ACS Publications. Most Trusted. Most Cited. Most Read
Au36(SPh)24 Nanomolecules: X-ray Crystal Structure, Optical Spectroscopy, Electrochemistry, and Theoretical Analysis
My Activity

Figure 1Loading Img
    Article

    Au36(SPh)24 Nanomolecules: X-ray Crystal Structure, Optical Spectroscopy, Electrochemistry, and Theoretical Analysis
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
    Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
    § Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
    Other Access OptionsSupporting Information (3)

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2014, 118, 49, 14157–14167
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp506508x
    Published October 15, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The physicochemical properties of gold:thiolate nanomolecules depend on their crystal structure and the capping ligands. The effects of protecting ligands on the crystal structure of the nanomolecules are of high interest in this area of research. Here we report the crystal structure of an all aromatic thiophenolate-capped Au36(SPh)24 nanomolecule, which has a face-centered cubic (fcc) core similar to other nanomolecules such as Au36(SPh-tBu)24 and Au36(SC5H9)24 with the same number of gold atoms and ligands. The results support the idea that a stable core remains intact even when the capping ligand is varied. We also correct our earlier assignment of “Au36(SPh)23” which was determined based on MALDI mass spectrometry which is more prone to fragmentation than ESI mass spectrometry. We show that ESI mass spectrometry gives the correct assignment of Au36(SPh)24, supporting the X-ray crystal structure. The electronic structure of the title compound was computed at different levels of theory (PBE, LDA, and LB94) using the coordinates extracted from the single crystal X-ray diffraction data. The optical and electrochemical properties were determined from experimental data using UV–vis spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Au36(SPh)24 shows a broad electrochemical gap near 2 V, a desirable optical gap of ∼1.75 eV for dye-sensitized solar cell applications, as well as appropriately positioned electrochemical potentials for many electrocatalytic reactions.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Kohn–Sham orbitals and orbitals energies, the crystal structure data, and the cif file. CCDC number is 996171. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 76 publications.

    1. Nida Nahan Eyyakkandy, Afreen Afreen, Gayathri Vilangappurath, Saniya Gratious, K. V. Adarsh, Sukhendu Mandal. Modulating the Ligand Bulkiness on a Series of Au36(SR)24 Nanoclusters for Photoluminescence Enhancement. The Journal of Physical Chemistry C 2024, 128 (44) , 18828-18835. https://doi.org/10.1021/acs.jpcc.4c04927
    2. Caitlin A. McCandler, Antti Pihlajamäki, Sami Malola, Hannu Häkkinen, Kristin A. Persson. Gold–Thiolate Nanocluster Dynamics and Intercluster Reactions Enabled by a Machine Learned Interatomic Potential. ACS Nano 2024, 18 (29) , 19014-19023. https://doi.org/10.1021/acsnano.4c03094
    3. Lanyan Li, Pu Wang, Yong Pei. Thermodynamic Descriptors for Structural Stability and Ligand Compatibility of Thiolate-Protected Gold Nanoclusters. The Journal of Physical Chemistry C 2022, 126 (19) , 8519-8529. https://doi.org/10.1021/acs.jpcc.2c01585
