://doi.org/10.1021/acs.jpclett.5b01889
  47. Konrad Breitsprecher, Kai Szuttor, and Christian Holm . Electrode Models for Ionic Liquid-Based Capacitors. The Journal of Physical Chemistry C 2015, 119 (39) , 22445-22451. https://doi.org/10.1021/acs.jpcc.5b06046
  48. Jenel Vatamanu and Dmitry Bedrov . Capacitive Energy Storage: Current and Future Challenges. The Journal of Physical Chemistry Letters 2015, 6 (18) , 3594-3609. https://doi.org/10.1021/acs.jpclett.5b01199
  49. Zhifei Yan, Dawei Meng, Xiuling Wu, Xiaolong Zhang, Weiping Liu, and Kaihua He . Two-Dimensional Ordering of Ionic Liquids Confined by Layered Silicate Plates via Molecular Dynamics Simulation. The Journal of Physical Chemistry C 2015, 119 (33) , 19244-19252. https://doi.org/10.1021/acs.jpcc.5b05776
  50. Srinivasa Rao Varanasi and Suresh K. Bhatia . Capacitance Optimization in Nanoscale Electrochemical Supercapacitors. The Journal of Physical Chemistry C 2015, 119 (31) , 17573-17584. https://doi.org/10.1021/acs.jpcc.5b04254
  51. Aaron Elbourne, Samila McDonald, Kislon Voïchovsky, Frank Endres, Gregory G. Warr, and Rob Atkin . Nanostructure of the Ionic Liquid–Graphite Stern Layer. ACS Nano 2015, 9 (7) , 7608-7620. https://doi.org/10.1021/acsnano.5b02921
  52. Robert Hayes, Gregory G. Warr, and Rob Atkin . Structure and Nanostructure in Ionic Liquids. Chemical Reviews 2015, 115 (13) , 6357-6426. https://doi.org/10.1021/cr500411q
  53. Arik Yochelis, Maibam Birla Singh, and Iris Visoly-Fisher . Coupling Bulk and Near-Electrode Interfacial Nanostructuring in Ionic Liquids. Chemistry of Materials 2015, 27 (12) , 4169-4179. https://doi.org/10.1021/acs.chemmater.5b00780
  54. Thomas Jänsch, Jens Wallauer, and Bernhard Roling . Influence of Electrode Roughness on Double Layer Formation in Ionic Liquids. The Journal of Physical Chemistry C 2015, 119 (9) , 4620-4626. https://doi.org/10.1021/jp512617j
  55. Zlatko Brkljača, Michael Klimczak, Zoran Miličević, Matthias Weisser, Nicola Taccardi, Peter Wasserscheid, David M. Smith, Andreas Magerl, and Ana-Sunčana Smith . Complementary Molecular Dynamics and X-ray Reflectivity Study of an Imidazolium-Based Ionic Liquid at a Neutral Sapphire Interface. The Journal of Physical Chemistry Letters 2015, 6 (3) , 549-555. https://doi.org/10.1021/jz5024493
  56. Yun-Xin Zhong, Jia-Wei Yan, Mian-Gang Li, Xiao Zhang, Ding-Wen He, and Bing-Wei Mao . Resolving Fine Structures of the Electric Double Layer of Electrochemical Interfaces in Ionic Liquids with an AFM Tip Modification Strategy. Journal of the American Chemical Society 2014, 136 (42) , 14682-14685. https://doi.org/10.1021/ja508222m
  57. Alexei A. Kornyshev and Rui Qiao . Three-Dimensional Double Layers. The Journal of Physical Chemistry C 2014, 118 (32) , 18285-18290. https://doi.org/10.1021/jp5047062
  58. Camille Bacon, Alessandra Serva, Céline Merlet, Patrice Simon, Mathieu Salanne. On the key role of electrolyte–electrode van der Waals interactions in the simulation of ionic liquids-based supercapacitors. Electrochimica Acta 2023, 455 , 142380. https://doi.org/10.1016/j.electacta.2023.142380
  59. Sufian Munawar, Najma Saleem, Dharmendra Tripathi. Cilia and electroosmosis induced double diffusive transport of hybrid nanofluids through microchannel and entropy analysis. Nonlinear Engineering 2023, 12 (1) https://doi.org/10.1515/nleng-2022-0287
  60. S. M. Kazem Manzoorolajdad, Hossein Hamzehpour, Jalal Sarabadani. Electro-osmotic flow in different phosphorus nanochannels. Physics of Fluids 2023, 35 (4) , 042006. https://doi.org/10.1063/5.0142011
