ACS Publications. Most Trusted. Most Cited. Most Read
Light Harvesting and Charge Separation in a π-Conjugated Antenna Polymer Bound to TiO2
My Activity

Figure 1Loading Img
    Article

    Light Harvesting and Charge Separation in a π-Conjugated Antenna Polymer Bound to TiO2
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
    Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
    § School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
    *E-mail [email protected] (K.S.S.).
    *E-mail [email protected] (J.M.P.).
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2014, 118, 49, 28535–28541
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp5113558
    Published November 17, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    This paper describes the photophysical and photoelectrochemical characterization of a light harvesting polychromophore array featuring a polyfluorene backbone with covalently attached Ru(II) polypyridyl complexes (PF-Ru-A), adsorbed on the surface of mesostructured TiO2 (PF-Ru-A//TiO2). The surface adsorbed polymer is characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, providing evidence for the morphology of the surface adsorbed polymer and the mode of binding. Photoexcitation of the Ru(II) complexes bound to the metal oxide surface (proximal) results in electron injection into the conduction band of TiO2, which is then followed by ultrafast hole transfer to the polymer to form oxidized polyfluorene (PF+). More interestingly, chromophores that are not directly bound to the TiO2 interface (distal) that are excited participate in site-to-site energy transfer processes that transport the excited state to surface bound chromophores where charge injection occurs, underscoring the antenna-like nature of the polymer assembly. The charge separated state is long-lived and persists for >100 μs, a consequence of the increased separation between the hole and injected electron.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures, ATR-FTIR, TEM, AFM, JV curve, absorption and emission spectra of PF-Ru-A//TiO2 films, and transient absorption spectra of PF-Ru-A//ZrO2 results. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 34 publications.