    4. Naga Arjun Sakthivel, Vijay Reddy Jupally, Senthil Kumar Eswaramoorthy, Kalpani Hirunika Wijesinghe, Praneeth Reddy Nimmala, Chanaka Kumara, Milan Rambukwella, Tanya Jones, Amala Dass. Size Exclusion Chromatography: An Indispensable Tool for the Isolation of Monodisperse Gold Nanomolecules. Analytical Chemistry 2021, 93 (8) , 3987-3996. https://doi.org/10.1021/acs.analchem.0c04961
    5. Xi Kang, Manzhou Zhu. Structural Isomerism in Atomically Precise Nanoclusters. Chemistry of Materials 2021, 33 (1) , 39-62. https://doi.org/10.1021/acs.chemmater.0c03979
    6. Naga Arjun Sakthivel, Mauro Stener, Luca Sementa, Marco Medves, Guda Ramakrishna, Alessandro Fortunelli, Allen G. Oliver, Amala Dass. Crystal Structure of Au36-xAgx(SPh-tBu)24 Nanoalloy and the Role of Ag Doping in Excited State Coupling. The Journal of Physical Chemistry C 2019, 123 (48) , 29484-29494. https://doi.org/10.1021/acs.jpcc.9b09060
    7. K. L. Dimuthu M. Weerawardene, Pratima Pandeya, Meng Zhou, Yuxiang Chen, Rongchao Jin, Christine M. Aikens. Luminescence and Electron Dynamics in Atomically Precise Nanoclusters with Eight Superatomic Electrons. Journal of the American Chemical Society 2019, 141 (47) , 18715-18726. https://doi.org/10.1021/jacs.9b07626
    8. Gowri U. Kuda-Singappulige, Christine M. Aikens. Geometrical and Electronic Structure, Stability, and Optical Absorption Spectra Comparisons between Thiolate- and Chloride-Stabilized Gold Nanoclusters. The Journal of Physical Chemistry A 2019, 123 (45) , 9712-9720. https://doi.org/10.1021/acs.jpca.9b06598
    9. A. Tlahuice-Flores. New Polyhedra Approach To Explain the Structure and Evolution on Size of Thiolated Gold Clusters. The Journal of Physical Chemistry C 2019, 123 (17) , 10831-10841. https://doi.org/10.1021/acs.jpcc.9b02265
    10. Yingwei Li, Tian-Yi Luo, Meng Zhou, Yongbo Song, Nathaniel L. Rosi, Rongchao Jin. A Correlated Series of Au/Ag Nanoclusters Revealing the Evolutionary Patterns of Asymmetric Ag Doping. Journal of the American Chemical Society 2018, 140 (43) , 14235-14243. https://doi.org/10.1021/jacs.8b08335
    11. Yingwei Li, Yuxiang Chen, Stephen D. House, Shuo Zhao, Zahid Wahab, Judith C. Yang, Rongchao Jin. Interface Engineering of Gold Nanoclusters for CO Oxidation Catalysis. ACS Applied Materials & Interfaces 2018, 10 (35) , 29425-29434. https://doi.org/10.1021/acsami.8b07552
    12. Tanya C. Jones, Leigh Sumner, Guda Ramakrishna, Mohammad bin Hatshan, Abubkr Abuhagr, Saumen Chakraborty, Amala Dass. Bulky t-Butyl Thiolated Gold Nanomolecular Series: Synthesis, Characterization, Optical Properties, and Electrocatalysis. The Journal of Physical Chemistry C 2018, 122 (31) , 17726-17737. https://doi.org/10.1021/acs.jpcc.8b01106
    13. Shevanuja Theivendran, Le Chang, Aneek Mukherjee, Luca Sementa, Mauro Stener, Alessandro Fortunelli, and Amala Dass . Principles of Optical Spectroscopy of Aromatic Alloy Nanomolecules: Au36–xAgx(SPh-tBu)24. The Journal of Physical Chemistry C 2018, 122 (8) , 4524-4531. https://doi.org/10.1021/acs.jpcc.8b00556