  61. Aaron Elbourne, Madeleine Dupont, Rashad Kariuki, Nastaran Meftahi, Torben Daeneke, Tamar L. Greaves, Christopher F. McConville, Gary Bryant, Saffron J. Bryant, Quinn A. Besford, Andrew J. Christofferson. Mapping the Three‐Dimensional Nanostructure of the Ionic Liquid–Solid Interface Using Atomic Force Microscopy and Molecular Dynamics Simulations. Advanced Materials Interfaces 2023, 10 (7) , 2202110. https://doi.org/10.1002/admi.202202110
  62. Giovanni Pireddu, Benjamin Rotenberg. Frequency-Dependent Impedance of Nanocapacitors from Electrode Charge Fluctuations as a Probe of Electrolyte Dynamics. Physical Review Letters 2023, 130 (9) https://doi.org/10.1103/PhysRevLett.130.098001
  63. Xinhai Chen, Baowen Li, Zixuan Liao, Jidong Li, Xuemei Li, Jun Yin, Wanlin Guo. Principles and Applications of Liquid‐Environment Atomic Force Microscopy. Advanced Materials Interfaces 2022, 9 (35) , 2201864. https://doi.org/10.1002/admi.202201864
  64. Heigo Ers, Iuliia V. Voroshylova, Piret Pikma, Vladislav B. Ivaništšev. Double layer in ionic liquids: Temperature effect and bilayer model. Journal of Molecular Liquids 2022, 363 , 119747. https://doi.org/10.1016/j.molliq.2022.119747
  65. Luke Langford, Nicholas Winner, Andrea Hwang, Haley Williams, Lorenzo Vergari, Raluca O. Scarlat, Mark Asta. Constant-potential molecular dynamics simulations of molten salt double layers for FLiBe and FLiNaK. The Journal of Chemical Physics 2022, 157 (9) , 094705. https://doi.org/10.1063/5.0097697
  66. Zachary A.H. Goodwin, Alexei A. Kornyshev. Cracking Ion Pairs in the Electrical Double Layer of Ionic Liquids. Electrochimica Acta 2022, 99 , 141163. https://doi.org/10.1016/j.electacta.2022.141163
  67. Ludwig J. V. Ahrens-Iwers, Mathijs Janssen, Shern R. Tee, Robert H. Meißner. ELECTRODE: An electrochemistry package for atomistic simulations. The Journal of Chemical Physics 2022, 157 (8) , 084801. https://doi.org/10.1063/5.0099239
  68. Henrique de Araujo Chagas, Eudes Eterno Fileti, Guilherme Colherinhas. A molecular dynamics study of graphyne-based electrode and biocompatible ionic liquid for supercapacitor applications. Journal of Molecular Liquids 2022, 360 , 119494. https://doi.org/10.1016/j.molliq.2022.119494
  69. Runxi Wang, Sheng Bi, Zhaoli Guo, Guang Feng. Molecular insight into replacement dynamics of CO2 enhanced oil recovery in nanopores. Chemical Engineering Journal 2022, 440 , 135796. https://doi.org/10.1016/j.cej.2022.135796
  70. Johannes Gäding, Gabriele Tocci, Mark Busch, Patrick Huber, Robert H. Meißner. Impact of confinement and polarizability on dynamics of ionic liquids. The Journal of Chemical Physics 2022, 156 (6) , 064703. https://doi.org/10.1063/5.0077408
  71. Qiang Gao, Wan‐Yu Tsai, Nina Balke. In situ and operando force‐based atomic force microscopy for probing local functionality in energy storage materials. Electrochemical Science Advances 2022, 2 (1) https://doi.org/10.1002/elsa.202100038
  72. Jannes Seebeck, Céline Merlet, Robert H. Meißner. Elucidating Curvature-Capacitance Relationships in Carbon-Based Supercapacitors. Physical Review Letters 2022, 128 (8) https://doi.org/10.1103/PhysRevLett.128.086001
  73. H. Montes-Campos, A. Rivera-Pousa, T. Méndez-Morales. Density functional theory of alkali metals at the IL/graphene electrochemical interface. The Journal of Chemical Physics 2022, 156 (1) , 014706. https://doi.org/10.1063/5.0077449
  74. Benjamin Bobin Ye, Zhen-Gang Wang. A coarse-grained model of room-temperature ionic liquids between metal electrodes: a molecular dynamics study. Physical Chemistry Chemical Physics 2022, 111 https://doi.org/10.1039/D2CP00166G