    1. Shuya Li, Udani K. Wijethunga, Chun Chu, Saerona Kim, Weiwei Zheng, Benjamin D. Sherman, Chang Geun Yoo, Seunghyun Lee, Gyu Leem. Photoinduced Hydrogen Atom Transfer Catalysis with Ruthenium Polypyridyl Coated-TiO2 Nanoparticles for Selective C–C Bond Cleavage in a Lignin Model Compound. ACS Catalysis 2025, 15 (6) , 4460-4467. https://doi.org/10.1021/acscatal.4c04934
    2. Xiaohui Wang, Wei Kong, Tao Jiang, Zhixin Xie, Jianyu Zhang, Lin Ma, Carl Redshaw, Zujin Zhao, Xing Feng. Pyrene-Based Light-Harvesting Antenna Molecules. The Journal of Physical Chemistry Letters 2025, 16 (10) , 2468-2478. https://doi.org/10.1021/acs.jpclett.4c03714
    3. Shuya Li, Eric Wolfgang Shuler, Debora Willinger, Hai Tien Nguyen, Saerona Kim, Hyeong Cheol Kang, Jae-Joon Lee, Weiwei Zheng, Chang Geun Yoo, Benjamin D. Sherman, Gyu Leem. Enhanced Photocatalytic Alcohol Oxidation at the Interface of RuC-Coated TiO2 Nanorod Arrays. ACS Applied Materials & Interfaces 2022, 14 (20) , 22799-22809. https://doi.org/10.1021/acsami.1c20795
    4. Shuya Li, Udani K. Wijethunga, Andrew H. Davis, Saerona Kim, Weiwei Zheng, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Ru(II) Polypyridyl-Modified TiO2 Nanoparticles for Photocatalytic C–C/C–O Bond Cleavage at Room Temperature. ACS Applied Nano Materials 2022, 5 (1) , 948-956. https://doi.org/10.1021/acsanm.1c03622
    5. Yan Zhao, Soojin Kim, Yu Kyung Eom, Silvano R. Valandro, Kirk S. Schanze. Polymer Chromophore–Catalyst Assembly for Photocatalytic CO2 Reduction. ACS Applied Energy Materials 2021, 4 (7) , 7030-7039. https://doi.org/10.1021/acsaem.1c01100
    6. Shuya Li, Saerona Kim, Andrew H. Davis, Jingshun Zhuang, Eric Wolfgang Shuler, Debora Willinger, Jae-Joon Lee, Weiwei Zheng, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Photocatalytic Chemoselective C–C Bond Cleavage at Room Temperature in Dye-Sensitized Photoelectrochemical Cells. ACS Catalysis 2021, 11 (7) , 3771-3781. https://doi.org/10.1021/acscatal.1c00198
    7. Robert J. Dillon, Zhenxing Pan, Junlin Jiang, Russell W. Winkel, John M. Papanikolas, Kirk S. Schanze. Ultrafast Energy Transfer in Fully Conjugated Thiophene-Benzothiadiazole Capped Poly(Phenylene Ethynylene) Molecular Wires. The Journal of Physical Chemistry C 2020, 124 (35) , 18920-18929. https://doi.org/10.1021/acs.jpcc.0c05808
    8. Shuya Li, Zhi-Jun Li, Hyun Yu, Marion Ryan Sytu, Yunxuan Wang, Debora Beeri, Weiwei Zheng, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Solar-Driven Lignin Oxidation via Hydrogen Atom Transfer with a Dye-Sensitized TiO2 Photoanode. ACS Energy Letters 2020, 5 (3) , 777-784. https://doi.org/10.1021/acsenergylett.9b02391
    9. Junlin Jiang, Benjamin D. Sherman, Yan Zhao, Ru He, Ion Ghiviriga, Leila Alibabaei, Thomas J. Meyer, Gyu Leem, and Kirk S. Schanze . Polymer Chromophore-Catalyst Assembly for Solar Fuel Generation. ACS Applied Materials & Interfaces 2017, 9 (23) , 19529-19534. https://doi.org/10.1021/acsami.7b05173
    10. Gyu Leem, Benjamin D. Sherman, Alex J. Burnett, Zachary A. Morseth, Kyung-Ryang Wee, John M. Papanikolas, Thomas J. Meyer, and Kirk S. Schanze . Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies. ACS Energy Letters 2016, 1 (2) , 339-343. https://doi.org/10.1021/acsenergylett.6b00171
    11. Salvatrice Millesi, Raffaella Lo Nigro, Marco Pedroni, Adolfo Speghini, and Antonino Gulino . Photoexcited Porphyrins Functionalizing TiO2 and SnO2 Nanocrystals. The Journal of Physical Chemistry C 2015, 119 (41) , 23743-23751. https://doi.org/10.1021/acs.jpcc.5b06574
    12. Zachary A. Morseth, Li Wang, Egle Puodziukynaite, Gyu Leem, Alexander T. Gilligan, Thomas J. Meyer, Kirk S. Schanze, John R. Reynolds, and John M. Papanikolas . Ultrafast Dynamics in Multifunctional Ru(II)-Loaded Polymers for Solar Energy Conversion. Accounts of Chemical Research 2015, 48 (3) , 818-827. https://doi.org/10.1021/ar500382u
    13. Kosuke Terayama, Tsuyoshi Michinobu. Organic Semiconducting Polymers and Their Post-functionalization for Optoelectronics. 2024, 435-457. https://doi.org/10.1039/BK9781837673551-00435
    14. Jonas Eichhorn, Alexander K. Mengele, Christof Neumann, Johannes Biskupek, Andrey Turchanin, Ute Kaiser, Sven Rau, Felix H. Schacher. Block copolymer micelles as colloidal catalysts for photocatalytic NAD + reduction. Polymer Chemistry 2024, 13 https://doi.org/10.1039/D4PY00693C
    15. Li Tian, Haowei Lin, Mengya Shang, Xi Zhang, XueFei Zhou, Shanhong Xu, Cheng-Xing Cui, Airong Wang. Improving the photocatalytic performance of conjugated polyelectrolytes via substituent optimization. Journal of Materials Chemistry C 2023, 11 (28) , 9678-9685. https://doi.org/10.1039/D3TC01181J
    16. Shuya Li, Seongsu Park, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chemical Communications 2023, 59 (4) , 401-413. https://doi.org/10.1039/D2CC05491D
    17. Saerona Kim, Hyeong Cheol Kang, Chun Chu, Shuya Li, Kicheon Yoo, Udani Kaushalya Wijethunga, Weiwei Zheng, Chang Geun Yoo, Benjamin D. Sherman, Jae-Joon Lee, Gyu Leem. Solar energy driven C–C bond cleavage in a lignin model compound with a D–π–A organic dye-sensitized photoanode. Sustainable Energy & Fuels 2023, 1377 https://doi.org/10.1039/D3SE00194F