    14. Xavier Torrelles, Evangelina Pensa, Emiliano Cortés, Roberto Salvarezza, Pilar Carro, Cecilia Hernández Guerrero, Carmen Ocal, Esther Barrena, and Salvador Ferrer . Solving the Long-Standing Controversy of Long-Chain Alkanethiols Surface Structure on Au(111). The Journal of Physical Chemistry C 2018, 122 (7) , 3893-3902. https://doi.org/10.1021/acs.jpcc.7b11465
    15. Stefan Knoppe, Hannu Häkkinen, Thierry Verbiest, and Koen Clays . Role of Donor and Acceptor Substituents on the Nonlinear Optical Properties of Gold Nanoclusters. The Journal of Physical Chemistry C 2018, 122 (7) , 4019-4028. https://doi.org/10.1021/acs.jpcc.7b12356
    16. K. L. Dimuthu M. Weerawardene and Christine M. Aikens . Origin of Photoluminescence of Ag25(SR)18– Nanoparticles: Ligand and Doping Effect. The Journal of Physical Chemistry C 2018, 122 (4) , 2440-2447. https://doi.org/10.1021/acs.jpcc.7b11706
    17. Naga Arjun Sakthivel, Shevanuja Theivendran, Vigneshraja Ganeshraj, Allen G. Oliver, and Amala Dass . Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules. Journal of the American Chemical Society 2017, 139 (43) , 15450-15459. https://doi.org/10.1021/jacs.7b08651
    18. Zhimei Tian and Longjiu Cheng . Evolution of 4e-Superatom Networks in Au4(AuL)1–12 Nanoclusters (L = Cl, SH, PH2, SCH3). The Journal of Physical Chemistry C 2017, 121 (37) , 20458-20467. https://doi.org/10.1021/acs.jpcc.7b05398
    19. Natalia V. Karimova and Christine M. Aikens . Optical Properties of Small Gold Clusters Au8L82+ (L = PH3, PPh3): Magnetic Circular Dichroism Spectra. The Journal of Physical Chemistry C 2017, 121 (35) , 19478-19489. https://doi.org/10.1021/acs.jpcc.7b05630
    20. Shevanuja Theivendran and Amala Dass . Synthesis of Aromatic Thiolate-Protected Gold Nanomolecules by Core Conversion: The Case of Au36(SPh-tBu)24. Langmuir 2017, 33 (30) , 7446-7451. https://doi.org/10.1021/acs.langmuir.7b01017
    21. Amala Dass, Tanya C. Jones, Shevanuja Theivendran, Luca Sementa, and Alessandro Fortunelli . Core Size Interconversions of Au30(S-tBu)18 and Au36(SPhX)24. The Journal of Physical Chemistry C 2017, 121 (27) , 14914-14919. https://doi.org/10.1021/acs.jpcc.7b03860
    22. Milan Rambukwella, Luca Sementa, Alessandro Fortunelli, and Amala Dass . Core-Size Conversion of Au38(SCH2CH2Ph)24 to Au30(S–tBu)18 Nanomolecules. The Journal of Physical Chemistry C 2017, 121 (27) , 14929-14935. https://doi.org/10.1021/acs.jpcc.7b04201
    23. Luca Sementa, Giovanni Barcaro, Oscar Baseggio, Martina De Vetta, Amala Dass, Edoardo Aprà, Mauro Stener, and Alessandro Fortunelli . Ligand-Enhanced Optical Response of Gold Nanomolecules and Its Fragment Projection Analysis: The Case of Au30(SR)18. The Journal of Physical Chemistry C 2017, 121 (20) , 10832-10842. https://doi.org/10.1021/acs.jpcc.6b12029
    24. Milan Rambukwella, Shayna Burrage, Marie Neubrander, Oscar Baseggio, Edoardo Aprà, Mauro Stener, Alessandro Fortunelli, and Amala Dass . Au38(SPh)24: Au38 Protected with Aromatic Thiolate Ligands. The Journal of Physical Chemistry Letters 2017, 8 (7) , 1530-1537. https://doi.org/10.1021/acs.jpclett.7b00193
    25. Natalia V. Karimova and Christine M. Aikens . Time Dependent Density Functional Theory Study of Magnetic Circular Dichroism Spectra of Gold Clusters Au9(PH3)83+ and Au9(PPh3)83+. The Journal of Physical Chemistry A 2016, 120 (48) , 9625-9635. https://doi.org/10.1021/acs.jpca.6b10063