  75. Laura Scalfi, Benjamin Rotenberg. Microscopic origin of the effect of substrate metallicity on interfacial free energies. Proceedings of the National Academy of Sciences 2021, 118 (50) https://doi.org/10.1073/pnas.2108769118
  76. Heigo Ers, Jaak Nerut, Enn Lust, Piret Pikma. Long-term stability of Cd(0001) single crystal | ionic liquid interface – The effect of I− addition. Journal of Electroanalytical Chemistry 2021, 903 , 115826. https://doi.org/10.1016/j.jelechem.2021.115826
  77. Giovanni Pireddu, Laura Scalfi, Benjamin Rotenberg. A molecular perspective on induced charges on a metallic surface. The Journal of Chemical Physics 2021, 155 (20) , 204705. https://doi.org/10.1063/5.0076127
  78. Serena R. Alfarano, Simone Pezzotti, Christopher J. Stein, Zhou Lin, Federico Sebastiani, Sarah Funke, Claudius Hoberg, Inga Kolling, Chun Yu Ma, Katja Mauelshagen, Thorsten Ockelmann, Gerhard Schwaab, Li Fu, Jean-Blaise Brubach, Pascale Roy, Martin Head-Gordon, Kristina Tschulik, Marie-Pierre Gaigeot, Martina Havenith. Stripping away ion hydration shells in electrical double-layer formation: Water networks matter. Proceedings of the National Academy of Sciences 2021, 118 (47) https://doi.org/10.1073/pnas.2108568118
  79. Ludwig J. V. Ahrens-Iwers, Robert H. Meißner. Constant potential simulations on a mesh. The Journal of Chemical Physics 2021, 155 (10) , 104104. https://doi.org/10.1063/5.0063381
  80. Abhijit Gogoi, K. Anki Reddy, Pranab Kumar Mondal. Electro-osmotic flow through nanochannel with different surface charge configurations: A molecular dynamics simulation study. Physics of Fluids 2021, 33 (9) , 092115. https://doi.org/10.1063/5.0062031
  81. Rafael Vicentini, Leonardo M. Da Silva, Débora V. Franco, Willian G. Nunes, Juliane Fiates, Gustavo Doubek, Luís F.M. Franco, Renato G. Freitas, Cristiano Fantini, Hudson Zanin. Raman probing carbon & aqueous electrolytes interfaces and molecular dynamics simulations towards understanding electrochemical properties under polarization conditions in supercapacitors. Journal of Energy Chemistry 2021, 60 , 279-292. https://doi.org/10.1016/j.jechem.2021.01.003
  82. Sang Soo Lee, Ayumi Koishi, Ian C. Bourg, Paul Fenter. Ion correlations drive charge overscreening and heterogeneous nucleation at solid–aqueous electrolyte interfaces. Proceedings of the National Academy of Sciences 2021, 118 (32) https://doi.org/10.1073/pnas.2105154118
  83. Shern Ren Tee. Theory and Practice in Constant Potential Molecular Dynamics Simulations. 2021, 4-1-4-18. https://doi.org/10.1063/9780735422377_004
  84. Iuliia V. Voroshylova, Heigo Ers, Volodymyr Koverga, Borja Docampo-Álvarez, Piret Pikma, Vladislav B. Ivaništšev, M. Natália D.S. Cordeiro. Ionic liquid–metal interface: The origins of capacitance peaks. Electrochimica Acta 2021, 379 , 138148. https://doi.org/10.1016/j.electacta.2021.138148
  85. Laura Scalfi, Mathieu Salanne, Benjamin Rotenberg. Molecular Simulation of Electrode-Solution Interfaces. Annual Review of Physical Chemistry 2021, 72 (1) , 189-212. https://doi.org/10.1146/annurev-physchem-090519-024042
  86. Hongduo Lu, Samuel Stenberg, Clifford E. Woodward, Jan Forsman. Structural transitions at electrodes, immersed in simple ionic liquid models. Soft Matter 2021, 17 (14) , 3876-3885. https://doi.org/10.1039/D0SM02167A
  87. Xuepeng Wang, Kun Liu, Jianzhong Wu. Demystifying the Stern layer at a metal–electrolyte interface: Local dielectric constant, specific ion adsorption, and partial charge transfer. The Journal of Chemical Physics 2021, 154 (12) , 124701. https://doi.org/10.1063/5.0043963