    18. Carolin Müller, Sebastian Bold, Murielle Chavarot-Kerlidou, Benjamin Dietzek-Ivanšić. Photoinduced electron transfer in triazole-bridged donor-acceptor dyads – A critical perspective. Coordination Chemistry Reviews 2022, 472 , 214764. https://doi.org/10.1016/j.ccr.2022.214764
    19. Benjamin D. Sherman, Nelli Klinova McMillan, Debora Willinger, Gyu Leem. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells. Nano Convergence 2021, 8 (1) https://doi.org/10.1186/s40580-021-00257-8
    20. Ruri A. Wahyuono, Bianca Seidler, Sebastian Bold, Andrea Dellith, Jan Dellith, Johannes Ahner, Pascal Wintergerst, Grace Lowe, Martin D. Hager, Maria Wächtler, Carsten Streb, Ulrich S. Schubert, Sven Rau, Benjamin Dietzek. Photocathodes beyond NiO: charge transfer dynamics in a π-conjugated polymer functionalized with Ru photosensitizers. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-82395-x
    21. Zhicheng Hu, Xi Zhang, Qingwu Yin, Xiaocheng Liu, Xiao-fang Jiang, Zhiming Chen, Xiye Yang, Fei Huang, Yong Cao. Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes. Nano Energy 2019, 60 , 775-783. https://doi.org/10.1016/j.nanoen.2019.04.027
    22. Alex J. Mantanona, Katelyn Wood, Yann Schrodi, Simon J. Garrett. Activating Ru nanoparticles on oxide supports for ring-opening metathesis polymerization. Dalton Transactions 2018, 47 (23) , 7754-7760. https://doi.org/10.1039/C8DT00354H
    23. Gyu Leem, Benjamin D. Sherman, Kirk S. Schanze. Polymer-based chromophore–catalyst assemblies for solar energy conversion. Nano Convergence 2017, 4 (1) https://doi.org/10.1186/s40580-017-0132-z
    24. Robert Schroot, Tina Schlotthauer, Benjamin Dietzek, Michael Jäger, Ulrich S. Schubert. Extending Long‐lived Charge Separation Between Donor and Acceptor Blocks in Novel Copolymer Architectures Featuring a Sensitizer Core. Chemistry – A European Journal 2017, 23 (65) , 16484-16490. https://doi.org/10.1002/chem.201704180
    25. Selvam Ramasamy, Mani Boopathy, Samuel Johnsanthoshkumar, Kathavarayan Subramanian. Structural engineering of poly-(methacrylate) bearing push-pull type pendants oxindole-phenothiazine with tetrazole anchoring acceptor for efficient organic photovoltaic cells. Polymer 2017, 115 , 128-136. https://doi.org/10.1016/j.polymer.2017.03.029
    26. Robert Schroot, Michael Jäger, Ulrich S. Schubert. Synthetic approaches towards structurally-defined electrochemically and (photo)redox-active polymer architectures. Chemical Society Reviews 2017, 46 (10) , 2754-2798. https://doi.org/10.1039/C6CS00811A
    27. Tina Schlotthauer, Robert Schroot, Starla Glover, Leif Hammarström, Michael Jäger, Ulrich S. Schubert. A multidonor–photosensitizer–multiacceptor triad for long-lived directional charge separation. Physical Chemistry Chemical Physics 2017, 19 (42) , 28572-28578. https://doi.org/10.1039/C7CP05593E
    28. Francesco Romano, Yixuan Yu, Brian A. Korgel, Giacomo Bergamini, Paola Ceroni. Light-Harvesting Antennae Based on Silicon Nanocrystals. Topics in Current Chemistry 2016, 374 (4) https://doi.org/10.1007/s41061-016-0056-9
    29. Gyu Leem, Zachary A. Morseth, Kyung‐Ryang Wee, Junlin Jiang, M. Kyle Brennaman, John M. Papanikolas, Kirk S. Schanze. Polymer‐Based Ruthenium(II) Polypyridyl Chromophores on TiO 2 for Solar Energy Conversion. Chemistry – An Asian Journal 2016, 11 (8) , 1257-1267. https://doi.org/10.1002/asia.201501384
    30. Michael K. Coggins, Thomas J. Meyer. Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: From Basic Science to Prototype Devices. 2016, 513-548. https://doi.org/10.1007/978-3-319-29641-8_13
    31. Takuya Fujimura, Elamparuthi Ramasamy, Yohei Ishida, Tetsuya Shimada, Shinsuke Takagi, Vaidhyanathan Ramamurthy. Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet. Physical Chemistry Chemical Physics 2016, 18 (7) , 5404-5411. https://doi.org/10.1039/C5CP06984J
    32. Andrea Fermi, Mirko Locritani, Gabriele Di Carlo, Maddalena Pizzotti, Stefano Caramori, Yixuan Yu, Brian A. Korgel, Giacomo Bergamini, Paola Ceroni. Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin chromophores. Faraday Discussions 2015, 185 , 481-495. https://doi.org/10.1039/C5FD00098J
    33. Qianqian Li, Zhen Li. The utilization of post-synthetic modification in opto-electronic polymers: an effective complementary approach but not a competitive one to the traditional direct polymerization process. Polymer Chemistry 2015, 6 (38) , 6770-6791. https://doi.org/10.1039/C5PY01158B
    34. Gyu Leem, Shahar Keinan, Junlin Jiang, Zhuo Chen, Toan Pho, Zachary A. Morseth, Zhenya Hu, Egle Puodziukynaite, Zhen Fang, John M. Papanikolas, John R. Reynolds, Kirk S. Schanze. Ru(bpy) 3 2+ derivatized polystyrenes constructed by nitroxide-mediated radical polymerization. Relationship between polymer chain length, structure and photophysical properties. Polymer Chemistry 2015, 6 (47) , 8184-8193. https://doi.org/10.1039/C5PY01289A

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2014, 118, 49, 28535–28541
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp5113558
    Published November 17, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1058

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.