    26. Birte Varnholt, Matthew J. Guberman-Pfeffer, Patric Oulevey, Sabrina Antonello, Tiziano Dainese, José A. Gascón, Thomas Bürgi, and Flavio Maran . Vibrational Coupling Modulation in n-Alkanethiolate Protected Au25(SR)180 Clusters. The Journal of Physical Chemistry C 2016, 120 (44) , 25378-25386. https://doi.org/10.1021/acs.jpcc.6b07592
    27. Rongchao Jin, Chenjie Zeng, Meng Zhou, and Yuxiang Chen . Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chemical Reviews 2016, 116 (18) , 10346-10413. https://doi.org/10.1021/acs.chemrev.5b00703
    28. Amendra Fernando and Christine M. Aikens . Deciphering the Ligand Exchange Process on Thiolate Monolayer Protected Au38(SR)24 Nanoclusters. The Journal of Physical Chemistry C 2016, 120 (27) , 14948-14961. https://doi.org/10.1021/acs.jpcc.6b04516
    29. Jiu-Lian Zeng, Zong-Jie Guan, Yang Du, Zi-Ang Nan, Yu-Mei Lin, and Quan-Ming Wang . Chloride-Promoted Formation of a Bimetallic Nanocluster Au80Ag30 and the Total Structure Determination. Journal of the American Chemical Society 2016, 138 (25) , 7848-7851. https://doi.org/10.1021/jacs.6b04471
    30. K. L. Dimuthu M. Weerawardene and Christine M. Aikens . Effect of Aliphatic versus Aromatic Ligands on the Structure and Optical Absorption of Au20(SR)16. The Journal of Physical Chemistry C 2016, 120 (15) , 8354-8363. https://doi.org/10.1021/acs.jpcc.6b01011
    31. J. Jesús Pelayo, Robert L. Whetten, and Ignacio L. Garzón . Geometric Quantification of Chirality in Ligand-Protected Metal Clusters. The Journal of Physical Chemistry C 2015, 119 (51) , 28666-28678. https://doi.org/10.1021/acs.jpcc.5b10235
    32. Ganapati Natarajan, Ammu Mathew, Yuichi Negishi, Robert L. Whetten, and Thalappil Pradeep . A Unified Framework for Understanding the Structure and Modifications of Atomically Precise Monolayer Protected Gold Clusters. The Journal of Physical Chemistry C 2015, 119 (49) , 27768-27785. https://doi.org/10.1021/acs.jpcc.5b08193
    33. Stefan Knoppe, Hannu Häkkinen, and Thierry Verbiest . Nonlinear Optical Properties of Thiolate-Protected Gold Clusters: A Theoretical Survey of the First Hyperpolarizabilities. The Journal of Physical Chemistry C 2015, 119 (49) , 27676-27682. https://doi.org/10.1021/acs.jpcc.5b08341
    34. Milan Rambukwella, Luca Sementa, Giovanni Barcaro, Alessandro Fortunelli, and Amala Dass . Organosoluble Au102(SPh)44 Nanomolecules: Synthesis, Isolation, Compositional Assignment, Core Conversion, Optical Spectroscopy, Electrochemistry, and Theoretical Analysis. The Journal of Physical Chemistry C 2015, 119 (44) , 25077-25084. https://doi.org/10.1021/acs.jpcc.5b07520
    35. Praneeth Reddy Nimmala, Shevanuja Theivendran, Giovanni Barcaro, Luca Sementa, Chanaka Kumara, Vijay Reddy Jupally, Edoardo Apra, Mauro Stener, Alessandro Fortunelli, and Amala Dass . Transformation of Au144(SCH2CH2Ph)60 to Au133(SPh-tBu)52 Nanomolecules: Theoretical and Experimental Study. The Journal of Physical Chemistry Letters 2015, 6 (11) , 2134-2139. https://doi.org/10.1021/acs.jpclett.5b00780
    36. Juan Zhong, Xianqiong Tang, Jian Tang, Jingcang Su, and Yong Pei . Density Functional Theory Studies on Structure, Ligand Exchange, and Optical Properties of Ligand-Protected Gold Nanoclusters: Thiolate versus Selenolate. The Journal of Physical Chemistry C 2015, 119 (17) , 9205-9214. https://doi.org/10.1021/jp511615r
    37. Yuichi Negishi, Tafu Nakazaki, Sami Malola, Shinjiro Takano, Yoshiki Niihori, Wataru Kurashige, Seiji Yamazoe, Tatsuya Tsukuda, and Hannu Häkkinen . A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters. Journal of the American Chemical Society 2015, 137 (3) , 1206-1212. https://doi.org/10.1021/ja5109968
    38. Praneeth Reddy Nimmala and Amala Dass . Au99(SPh)42 Nanomolecules: Aromatic Thiolate Ligand Induced Conversion of Au144(SCH2CH2Ph)60. Journal of the American Chemical Society 2014, 136 (49) , 17016-17023. https://doi.org/10.1021/ja5103025
    39. Raul Guajardo-Maturana, Desmond MacLeod Carey, Peter L. Rodríguez-Kessler, Alvaro Muñoz-Castro. On the variation of cluster core characteristics by an endohedral atom. Shape variation in 8-ce [EAu 4 (PPh 3 ) 4 ] 2+ (E = N, P, As, Sb) clusters. Physical Chemistry Chemical Physics 2024, 26 (30) , 20701-20708. https://doi.org/10.1039/D4CP01465K
    40. Junfeng Gao, Luneng Zhao, Yuan Chang, Yanxue Zhang, Shi Qiu, Yuanyuan Zhao, Hongsheng Liu, Jijun Zhao. Intelligent Structure Searching and Designs for Nanoclusters: Effective Units in Atomic Manufacturing. Advanced Intelligent Systems 2024, 6 (6) https://doi.org/10.1002/aisy.202300716
    41. Dan Yang, Yating Wu, Zhaotong Yuan, Chunmei Zhou, Yihu Dai, Xiaoyue Wan, Yan Zhu, Yanhui Yang. Metal–ligand interfaces for well-defined gold nanoclusters. Science China Chemistry 2024, 67 (3) , 806-823. https://doi.org/10.1007/s11426-023-1851-9
    42. Tokuhisa Kawawaki, Yuichi Negishi. Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Transactions 2023, 52 (42) , 15152-15167. https://doi.org/10.1039/D3DT02005C
    43. Haile Liu, Lihui Wang, Zhonghua Xue, Xiao‐Dong Zhang. Atomic Precise Gold Nanoclusters: Toward the Customize Synthesis, Precision Medicine. Particle & Particle Systems Characterization 2023, 40 (9) https://doi.org/10.1002/ppsc.202300084
    44. Manzhou Zhu, Haizhu Yu. Mechanism of size conversion and structure evolution of metal nanoclusters. 2023, 79-151. https://doi.org/10.1016/B978-0-323-90474-2.00003-4
    45. Endong Wang, Junxia Ding, Wenhua Han, Shixia Luan. Structural prediction of anion thiolate protected gold clusters of [Au28+7n(SR)17+3n]− (n = 0–4). The Journal of Chemical Physics 2022, 157 (12) https://doi.org/10.1063/5.0105226
    46. Endong Wang, Yi Gao. Elucidating the stabilities and properties of the thiolate-protected Au nanoclusters with detaching the staple motifs. The Journal of Chemical Physics 2021, 155 (4) https://doi.org/10.1063/5.0056933
    47. Bihan Zhang, Jishi Chen, Yitao Cao, Osburg Jin Huang Chai, Jianping Xie. Ligand Design in Ligand‐Protected Gold Nanoclusters. Small 2021, 17 (27) https://doi.org/10.1002/smll.202004381
    48. Yingwei Li, Tatsuya Higaki, Xiangsha Du, Rongchao Jin. Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters. Advanced Materials 2020, 32 (41) https://doi.org/10.1002/adma.201905488
    49. Xi Kang, Yingwei Li, Manzhou Zhu, Rongchao Jin. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chemical Society Reviews 2020, 49 (17) , 6443-6514. https://doi.org/10.1039/C9CS00633H
    50. Quanquan Shi, Zhaoxian Qin, Changlin Yu, Shuang Liu, Hui Xu, Gao Li. Pyridine as a trigger in transformation chemistry from Au 144 (SR) 60 to aromatic thiolate-ligated gold clusters. Nanoscale 2020, 12 (8) , 4982-4987. https://doi.org/10.1039/C9NR10522K
    51. Zhimei Tian, Yangyang Xu, Longjiu Cheng. New Perspectives on the Electronic and Geometric Structure of Au70S20(PPh3)12 Cluster: Superatomic-Network Core Protected by Novel Au12(µ3-S)10 Staple Motifs. Nanomaterials 2019, 9 (8) , 1132. https://doi.org/10.3390/nano9081132
    52. Yoshiki Niihori, Kana Yoshida, Sakiat Hossain, Wataru Kurashige, Yuichi Negishi. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. Bulletin of the Chemical Society of Japan 2019, 92 (3) , 664-695. https://doi.org/10.1246/bcsj.20180357
    53. Elumalai Kumaran, Weng Kee Leong. Rapid Size-Focusing of Gold Nanoclusters with an Oxidant. Journal of Cluster Science 2019, 30 (1) , 1-4. https://doi.org/10.1007/s10876-018-1469-0
    54. Lianjie Xu, Wen-Bin Zhang. The pursuit of precision in macromolecular science: Concepts, trends, and perspectives. Polymer 2018, 155 , 235-247. https://doi.org/10.1016/j.polymer.2018.09.017
    55. Milan Rambukwella, Naga Arjun Sakthivel, Jared H. Delcamp, Luca Sementa, Alessandro Fortunelli, Amala Dass. Ligand Structure Determines Nanoparticles' Atomic Structure, Metal-Ligand Interface and Properties. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00330
    56. Miaomiao Ma, Liren Liu, Hengjiang Zhu, Junzhe Lu, Guiping Tan. Structural evolution and properties of small-size thiol-protected gold nanoclusters. Molecular Physics 2018, 116 (14) , 1804-1811. https://doi.org/10.1080/00268976.2018.1457804
    57. Xiangxiang Sun, Pu Wang, Lin Xiong, Yong Pei. Theoretical prediction of a new stable structure of Au28(SR)20 cluster. Chemical Physics Letters 2018, 704 , 68-75. https://doi.org/10.1016/j.cplett.2018.05.038
    58. Mizuho Sugiuchi, Yukatsu Shichibu, Katsuaki Konishi. An Inherently Chiral Au 24 Framework with Double‐Helical Hexagold Strands. Angewandte Chemie 2018, 130 (26) , 7981-7985. https://doi.org/10.1002/ange.201804087
    59. Mizuho Sugiuchi, Yukatsu Shichibu, Katsuaki Konishi. An Inherently Chiral Au 24 Framework with Double‐Helical Hexagold Strands. Angewandte Chemie International Edition 2018, 57 (26) , 7855-7859. https://doi.org/10.1002/anie.201804087
    60. K.L. Dimuthu M. Weerawardene, Hannu Häkkinen, Christine M. Aikens. Connections Between Theory and Experiment for Gold and Silver Nanoclusters. Annual Review of Physical Chemistry 2018, 69 (1) , 205-229. https://doi.org/10.1146/annurev-physchem-052516-050932
    61. Bo Rao, Tong Zhao, Sha Yang, Jinsong Chai, Yiting Pan, Shiyin Weng, Haizhu Yu, Xiaowu Li, Manzhou Zhu. X-ray crystal structure and doping mechanism of bimetallic nanocluster Au 36−x Cu x ( m -MBT) 24 ( x = 1–3). Dalton Transactions 2018, 47 (2) , 475-480. https://doi.org/10.1039/C7DT02959D
    62. Pu Wang, Xiangxiang Sun, Xia Liu, Lin Xiong, Zhongyun Ma, Yong Wang, Yong Pei. A revisit to the structure of Au 20 (SCH 2 CH 2 Ph) 16 : a cubic nanocrystal-like gold kernel. Nanoscale 2018, 10 (22) , 10357-10364. https://doi.org/10.1039/C8NR00995C
    63. Xi Kang, Hanbao Chong, Manzhou Zhu. Au 25 (SR) 18 : the captain of the great nanocluster ship. Nanoscale 2018, 10 (23) , 10758-10834. https://doi.org/10.1039/C8NR02973C
    64. Zhongyun Ma, Pu Wang, Lin Xiong, Yong Pei. Thiolate‐protected gold nanoclusters: structural prediction and the understandings of electronic stability from first principles simulations. WIREs Computational Molecular Science 2017, 7 (4) https://doi.org/10.1002/wcms.1315
    65. Xi Kang, Chantiem Silalai, Ying Lv, Guodong Sun, Shuang Chen, Haizhu Yu, Fengqing Xu, Manzhou Zhu. Au 15 Ag 3 (SPhMe 2 ) 14 Nanoclusters – Crystal Structure and Insights into Ligand‐Induced Variation. European Journal of Inorganic Chemistry 2017, 2017 (10) , 1414-1419. https://doi.org/10.1002/ejic.201601513
    66. Guang-Zhong Yin, Wen-Bin Zhang, Stephen Z.D. Cheng. Giant molecules: where chemistry, physics, and bio-science meet. Science China Chemistry 2017, 60 (3) , 338-352. https://doi.org/10.1007/s11426-016-0436-x
    67. Zhimei Tian, Longjiu Cheng. Electronic and geometric structures of Au 30 clusters: a network of 2e-superatom Au cores protected by tridentate protecting motifs with u 3 -S. Nanoscale 2016, 8 (2) , 826-834. https://doi.org/10.1039/C5NR05020K
    68. Guoxiang Hu, Rongchao Jin, De-en Jiang. Beyond the staple motif: a new order at the thiolate–gold interface. Nanoscale 2016, 8 (48) , 20103-20110. https://doi.org/10.1039/C6NR07709A
    69. Zhang Wen-Bin, Chen Er-Qiang, Wang Jing, Zhang Wei, Wang Lin-Ge, Cheng Stephen Z. D., , , . Soft matters from nano-atoms to giant molecules. Acta Physica Sinica 2016, 65 (18) , 183601. https://doi.org/10.7498/aps.65.183601
    70. Timothy A. Dreier, Christopher J. Ackerson. Radicals Are Required for Thiol Etching of Gold Particles. Angewandte Chemie 2015, 127 (32) , 9381-9384. https://doi.org/10.1002/ange.201502934
    71. Timothy A. Dreier, Christopher J. Ackerson. Radicals Are Required for Thiol Etching of Gold Particles. Angewandte Chemie International Edition 2015, 54 (32) , 9249-9252. https://doi.org/10.1002/anie.201502934
    72. Shinjiro Takano, Tatsuya Tsukuda. Controlled Synthesis. 2015, 9-38. https://doi.org/10.1016/B978-0-08-100086-1.00002-6
    73. Christine M. Aikens. Optical Properties and Chirality. 2015, 223-261. https://doi.org/10.1016/B978-0-08-100086-1.00009-9
    74. Zhimei Tian, Longjiu Cheng. Perspectives on the energy landscape of Au–Cl binary systems from the structural phase diagram of Au x Cl y (x + y = 20). Physical Chemistry Chemical Physics 2015, 17 (20) , 13421-13428. https://doi.org/10.1039/C5CP01863C
    75. Thomas Bürgi. Properties of the gold–sulphur interface: from self-assembled monolayers to clusters. Nanoscale 2015, 7 (38) , 15553-15567. https://doi.org/10.1039/C5NR03497C
    76. Gwladys Pourceau, Lourdes del Valle-Carrandi, Paolo Di Gianvincenzo, Olatz Michelena, Soledad Penadés. On the chiroptical properties of Au( i )–thiolate glycoconjugate precursors and their influence on sugar-protected gold nanoparticles (glyconanoparticles). RSC Adv. 2014, 4 (103) , 59284-59288. https://doi.org/10.1039/C4RA11741G

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2014, 118, 49, 14157–14167
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp506508x
    Published October 15, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1484

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.