  88. Miangang Li, Shuai Liu, Liqiang Xie, Jiawei Yan, Corinne Lagrost, Shuai Wang, Guang Feng, Philippe Hapiot, Bingwei Mao. Charge Transfer Kinetics at Ag(111) Single Crystal Electrode/Ionic Liquid Interfaces: Dependence on the Cation Alkyl Side Chain Length. ChemElectroChem 2021, 8 (5) , 983-990. https://doi.org/10.1002/celc.202100094
  89. Andrew R. Crothers, Charles Li, C.J. Radke. A grahame triple-layer model unifies mica monovalent ion exchange, zeta potential, and surface forces. Advances in Colloid and Interface Science 2021, 288 , 102335. https://doi.org/10.1016/j.cis.2020.102335
  90. Alexander J. Pak, Gyeong S. Hwang. Fundamentals of Capacitive Charge Storage in Carbon-Based Supercapacitors. 2021, 559-586. https://doi.org/10.1007/978-3-030-18778-1_24
  91. Meng Zhang, Sai Duan, Siheng Luo, Yunxin Zhong, Jiawei Yan, Guokun Liu, Bingwei Mao, Zhongqun Tian. Structural Exploration of Multilayered Ionic Liquid/Ag Electrode Interfaces by Atomic Force Microscopy and Surface‐Enhanced Raman Spectroscopy. ChemElectroChem 2020, 7 (24) , 4936-4942. https://doi.org/10.1002/celc.202001294
  92. Morad Biagooi, SeyedEhsan Nedaaee Oskoee. The effects of slit-pore geometry on capacitive properties: a molecular dynamics study. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-62943-7
  93. Benjamin Rotenberg. Use the force! Reduced variance estimators for densities, radial distribution functions, and local mobilities in molecular simulations. The Journal of Chemical Physics 2020, 153 (15) , 150902. https://doi.org/10.1063/5.0029113
  94. James E. Hallett, Hannah J. Hayler, Susan Perkin. Nanolubrication in deep eutectic solvents. Physical Chemistry Chemical Physics 2020, 22 (36) , 20253-20264. https://doi.org/10.1039/D0CP03787G
  95. Katherine Klymko, Andrew Nonaka, John B. Bell, Sean P. Carney, Alejandro L. Garcia. Low Mach number fluctuating hydrodynamics model for ionic liquids. Physical Review Fluids 2020, 5 (9) https://doi.org/10.1103/PhysRevFluids.5.093701
  96. Thorben Sieling, Izabella Brand. In Situ Spectroelectrochemical Investigation of Potential‐Dependent Changes in an Amphiphilic Imidazolium‐Based Ionic Liquid Film on the Au(111) Electrode Surface. ChemElectroChem 2020, 7 (15) , 3233-3243. https://doi.org/10.1002/celc.202000385
  97. Samuel Stenberg, Björn Stenqvist, Cliff Woodward, Jan Forsman. Grand canonical simulations of ions between charged conducting surfaces using exact 3D Ewald summations. Physical Chemistry Chemical Physics 2020, 22 (24) , 13659-13665. https://doi.org/10.1039/D0CP01640C
  98. Eudes Eterno Fileti. Electric double layer formation and storing energy processes on graphene-based supercapacitors from electrical and thermodynamic perspectives. Journal of Molecular Modeling 2020, 26 (6) https://doi.org/10.1007/s00894-020-04428-y
  99. Laura Scalfi, David T. Limmer, Alessandro Coretti, Sara Bonella, Paul A. Madden, Mathieu Salanne, Benjamin Rotenberg. Charge fluctuations from molecular simulations in the constant-potential ensemble. Physical Chemistry Chemical Physics 2020, 22 (19) , 10480-10489. https://doi.org/10.1039/C9CP06285H
  100. Morad Biagooi, Mohammad Samanipour, S. Alireza Ghasemi, SeyedEhsan Nedaaee Oskoee. CAVIAR: A simulation package for charged particles in environments surrounded by conductive boundaries. AIP Advances 2020, 10 (3) , 035310. https://doi.org/10.1063/1.5140052
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect